Солнечные элементы своими руками из полупроводников: Как делают солнечные элементы

Содержание

Как делают солнечные элементы

При выборе модуля часто задается вопрос: какая солнечная батарея лучше – монокристаллическая или поликристаллическая, а может аморфная? Ведь они самые распространенные в наш век. Чтобы найти ответ, было проведено множество исследований. Рассмотрим, что же показали результаты.

***КПД и срок службы
Монокристаллические элементы имеют КПД около 17-22%, сроки их службы не менее 25 лет. Эффективность поликристаллических может достигать 12-18%, служат они тоже не менее 25 лет. КПД аморфных составляет 6-8% и снижается гораздо быстрее кристаллических, работают они не более 10 лет.

***Температурный коэффициент
В реальных условиях использования солнечные батареи нагревается, что приводит к снижению номинальной мощности на 15-25%. Средний температурный коэффициент для поли и моно составляет -0,45%, аморфного -0,19%. Это значит, что при повышении температуры на 1°C от стандартных условий кристаллические батареи будут менее производительными, чем аморфные.

***Потеря эффективности

Деградация солнечных монокристаллических и поликристаллических модулей зависит от качества исходных элементов – чем больше в них бора и кислорода, тем быстрее снижается КПД. В поликремниевых пластинах меньше кислорода, в монокремниевых – бора. Поэтому при равных качествах материала и условий использования особой разницы между степенью деградации тех и других модулей нет, в среднем она составляет около 1% в год. В производстве аморфных батарей используется гидрогенизированный кремний. Содержанием водорода обусловлена его более быстрая деградация. Так, кристаллические деградируют на 20% через 25 лет эксплуатации, аморфные быстрее в 2-3 раза. Однако некачественные модели могут потерять эффективность на 20% уже в первый год использования. Это стоит учесть при покупке.

***Стоимость
Тут превосходство полностью на стороне аморфных модулей – их цена ниже, чем кристаллических, из-за более дешевого производства. Второе место занимают поли, моно же самые дорогие.

***Размеры и площадь установки
Монокристаллические батареи более компактны. Для создания массива требуемой мощностью понадобится меньшее количество панелей по сравнению с другими видами. Так что при установке они займут немного меньше места. Но прогресс не стоит на месте, и по соотношению мощность/площадь поликристаллические модули уже догоняют моно. Аморфные же пока отстают от них – для их установки понадобится в 2,5 раза больше места.

***Светочувствительность
Здесь лидируют аморфно-кремниевые модули. У них лучший коэффициент преобразования солнечной энергии из-за водорода в составе элемента. Поэтому они, по сравнению с кристаллическими, в условиях слабой освещенности работают эффективнее. Моно и поли, при плохом освещении работают примерно одинаково – значительно реагируют на изменение интенсивности света.

***Годовая выработка
В результате тестирования модулей разных производителей было установлено, что монокристаллические за год вырабатывают больше электроэнергии, чем поликристаллические. А те в свою очередь производительнее, чем аморфные, несмотря на то, что последние вырабатывают энергию и при слабой освещенности.

Можно сделать вывод, что солнечные батареи моно и поли имеют небольшие, но важные различия. Хотя mono все-таки эффективнее и отдача от них больше, но poly все равно будут пользоваться большей популярностью. Правда, это зависит от качества продукции. Тем не менее, большинство крупных солнечных электростанций собраны на базе полимодулей. Связано это с тем, что инвесторы смотрят на общую стоимость проекта и сроки окупаемости, а не на максимальную эффективность и долговечность.

Теперь об аморфных батареях. Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.

Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстрее деградируют – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.

Как делают солнечные элементы

Человечество в целях заботы об экологии и экономии денежных средств начало использовать альтернативные источники энергии, к которым, в частности, принадлежат солнечные батареи. Покупка такого удовольствия обойдется довольно дорого, но не составляет сложности сделать данное устройство своими руками. Поэтому вам не помешает узнать, как самому сделать солнечную батарею. Об этом и пойдет речь в нашей статье.

Устройство и принципы работы

Солнечные батареи — устройства, генерирующие электроэнергию с помощью фотоэлементов.

Прежде чем говорить о том, как сделать солнечную батарею своими руками, необходимо понять устройство и принципы ее работы. Солнечная батарея включает в себя фотоэлементы, соединенные последовательно и параллельно, аккумулятор, накапливающий электроэнергию, инвертор, преобразующий постоянный ток в переменный и контроллер, следящий за зарядкой и разрядкой аккумулятора.

Как правило, фотоэлементы изготавливают из кремния, но его очистка обходится дорого, поэтому в последнее время начали использовать такие элементы, как индий, медь, селен.

Каждый фотоэлемент является отдельной ячейкой, генерирующей электроэнергию. Ячейки сцеплены между собой и образуют единое поле, от площади которого зависит мощность батареи. То есть, чем больше фотоэлементов, тем больше электроэнергии генерируется.

Для того чтобы изготовить солнечную панель своими руками в домашних условиях, необходимо понимать сущность такого явления, как фотоэффект. Фотоэлемент – кремниевая пластинка, при попадании света на которую с последнего энергетического уровня атомов кремния выбивается электрон. Передвижение потока таких электронов вырабатывает постоянный ток, который впоследствии преобразуется в переменный. В этом и заключается явление фотоэффекта.

Преимущества

Солнечные батареи имеют следующие преимущества:

  • безвредность для экологии;
  • долговечность;
  • бесшумная работа;
  • легкость изготовления и монтажа;
  • независимость поставки электричества от распределительной сети;
  • неподвижность частей устройства;
  • незначительные финансовые затраты;
  • небольшой вес;
  • работа без механических преобразователей.

Разновидности

Солнечные батареи подразделяются на следующие виды.

Кремниевые

Кремний — самый популярный материал для батарей.

Кремниевые батареи также делятся на:

  1. Монокристаллические: для производства таких батарей используется очень чистый кремний.
  2. Поликристаллические (дешевле монокристаллических): поликристаллы получают постепенным охлаждением кремния.

Пленочные

Такие батареи подразделяются на следующие виды:

  1. На основе теллурида кадмия (КПД 10%): кадмий обладает высоким коэффициентом светопоглощения, что и позволяет использовать его в производстве батарей.
  2. На основе селенида меди — индия: КПД выше, чем у предыдущих.
  3. Полимерные.

Солнечные батареи из полимеров начали изготавливать относительно недавно, обычно для этого используют фуреллены, полифенилен и др. Пленки из полимеров очень тонкие, порядка 100 нм. Несмотря на КПД 5%, батареи из полимеров имеют свои преимущества: дешевизна материала, экологичность, эластичность.

Аморфные

КПД аморфных батарей составляет 5%. Такие панели изготавливаются из силана (кремневодорода) по принципу пленочных батарей, поэтому их можно отнести, как к кремниевым, так и к пленочным. Аморфные батареи эластичны, генерируют электричество даже в непогоду, поглощают свет лучше других панелей.

Материалы

Для изготовления солнечной батареи потребуются следующие материалы:

  • фотоячейки;
  • алюминиевые уголки;
  • диоды Шоттки;
  • силиконовые герметики;
  • проводники;
  • крепежные винты и метизы;
  • поликарбонатный лист/оргстекло;
  • паяльное оборудование.

Эти материалы обязательны для того, чтобы сделать солнечную батарею своими руками.

Выбор фотоэлементов

Чтобы сделать солнечную батарею для дома своими руками, следует правильно подобрать фотоэлементы. Последние подразделяются на монокристаллические, поликристаллические и аморфные.

КПД первых составляет 13%, но такие фотоэлементы малоэффективны в непогоду, внешне представляют собой ярко-синие квадраты. Поликристаллические фотоэлементы способны генерировать электроэнергию даже в непогоду, хотя их КПД всего лишь 9%, внешне темнее монокристаллических и срезаны по краям. Аморфные фотоячейки изготавливаются из гибкого кремния, их КПД составляет 10%, работоспособность не зависит от погодных условий, но изготовление таких ячеек слишком затратное, поэтому их редко используют.

Если вы планируете применять генерируемую фотоэлементами электроэнергию на даче, то советуем собрать солнечную батарею своими руками из поликристаллических ячеек, так как их КПД достаточно для ваших целей.

Следует покупать фотоячейки одной марки, так как фотоэлементы нескольких марок могут сильно отличаться — это может стать причиной возникновения проблем со сборкой батареи и ее функционированием. Следует помнить, что количество производимой ячейкой энергии прямо пропорционально ее размеру, то есть чем крупнее фотоячейка, тем больше электроэнергии она производит; напряжение ячейки зависит от ее типа, а никак не от размера.

Количество производимого тока определяется габаритами самого маленького фотоэлемента, поэтому следует покупать фотоячейки одинакового размера. Конечно же, не стоит приобретать дешевую продукцию, ведь это значит, что она не прошла проверку. Также не следует покупать фотоэлементы, покрытые воском (многие производители покрывают фотоячейки воском для сохранности продукции при перевозке): при его удалении можно испортить фотоэлемент.

Расчеты и проект

Устройство солнечной панели своими руками — несложная задача, главное, подойти к ее выполнению ответственно. Чтобы изготовить солнечную панель своими руками, следует подсчитать дневное потребление электроэнергии, затем узнать среднесуточное солнечное время в вашей местности и рассчитать нужную мощность. Таким образом, станет понятно, сколько ячеек и какого размера нужно приобрести. Ведь как было сказано выше, генерируемый ячейкой ток зависит от ее габаритов.

Зная необходимый размер ячеек и их количество, нужно рассчитать габариты и вес панели, после чего необходимо выяснить выдержит ли кровля или другое место, куда планируется установка солнечной батареи, задумываемую конструкцию.

Устанавливая панель, следует не только выбрать самое солнечное место, но и постараться закрепить ее под прямым углом к солнечным лучам.

Этапы работы

Корпус

Прежде чем начать делать солнечную панель своими руками, необходимо соорудить для нее каркас. Он защищает батарею от повреждений, влаги и пыли.

Корпус собирается из влагостойкого материала: фанеры, покрытой влагоотталкивающим средством, или алюминиевых уголков, к которым силиконовым герметиком приклеивается оргстекло или поликарбонат.

При этом нужно соблюдать отступы между элементами (3-4 мм), так как необходимо учитывать расширение материала при повышении температуры.

Пайка элементов

Фотоэлементы выкладываются на лицевую сторону прозрачной поверхности, так, чтобы расстояние между ними со всех сторон было 5 мм: таким образом учитывается возможное расширение фотоячеек при повышении температуры.

Фиксируются преобразователи, имеющие два полюса: положительный и отрицательный. Если вы хотите увеличить напряжение, соединяйте элементы последовательно, если ток — параллельно.

Во избежание разрядки аккумулятора ночью, в единую цепь, состоящую из всех необходимых деталей, включают диод Шоттки, подсоединяя его к плюсовому проводнику. Затем все элементы спаивают между собой.

Сборка

В готовый каркас размещаются спаянные преобразователи, на фотоячейки наносится силикон — все это накрывается слоем из ДВП, закрывается крышкой, а места соединений деталей обрабатываются герметиком.

Даже городской житель может сделать и разместить солнечную батарею на балконе своими руками. Желательно, чтобы балкон был застеклен и утеплен.
Вот мы и разобрали, как сделать солнечную батарею в домашних условиях, оказалось, это совсем несложно.

Идеи из подручных материалов

Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.

Солнечная батарея из фольги

Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.

Как сделать солнечную батарею из фольги?

  • 2 «крокодильчика»;
  • медная фольга;
  • мультиметр;
  • соль;
  • пустая пластиковая бутылка без горлышка;
  • электрическая печь;
  • дрель.

Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.

Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.

Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.

Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.

Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.

Солнечная батарея из транзисторов

У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.

Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.

Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.

Солнечная батарея из диодов

Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.

Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.

Солнечная батарея из пивных банок

Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.

Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки. Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом.

Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.

Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.

Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.

Видео

Как сделать солнечные батареи своими руками – видео урок.

Человечество в целях заботы об экологии и экономии денежных средств начало использовать альтернативные источники энергии, к которым, в частности, принадлежат солнечные батареи. Покупка такого удовольствия обойдется довольно дорого, но не составляет сложности сделать данное устройство своими руками. Поэтому вам не помешает узнать, как самому сделать солнечную батарею. Об этом и пойдет речь в нашей статье.

Устройство и принципы работы

Солнечные батареи — устройства, генерирующие электроэнергию с помощью фотоэлементов.

Прежде чем говорить о том, как сделать солнечную батарею своими руками, необходимо понять устройство и принципы ее работы. Солнечная батарея включает в себя фотоэлементы, соединенные последовательно и параллельно, аккумулятор, накапливающий электроэнергию, инвертор, преобразующий постоянный ток в переменный и контроллер, следящий за зарядкой и разрядкой аккумулятора.

Как правило, фотоэлементы изготавливают из кремния, но его очистка обходится дорого, поэтому в последнее время начали использовать такие элементы, как индий, медь, селен.

Каждый фотоэлемент является отдельной ячейкой, генерирующей электроэнергию. Ячейки сцеплены между собой и образуют единое поле, от площади которого зависит мощность батареи. То есть, чем больше фотоэлементов, тем больше электроэнергии генерируется.

Для того чтобы изготовить солнечную панель своими руками в домашних условиях, необходимо понимать сущность такого явления, как фотоэффект. Фотоэлемент – кремниевая пластинка, при попадании света на которую с последнего энергетического уровня атомов кремния выбивается электрон. Передвижение потока таких электронов вырабатывает постоянный ток, который впоследствии преобразуется в переменный. В этом и заключается явление фотоэффекта.

Преимущества

Солнечные батареи имеют следующие преимущества:

  • безвредность для экологии;
  • долговечность;
  • бесшумная работа;
  • легкость изготовления и монтажа;
  • независимость поставки электричества от распределительной сети;
  • неподвижность частей устройства;
  • незначительные финансовые затраты;
  • небольшой вес;
  • работа без механических преобразователей.

Разновидности

Солнечные батареи подразделяются на следующие виды.

Кремниевые

Кремний — самый популярный материал для батарей.

Кремниевые батареи также делятся на:

  1. Монокристаллические: для производства таких батарей используется очень чистый кремний.
  2. Поликристаллические (дешевле монокристаллических): поликристаллы получают постепенным охлаждением кремния.

Пленочные

Такие батареи подразделяются на следующие виды:

  1. На основе теллурида кадмия (КПД 10%): кадмий обладает высоким коэффициентом светопоглощения, что и позволяет использовать его в производстве батарей.
  2. На основе селенида меди — индия: КПД выше, чем у предыдущих.
  3. Полимерные.

Солнечные батареи из полимеров начали изготавливать относительно недавно, обычно для этого используют фуреллены, полифенилен и др. Пленки из полимеров очень тонкие, порядка 100 нм. Несмотря на КПД 5%, батареи из полимеров имеют свои преимущества: дешевизна материала, экологичность, эластичность.

Аморфные

КПД аморфных батарей составляет 5%. Такие панели изготавливаются из силана (кремневодорода) по принципу пленочных батарей, поэтому их можно отнести, как к кремниевым, так и к пленочным. Аморфные батареи эластичны, генерируют электричество даже в непогоду, поглощают свет лучше других панелей.

Материалы

Для изготовления солнечной батареи потребуются следующие материалы:

  • фотоячейки;
  • алюминиевые уголки;
  • диоды Шоттки;
  • силиконовые герметики;
  • проводники;
  • крепежные винты и метизы;
  • поликарбонатный лист/оргстекло;
  • паяльное оборудование.

Эти материалы обязательны для того, чтобы сделать солнечную батарею своими руками.

Выбор фотоэлементов

Чтобы сделать солнечную батарею для дома своими руками, следует правильно подобрать фотоэлементы. Последние подразделяются на монокристаллические, поликристаллические и аморфные.

КПД первых составляет 13%, но такие фотоэлементы малоэффективны в непогоду, внешне представляют собой ярко-синие квадраты. Поликристаллические фотоэлементы способны генерировать электроэнергию даже в непогоду, хотя их КПД всего лишь 9%, внешне темнее монокристаллических и срезаны по краям. Аморфные фотоячейки изготавливаются из гибкого кремния, их КПД составляет 10%, работоспособность не зависит от погодных условий, но изготовление таких ячеек слишком затратное, поэтому их редко используют.

Если вы планируете применять генерируемую фотоэлементами электроэнергию на даче, то советуем собрать солнечную батарею своими руками из поликристаллических ячеек, так как их КПД достаточно для ваших целей.

Следует покупать фотоячейки одной марки, так как фотоэлементы нескольких марок могут сильно отличаться — это может стать причиной возникновения проблем со сборкой батареи и ее функционированием. Следует помнить, что количество производимой ячейкой энергии прямо пропорционально ее размеру, то есть чем крупнее фотоячейка, тем больше электроэнергии она производит; напряжение ячейки зависит от ее типа, а никак не от размера.

Количество производимого тока определяется габаритами самого маленького фотоэлемента, поэтому следует покупать фотоячейки одинакового размера. Конечно же, не стоит приобретать дешевую продукцию, ведь это значит, что она не прошла проверку. Также не следует покупать фотоэлементы, покрытые воском (многие производители покрывают фотоячейки воском для сохранности продукции при перевозке): при его удалении можно испортить фотоэлемент.

Расчеты и проект

Устройство солнечной панели своими руками — несложная задача, главное, подойти к ее выполнению ответственно. Чтобы изготовить солнечную панель своими руками, следует подсчитать дневное потребление электроэнергии, затем узнать среднесуточное солнечное время в вашей местности и рассчитать нужную мощность. Таким образом, станет понятно, сколько ячеек и какого размера нужно приобрести. Ведь как было сказано выше, генерируемый ячейкой ток зависит от ее габаритов.

Зная необходимый размер ячеек и их количество, нужно рассчитать габариты и вес панели, после чего необходимо выяснить выдержит ли кровля или другое место, куда планируется установка солнечной батареи, задумываемую конструкцию.

Устанавливая панель, следует не только выбрать самое солнечное место, но и постараться закрепить ее под прямым углом к солнечным лучам.

Этапы работы

Корпус

Прежде чем начать делать солнечную панель своими руками, необходимо соорудить для нее каркас. Он защищает батарею от повреждений, влаги и пыли.

Корпус собирается из влагостойкого материала: фанеры, покрытой влагоотталкивающим средством, или алюминиевых уголков, к которым силиконовым герметиком приклеивается оргстекло или поликарбонат.

При этом нужно соблюдать отступы между элементами (3-4 мм), так как необходимо учитывать расширение материала при повышении температуры.

Пайка элементов

Фотоэлементы выкладываются на лицевую сторону прозрачной поверхности, так, чтобы расстояние между ними со всех сторон было 5 мм: таким образом учитывается возможное расширение фотоячеек при повышении температуры.

Фиксируются преобразователи, имеющие два полюса: положительный и отрицательный. Если вы хотите увеличить напряжение, соединяйте элементы последовательно, если ток — параллельно.

Во избежание разрядки аккумулятора ночью, в единую цепь, состоящую из всех необходимых деталей, включают диод Шоттки, подсоединяя его к плюсовому проводнику. Затем все элементы спаивают между собой.

Сборка

В готовый каркас размещаются спаянные преобразователи, на фотоячейки наносится силикон — все это накрывается слоем из ДВП, закрывается крышкой, а места соединений деталей обрабатываются герметиком.

Даже городской житель может сделать и разместить солнечную батарею на балконе своими руками. Желательно, чтобы балкон был застеклен и утеплен.
Вот мы и разобрали, как сделать солнечную батарею в домашних условиях, оказалось, это совсем несложно.

Идеи из подручных материалов

Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.

Солнечная батарея из фольги

Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.

Как сделать солнечную батарею из фольги?

  • 2 «крокодильчика»;
  • медная фольга;
  • мультиметр;
  • соль;
  • пустая пластиковая бутылка без горлышка;
  • электрическая печь;
  • дрель.

Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.

Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.

Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.

Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.

Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.

Солнечная батарея из транзисторов

У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.

Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.

Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.

Солнечная батарея из диодов

Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.

Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.

Солнечная батарея из пивных банок

Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.

Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки. Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом.

Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.

Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.

Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.

Видео

Как сделать солнечные батареи своими руками – видео урок.

Солнечные элементы преобразуют энергию солнца в электричество, подобно тому, как растения превращают ее в пищу в процессе фотосинтеза. Солнечные элементы работают на основе энергии Солнца, под воздействием которой электроны в полупроводниковых материалах переходят от орбит, близких к ядрам их атомов, в более высокие орбиты, где они могут проводить электричество. Коммерческие солнечные элементы используют кремний в качестве полупроводника, но вот способ сделать солнечную батарею из более доступных материалов, чтобы лично увидеть, как это работает.

Изготовление кремниевых солнечных фотопреобразователей | ВИЭ от Avenston

Стандартный тестер состоит из эталонного солнечного элемента и встроенного компьютера, обобщающего полученные при измерении значения и приводящий их к значениям, которые были бы получены при полном соблюдении стандартов измерения. Это только на первый взгляд измерение представляется достаточно простой и тривиальной задачей, но на самом деле, чтобы получить корректные значения, необходимо учесть целый ряд факторов, основными из которых можно выделить следующие:

  • Поскольку вырабатываемый солнечным элементом электрический ток прямо пропорционален интенсивности освещения, при проведении тестирования необходимо добиться стабильности освещенности, её значение должно быть известным и постоянным.
  • Необходимо достичь как можно большей однородности света по всей поверхности тестируемой панели.
  • Спектральное распределение создаваемой освещенности должно максимально точно соответствовать спектральному распределению, характерному для естественного солнечного света.
  • Необходимо определить температуру солнечного элемента и поддерживать её фиксированной на протяжении всего времени тестирования.
  • Потребуется исключить нестабильность напряжения в электрической цепи измерительного комплекса и непосредственно на контактах – падение напряжения существенно влияет на точность проводимых измерений.

Добиться однородности излучения можно, воспользовавшись двумя самыми распространенными способами:

  • Задействовать точечный источник излучения – в этом случае необходимой однородности можно добиться, разнеся тестируемый образец солнечной панели и источник света на значительные расстояния, например, на несколько десятков метров.
  • Воспользоваться специальной оптикой с рассеивающими и отражающими элементами – достаточно сложный в плане практической реализации способ, ведь в этом случае придется постоянно контролировать настройку оборудования, своевременно внося необходимые коррективы. Кроме того, потребуется компенсировать влияние рефлектора (а также и прочих используемых оптических приборов) на спектральное распределение мощности излучения, применив дополнительную фильтрацию.

В первом варианте необходимо часто контролировать и настраивать оборудование, а также компенсировать влияние рефлектора и других оптических элементов на спектральное распределение с помощью дополнительной фильтрации, что приводит к большим трудностям в использовании. Во втором варианте необходимо однородность достигается разнесением источника и тестируемого образа на значительное расстояние. Наиболее распространенными в промышленности являются импульсные тестеры с ксеноновой лампой.

Итак, выше были изложены основы традиционной технологии, разработанной в Украине и внедренной в серийное производство. Это была, наверное наиболее распространенная технология создания кремниевых солнечных элементов с контактами, нанесенными методом трафаретной печати. Как может показаться, процесс производства фотоэлектрических преобразователей достаточно простой по сравнению с изделиями традиционной микроэлектроники. Но это только на первый взгляд. На самом деле в технологии фотоэлементов существует огромное множество трудностей, подводных камней и нюансов.

Солнечные батареи космического и наземного применения

К проблеме освоения энергии солнечного света привлечено в настоящее время внимание специалистов разных научных дисциплин. Особенно большие успехи достигнуты на пути создания полупроводниковых солнечных элементов и батарей различных конструкций. Все больше, легче и мощнее становятся солнечные батареи (СБ) космических аппаратов и станций, все шире их применения на земле, все выше КПД и разнообразнее их свойства.

Развитие теории и опыт прошлых лет позволили описать физические механизмы фотоэффекта, определить источники потерь мощности в ФЭП, объяснить реально полученные КПД и указать пути их повышения. Зонная теория твердых тел в сочетании с термодинамикой системы полупроводник-излучение позволил сделать оптимальный выбор исходного полупроводника, введя понятие и определив значение предельного теоретического КПД. И хотя не всегда удавалось довести уровень знаний к пониманию всех сложных электронных процессов, происходящих в объеме полупроводника или на его поверхности — контактах с воздухом, металлами или другими веществами. Однако, как правило выяснялось, как можно избежать влияния негативных явлений, усилить роль положительных и разработать модели совершенствования.

Необычные эксплуатационные условия (невесомость, глубокий вакуум, контрастные изменения температуры) не позволяют широко использовать в условиях космоса известные на Земле традиционные методы получения электричества. Поэтому основным источником электроэнергии для космических аппаратов являются солнечные батареи. И развитие космической техники требует дальнейшего совершенствования и повышения их технико-экономических показателей. Работа в космосе предъявляет СЕ очень жесткие и порой противоречивые требования. Действительно, поглощая максимум мировой энергии, они не должны перегреваться. В то время как диоды и транзисторы размещаются в герметичных, иногда теплоизолированных приборных отсеках, панели солнечных элементов нагреваются до 80 ° С, когда их освещает Солнце, и остывают до -150 ° С при заходе космических аппаратов в тень Земли. Кроме этого, солнечные батареи должны обладать способностью длительное время противостоять потокам корпускулярного излучения, воздействия частиц высоких энергий и метеоритным потокам.

Но не менее жесткие требования предъявляются к фотоэлектрическим преобразователям эксплуатируемым в наземных условиях. Это связано с растущим спектром применения СБ Украины. Сначала солнечные батареи использовались только в портативной технике, срок службы и энергопотребление которых невелика. Сейчас ФЭП используются как автономные источники питания для систем навигации и связи, систем телекоммуникаций и дополнительные источники электроэнергии, которые работают в часы пиковой нагрузки в электросети. Эти источники энергии должны обладать большой мощностью, большим сроком службы и устойчивостью к климатическим условиям. Сами же ФЭП должны быть недорогими и иметь возможность соединения в большие батареи.

Наибольшее распространение получили кремниевые ФЭП, что связано с хорошо развитой технологией, относительной дешевизной сырья и хорошими параметрами кремния с точки зрения непосредственного преобразования солнечной энергии в электрическую. Основными направлениями улучшения параметров фотоэлектрических преобразователей являются: оптимизация параметров существующих преобразователей, совершенствование технологии изготовления ФЭП с целью снижения материальных и энергетических затрат на их изготовление, применение новых материалов в технологии ФЭП. Об этом и многом другом мы будем писать еще не раз.

Влияние дефектов на количество ФЭП

В полупроводниковых материалах, используемых при производстве фотоэлектрических преобразователей (ФЭП), сначала имеют место дефекты различного типа, которые зависят в первую очередь от способа и условий получения полупроводника. Активность дефектов определяется их типом, размером поля деформации, взаимодействием дефектов друг с другом и примесями, расположением дефектов по отношению к активным областям ФЭП, типу и особенностями изготовления ФЭП.

Различные термические и механические процессы, которые имеют место на всех этапах изготовления твердотельных ФЭП, могут приводить к появлению новых структурных дефектов, а также дополнительных примесей в обрабатываемом материале. Кроме того, в ходе проведения технологических операций возможны изменения природы существующих дефектов и развитие новых дефектов. Дефектообразования на каждой стадии технологического процесса сильно зависит от предыдущих операций и режимов проведения дальнейших операций.

Структурные дефекты существенно влияют на продолжительность жизни носителей заряда и удельное сопротивление материала, что приводит в результате к изменению вольтамперных характеристик ФЭП. Дефекты вызывают увеличение токов утечек, приводят к появлению локального пробоя p-n перехода, неоднородности фронта диффузии примесей, обрыва металлизации, проколов оксида, в свою очередь приводит к деградации ФЭП, а также снижение процента выхода годных изделий и их надежности.

Дефекты конструкции кремниевых ФЭП

К выходным дефектам структуры фотоэлектрических преобразователей относятся агломераты точечных дефектов, дислокации и их скопления, планарные дефекты типа двойников, дефекты упаковки, границы зерен, а также преципитаты и микродефекты, которые расположены внутри зерен, макродефектов материала и т.п. Отклонение в ходе проведения технологических операций, загрязнение поверхности и объема полупроводникового материала, жидких и газообразных технологических сред, термические и механические процессы также приводят к появлению и развитию дефектов, связанных с несовершенством конструкции ФЭП.

При исследовании образцов были обнаружены следующие виды конструктивных дефектов кремниевых ФЭП: дефекты структуры и загрязнения поверхности кремниевых пластин, дефекты структуры антиотражающего покрытия (АОП), неравномерность глубины залегания тыльной изотипных переходов, механические сколы по периметру пластин, дефекты контактной металлизации.

Остатки нарушенного слоя кремния приводят к увеличению скорости поверхностной рекомбинации и уменьшения спектрального отклика ФЭП. Неравномерность высоты пирамид текстуры может быть причиной неравномерности толщины АОП и, соответственно, увеличения интегрального коэффициента оптического отражения от поверхности ФЭП. Наличие на поверхности пластин частиц металла и других загрязнений приводит к шунтированию эмиттерного перехода.

Трещины и поры в АОП возникают при высокотемпературной обработки пластин вследствие различия коэффициентов термического расширения материала покрытия и кремния. Эти дефекты приводят к уменьшению оптического коэффициента пропускания АОП и увеличения оптических потерь.

Неравномерность глубины залегания тыльной изотипного перехода возможно при неоптимальных или нестабильных режимах нанесения и вжигания алюминия на тыльной поверхности ФЭП. Уменьшение глубины тыльной изотипного перехода приводит к росту скорости рекомбинации на тыльной поверхности пластины и снижения напряжения холостого хода прибора.

Механические сколы появляются при контактах пластин с технологическим оснащением, пинцетами и т.п., а также в результате неаккуратных манипуляций с пластинами. Механические с тех пор являются причиной образования в пластинах микротрещин, которые приводят к существенной деградации электрических параметров ФЭП.

К дефектам контактной металлизации относятся:

  • разрывы и неравномерность ширины серебряной контактной шины, появление белых участков и отклонения геометрии рисунка металлизации вследствие дефектов трафарета при нанесении контактов методом трафаретной печати;
  • неравномерность толщины металлизации;
  • отсутствие адгезии лицевой или тыльной контактной металлизации в результате отклонения от оптимальных режимов вжигания и загрязнений на поверхности пластин
  • отслаивание и отпадение алюминиевой металлизации из-за разницы коэффициентов термического расширения кремния и алюминия.

Дефекты контактной металлизации приводят к возникновению механических напряжений пластин, уменьшение плотности тока короткого замыкания и невозможности соединения ФЭП в модуле для получения заданных значений тока и напряжения в рабочей точке.

Снижение потерь энергии в ФЭП наземного применения

Для снижения оптических потерь, связанных с неполным использованием падающего на поверхность фотоэлектрического преобразователя излучения, в настоящее время наиболее широко применяются следующие методы:

  • структурирования поверхности приводит к снижению интегрального коэффициента отражения ФЭП;
  • нанесение на поверхность ФЭП одно- или двухслойного антиотражающего покрытия;
  • уменьшение площади контактов на лицевой поверхности для снижения потерь на затенение;
  • нанесение на тыльную поверхность ФЭП металлического слоя увеличивает эффективность поглощения длинноволнового излучения за счет его многократного прохождения через объем полупроводника;
  • уменьшение глубины эмиттерного перехода и снижение концентрации легирующей примеси вблизи лицевой поверхности для повышения чувствительности ФЭП в коротковолновой части спектра.

Электрические потери энергии обычно уменьшаются с помощью следующих методов:

  • выбор оптимального шага и толщины контактных шин на лицевой поверхности для снижения последовательного сопротивления ФЭП;
  • использование гетерирующих обработок, увеличивают время жизни неосновных носителей заряда;
  • пассивация лицевой поверхности для снижения скорости поверхностной рекомбинации;
  • пассивация тыльной поверхности и создания изотипних перехода;
  • минимизация площади контактов и дополнительное легирование приконтактных областей для уменьшения рекомбинационных потерь на границе раздела металл-полупроводник.

Ниже вы можете ознакомиться с наглядным графиком, который иллюстрирует последние достижения по эффективности фотоэлектрических преобразователей, изготовленных по различным технологиям.

Изготовление солнечной батареи из светодиодов своими руками

Светодиоды и диоды под влиянием солнечных лучей или даже яркого света ламп способны производить электрический ток. Это значит, что их можно применить для своей самодельной панели. Самодельная солнечная батарея из диодов станет маленьким дополнительным источником электрического тока.

Необходимые материалы и инструменты

Для изготовления солнечной панели своими руками нужно подготовить:

  1. Светодиоды или диоды.
  2. Картонку или пластмассовую панель. Лучше взять панель от старых устройств (стабилизатора, радио). Эти панели имеют в себе много отверстий, в которые удобно вставлять контакты диодов. В картонке эти отверстия придется делать своими руками.
  3. Диод Шоттки. Необходим для предотвращения обратного движения электрического тока.
  4. Медные провода.
  5. Аккумулятор. Вполне подойдут аккумуляторы от фонариков, выпущенных в Китае. Обычно, один из них имеет напряжение 4 В и емкость не больше 1 500 мА.
  6. Олово.

Для изготовления солнечной панели нужны инструментами:

  1. Паяльник.
  2. Нож.
  3. Молоток.
  4. Плоскогубцы.
  5. Амперметр и вольтметр.

Подготовка кристалликов-полупроводников

В светодиодах кристаллики видимые. Они размещены под стеклянной или прозрачной пластиковой линзой. Некоторые рекомендуют разбивать ее молотком, некоторые советуют оставить ее, поскольку она может собирать свет в пучок и направлять его на полупроводник. Это позволяет улучшить производительность кристаллика. Если использовать светодиод по главному назначению, то эта линза будет рассеивать созданный им свет.

Если планируется сделать солнечную батарею из старых советских железных диодов (лучше всего подходят модели кд2010 и кд203), то придется разобрать их и достать оттуда полупроводник.

Процесс разбора таков:

  1. Разбивают молотком стеклянный держатель верхнего контакта.
  2. С помощью плоскогубцев открывают диод. В середине размещается полупроводник. Он надежно зафиксирован на основании диода. При этом к его верху припаян медный провод. Последний соединен с верхним контактом диода.
  3. Берут нижнее основание с кристалликом и отправляются к газовой плитке. Держа основание диода плоскогубцами, его подносят к огню и нагревают. Кристалл должен находиться вверху. Основание нагреется, а вместе с ним горячим станет олово. Из-за этого оно растопится. Далее, используя пинцет, вынимают полупроводник.

Если будут использоваться стеклодиоды, то подготовка не является необходимой. Их можно сразу размещать на пластине.

Проведение расчетов

Самодельная солнечная панель представляет собой изделие, которое должно создавать ток желаемых характеристик. Поэтому нужно определить, сколько полупроводников стоит использовать.

Для этого необходимо измерить напряжение и силу тока, созданного одним полупроводником. Это делают с помощью специального инструмента. Все измерения проводят после того, как кристаллик оказался под солнечными лучами.

Полупроводник с диода кд2010 способен создать ток с напряжением до 0,7 В и силой до 7 мА. Стеклодиоды могут генерировать ток с напряжением до 0,3 В и силой до 0,2 мА.

Лучшую производительность способен продемонстрировать оранжевый, зеленый и красный светодиоды. Поскольку есть множество моделей светодиодов с кристаллами разных размеров, следует провести измерения каждого из приобретенных.

Расчеты проводят так:

  1. Определяют желаемые параметры солнечной батареи. Пусть при нормальном (среднем) солнечном свете она создаст ток с напряжением 9 В и мощностью 1 Вт.
  2. Определяют необходимое количество кристалликов, отталкиваясь от нужного напряжения. Напряжение созданного одним полупроводником диода кд2010 достигает 0,7 В. На практике оно будет меньше. Пусть оно будет достигать 0,5 В. Чтобы увеличить напряжение, нужно эти кристаллики подключить последовательно. При таком подключении общее напряжение будет равно сумме напряжений всех узлов. Нужно в одном ряду разместить 18 кристалликов.
  3. Вычисляют силу тока. В одном ряду последовательно подключенных кристалликов она будет одинаковой – 7 мА. Для ее наращивания нужно выполнить параллельное подключение. Нужно сделать несколько рядов. Общая сила тока будет равна сумме сил тока всех рядов. Чем больше рядов, тем больше она будет. В нашем случае нужно обеспечить мощность, равную 1 Вт. То есть сила тока должна составлять 1/9 = 0,111 А = 111 мА. Почти такую силу тока можно получить из 15 рядов. Она составляет 7х15 = 105 мА. Лучше сделать 16 рядов.
  4. Определяют необходимое количество кристалликов (18х16 = 288).

Изготовление

Солнечную батарею из диодов или светодиодов делают так:

  1. Берут картонную основу и делают в ней вырезы. Если есть пластмассовая панель от стабилизатора, то приступают к следующему этапу.
  2. Размещают на пластине подготовленные полупроводники. Их раскладывают рядами. Контакты кристалликов должны проходить через основание и выходить на второй стороне.
  3. Прикладывают сверху картон и переворачивают пластину с кристалликами. Ставят на стол.
  4. Паяют контакты. В каждом ряду контакт «+» одного полупроводника паяют с контактом «-» другого. Ряды соединяют параллельно, то есть отдельно спаивают контакты «+» и отдельно контакты «-».
  5. К выходному проводу с зарядом «+» подключают диод Шоттки.
  6. Выходные провода соединяют с аккумуляторами. Их общее напряжение должно быть меньше напряжения тока, выходящего из панели. Для повышения их общего напряжения батареи соединяют последовательно.
  7. После ставят сделанную панель под солнечные лучи.

Перовскит увеличит эффективность кремниевых солнечных батарей без ущерба для производства

Поверхность кремниевых пирамидок в солнечном элементе, покрытых слоем перовскита

EPFL

Швейцарские ученые разработали технологию получения солнечного элемента, который одновременно включает в себя и кремниевую, и перовскитную части. Эффективность гибридной батареи составила 25,2 процента — это рекордный показатель для батарей такого типа. При этом стоимость технологии не сильно отличается от стоимости производства стандартных кремниевых элементов, пишут ученые в Nature Materials.

Наиболее распространенным полупроводниковым материалом, который может поглощать солнечный свет и преобразовывать его в электрическую энергию, остается кремний — именно из него сделано большинство современных солнечных батарей. Один из основных недостатков этого материала — фундаментальные ограничения в эффективности преобразования энергии: для однослойной солнечной батареи из кремния ее максимум не превышает 30 процентов. Значительно больших КПД удается добиться при использовании многослойных ячеек из других полупроводниковых материалов. Например, эффективность солнечных батарей из арсенидов галлия и индия приближается к 50 процентам, однако их производство очень дорого и в промышленных масштабах пока что не может быть реализовано.

В качестве замены кремнию именно для массового производства солнечных батарей чаще других материалов предлагают использовать соедиенения со структурой перовскита. Обычно перовскитные солнечные ячейки включают в себе органо-неорганические материалы на основе трииодида метиламмония свинца (CH3NH3PbI3), и уже сейчас их эффективность превышает 20 процентов. Дополнительно повысить КПД батарей на основе перовскитных материалов тоже можно за счет использования многослойных полупроводниковых структур, однако, как и в случае с арсенидными элементами, производство эффективных перовскитных ячеек из большого числа слоев нанометровой толщины пока остается слишком дорогим.

Для уменьшения стоимости производства многослойных перовскитных солнечных элементов и одновременного увеличения их эффективности швейцарские ученые под руководством Кентена Жангро (Quentin Jeangros) из Федеральной политехнической школы Лозанны предложили наносить тонкий слой перовскитного полупроводника на поверхность более эффективных кремниевых ячеек. Использование подобных гибридных элементов позволяет увеличить эффективность поглощения солнечного света: перовскит лучше поглощает в синей и зеленой частях спектра, а кремний — в красной и инфракрасной.

Подобные гибридные ячейки уже пытались получать, однако все они использовали плоские полированные кремниевые поверхности, которые недостаточно эффективно поглощают свет. Более эффективные кристаллы кремния, которые используются сейчас в солнечных элементах, имеют на своей поверхности текстуру, состоящую из массива пирамидок микронного размера, что сильно снижает долю отраженного света. Однако такая текстура затрудняет осаждение на нее слоев других составов с помощью традиционных методов (таких как спин-коутинг). Поэтому в данном случае ученые предложили использовать для получения перовскитного и промежуточных слоев целый комплекс методов осаждения пленок из газовой фазы после совместного испарения компонентов, в том числе термическое напыление, атомно-слоевое осаждение и магнетронное распыление.

Схема слоистой структуры гибридного солнечного элемента (слева) и изображения его поверхности, полученные с помощью атомно-силовой микроскопии — до (b) и после (c) нанесения на поверхность кремния перовскитного слоя

F. Sahli et al./ Nature Materials, 2018

В результате правильного подбора составов всех слоев, необходимых для создания p-i-n-перехода, химикам удалось получить солнечный элемент, в котором поверхность кремния покрывала многослойная структура, включающая основной слой перовскита толщиной около 400 нанометров. Эффективность преобразования энергии солнечного элемента составила 25,2 процента — это рекордный показатель для гибридных батарей такого типа. А за счет использования именно пирамидальной кремниевой поверхности удалось добиться и высокого значения плотности тока в ячейке: она достигала 19,5 миллиампер на квадратный сантиметр.

Микрофотографии поверхности солнечного элемента после нанесения на поверхность кремния перовскитного слоя

F. Sahli et al./ Nature Materials, 2018

По словам авторов работы, основное достоинство предложенного метода — это его полная совместимость с современной технологией производства кремниевых батарей. Поэтому добавление к процессу одной дополнительной стадии не сильно скажется на стоимости производства, зато значительно увеличит эффективность получаемых элементов. Ученые отмечают, что в дальнейшем с помощью такого подхода эффективность гибридных солнечных ячеек может быть увеличена и до 30 процентов.

Одна из главных недостатков современных перовскитных батарей — их химическая и физическая деградация, которая приводит к быстрому снижению эффективности. Чтобы решить эту проблему, исследователи предлагают различные подходы. Например, недавно для этого химики разработали перовскитную солнечную батарею с дополнительным слоем фторированного графена, который не дал КПД элемента упасть за месяц больше, чем на 18 процентов. Другой способ замедления деградации — снятие внутренних напряжений в кристалле, к которому может привести облучение батареи светом энергией больше ширины запрещенной зоны.

Александр Дубов

Гибкие солнечные панели: инструкция по эксплуатации

Возможность использования неиссякаемых источников энергии представляет собой стремительно развивающееся, перспективное направление, поэтому гибкие солнечные панели весьма востребованы как для обслуживания домов, так и в качестве транспортируемых и мобильных устройств. Помимо того, что они представляют собой экологически чистый вариант получения электричества, важно, что они не такие хрупкие, как обычное гелио-оборудование.

Устройство и принцип работы

Гибкие солнечные батареи функционируют благодаря такому явлению, как фотовольтаика. Здесь нужно понимать, что свет действует не только как волна, он также представляет собой поток частиц, именуемых фотонами. Непосредственно процесс получения электричества в результате трансформации энергии фотонов называется фотовольтаикой.

Примитивные прототипы солнечных модулей в современном понимании были разработаны еще в середине прошлого века, с тех пор они претерпели существенные внешние и функциональные изменения. Но в любом случае фотоэлектрический эффект является заслугой полупроводников. Ими называют особый сегмент материалов, отличающихся строением атома. Вариации n-типа обладают лишними электронами, в то время как полупроводники р-типа характеризуются нехваткой электронов в атомах. Фотоэлемент образуется в результате комбинирования двух типов исходных веществ, в тандеме эти материалы становятся базой двухслойного изделия.

Солнечные модули образуются из отдельных фотоэлементов, изначально конструкции имели жесткую форму с укрепленной металлической рамой. Со временем изделия стали облегчать, что и привело к разработке гибких солнечных батарей – они мягче и надежнее прототипов.

Панели функционируют по следующему принципу:

  1. N-слой принимает солнечные лучи, контактирующие с поверхностью фотоэлемента.
  2. В результате взаимодействия фотонов с атомами полупроводника у последних «выбиваются» избыточные электроны.
  3. Частицы, получившие свободу, перемещаются к р-слою, присоединяются к атомам с недостатком электронов.
  4. В итоге взаимодействия нижний слой становится анодом, а верхний катодом.
  5. Продуцируется постоянный ток, он приспособлен для зарядки аккумулятора.
Как выглядят гибкие солнечные панели

Полупроводники – это дорогие материалы, чаще всего для гибких солнечных модулей применяют селен, кремний. Постоянный ток преобразуется в переменный, который могут потреблять привычные электроприборы. Чтобы изделия получались легкими и тонкими, пленочные вариации оснащают полимерным напылением в тандеме с алюминиевыми проводниками.

Области применения

Технологии, основанные на гибких солнечных элементах, широко востребованы на космических объектах, при обустройстве зданий, в обслуживании портативной электроники, в авиа- и автомобилестроении. Панели могут быть задействованы для доставки электричества в промышленные и жилые объекты. Гелиосистема может служить основным источником энергии, также ее внедряют в качестве дублирующей, вспомогательной схемы.

Производители предлагают портативные зарядные устройства – компактные гибкие солнечные батареи, которые удобно носить с собой. Представляет интерес одно из их практичных воплощений – модуль с базой в виде дорожного полотна, защищенного от ударов. В персональных проектах изделия монтируют на корпусах яхт и катеров, крышах автомобилей.

Плюсы и минусы

Мягкое исполнение выигрывает у аналогов по следующим пунктам:

  • небольшой собственный вес;
  • эластичность;
  • универсальность;
  • экологичность;
  • компактные размеры;
  • высокая производительность;
  • экономичность;
  • комфортность эксплуатации.

Важность физических параметров и габаритов обуславливается тем, что при доставке электроэнергии в полноценный жилой или производственный объект используется много панелей. Если каждая из них будет толстой, тяжелой, крупной, возникнут сложности при установке, придется дополнительно усилить каркас сооружения. В итоге это повлечет дополнительные расходы. Компактные, легкие гибкие солнечные батареи не представляют собой опасность для кровельного настила, они не оказывают влияния на распределение несущей нагрузки.

Кремниевые вариации характеризуются высокой производительностью, они перерабатывают в электричество, в среднем, 20% солнечного излучения. Аморфные экземпляры не так остро реагируют на пасмурную погоду, по сравнению с жесткими конструкциями: последние в не солнечные дни выдают только 10% потенциальной мощности, эластичные модули работают на 50% от номинальной производительности.

Гнущиеся изделия позволяют полноценно использовать площадь кровли, имеющей неровный рельеф, например, черепичной. Универсальную продукцию с одинаковым удобством можно монтировать на фасад или крышу объекта. При этом она сохраняет достоинства жестких каркасных панелей – возможность использования неограниченного ресурса солнечного света, экологическую чистоту решения.

Нельзя забывать о недостатках технологии, в частности, о необходимости ее дальнейшего совершенствования. Моно- и поликристаллические жесткие решения все еще опережают ее по производительности.

Считаются уязвимостью следующие факторы:

  • долгий срок окупаемости;
  • при монтаже приходится докупать дорогостоящее вспомогательное оборудование;
  • высокая стоимость продукции;
  • беззащитность перед атмосферными проявлениями.

Существенным минусом является небольшой эксплуатационный ресурс мягкого решения: быстро изнашиваются тонкое напыление и фольга, гарантийный срок, в среднем, составляет 3 года.

Критерии выбора

Определяющим фактором служат климатические условия: длина солнечных дней, их количество. Жителям регионов с малой освещенностью подойдут панели из микроморфного кремния – они не нуждаются в точном ориентировании, по суммарной годовой мощности опережают прочие тонкопленочные вариации. В северных районах востребовано текстурированное стекло.

Критерием выбора гибких солнечных панелей является длина солнечных дней

Важно, чтобы мощность модуля соответствовала потребностям используемых электроприборов. Необходимо найти не только оптимальный участок для размещения изделий, но и резервную площадку, позволяющую впоследствии нарастить мощность.

Качество и длительность эксплуатации, а также стоимость продукции зависят от базового материала, номинальной производительности, типа конструкции и параметров фотоэлемента. На профильном рынке востребованы как иностранные, так и заслужившие доверие отечественные бренды – последние оптимально приспособлены к климатическим условиям региона.

Заслуживают внимания гибридные панели, генерирующие электрическую и тепловую энергию.

Инструкция по монтажу гибких солнечных батарей

Первым шагом становится масштабное планирование, включающее в себя проектирование системы на основе расчета необходимой мощности.

Расчет количества панелей

В основу проектирования закладывают следующие данные:

  • суточную интенсивность использования энергии;
  • емкость задействованных аккумуляторов;
  • общую номинальную производительность фотоэлементов;
  • количество модулей.

Легче всего определиться с потреблением электроэнергии: достаточно посчитать запросы всех эксплуатируемых электроприборов, необходимые данные указываются на их маркировке. В соответствии с полученным значением приобретают инвертор – устройство, добывающее из постоянного тока переменный с заданным параметром частоты. Прибор подбирают с запасом минимум 0,5 кВт.

Следующий шаг – расчет аккумуляторных батарей исходя из того, какая получилась суммарная мощность потребителей с учетом 40% минимального их заряда. Количество солнечных панелей определяют, ориентируясь на регион и приоритетные модели оборудования.

Особенности размещения

При проектировании следует помнить, что гелиосистемы при нагревании рабочих компонентов функционируют менее эффективно. В частности, летом, когда панели раскаляются, они продуцируют меньше энергии, чем зимой – в холодные месяцы в солнечные дни фотоэлементы улавливают больше света для дальнейшей его переработки.

Размещение гибких солнечных панелей

С учетом того, что положение солнца в течение дня меняется, модули монтируют универсально – с южной стороны, наклонив не более чем на 40 градусов.

Последовательность монтажа

Гибкие солнечные панели в рулоне доступны для самостоятельного монтажа. В зависимости от климатических особенностей региона их размещают поверх кровельного пирога, на отдельно стоящих вспомогательных сооружениях, на фасаде объекта, притом решения можно комбинировать.

Чаще всего монтаж гелиосистемы производится на крыше. В тех случаях, когда конфигурация и габариты кровли не способствуют надежному размещению модулей, возводят вспомогательный каркас и на него крепят панели. Подобные проекты увеличиваются по стоимости, но они оптимальны, если крыша труднодоступна, имеет сложный рельеф. Фасад в качестве локации для модулей рационален в тех случаях, когда крыша имеет недостаточную площадь. Модули становятся элементом дизайнерской схемы, выполняют роль дополнительного украшения объекта.

Фотоэлектрические элементы покрываются с изнаночной стороны слоем липкой субстанции смолянистого происхождения. Для монтажа необходимо удалить с панели защитную пленку, чтобы можно было ее приклеить на выбранном участке. Площадку предварительно качественно зачищают и промывают. В процессе установки изделий не нужны специализированные элементы, обязательным требованием является лишь соблюдение мер безопасности. Следует придерживаться предлагаемой производителем схемы подключения компонентов, чтобы была соблюдена их последовательность.

Гелиомодуль оснащается с одного края парой выведенных проводов, поэтому каждое изделие нужно размещать таким образом, чтобы данные кабели в дальнейшем было проще соединить одной шиной, тем самым обеспечив последовательное подключение.

Особенности эксплуатации

В руководстве от производителя, инструкции по эксплуатации гибкой солнечной батареи прописываются не только технические аспекты монтажа комплекса оборудования, также указываются правила дальнейшего обслуживания гелиосистемы. Вне зависимости от типа мягких панелей можно привести общие рекомендации:

  • важно поддерживать чистоту поверхности модулей. Грязь, следы жизнедеятельности птиц, листья, снег, пыль негативно скажутся на производительности схемы в целом. Любой налет и инородные тела становятся препятствием для работы фотоэлементов, они улавливают меньше солнечных лучей, что приводит к снижению эффективности решения;
  • солнечная станция должна быть изолирована от высоких насаждений, деревьев, неустойчивых сооружений. Отделившиеся при сильном ветре ветки или фрагменты, отлетев, способны повредить модули, снизится работоспособность последних, их эксплуатационный ресурс;
  • в периоды сильных снегопадов необходимо использовать защитные стенды, важно вовремя предотвращать образование наледи.

Чтобы производительность и эффективность функционирования панелей держалась на заявленном разработчиком уровне, необходимо создать условия с оптимальным углом наклона. Во время очищения поверхности от грязи и снега следует действовать аккуратно, чтобы исключить риск повреждения тонкого верхнего слоя рабочих элементов.

Как сделать солнечную батарею из транзисторов своими руками

Альтернативные источники электроэнергии набирают популярность с каждым годом. Постоянные повышения тарифов на электроэнергию способствуют этой тенденции. Одна из причин, заставляющая людей искать нетрадиционные источники питания — это полное отсутствие возможности подключения к сетям общего пользования.

Наиболее востребованными на рынке альтернативных источников питания являются солнечные батареи. Эти источники используют эффект получения электрического тока при воздействии солнечной энергии на полупроводниковые структуры, изготовленные из чистого кремния.

Первые солнечные фотопластины были слишком дорогими, их использование для получения электроэнергии не было рентабельным. Технологии производства кремниевых солнечных батарей постоянно совершенствуются и сейчас можно приобрести солнечную электростанцию для дома по доступной цене.

Энергия света бесплатна, и если мини-электростанции на кремниевых элементах будут достаточно дешевы, то такие альтернативные источники питания станут рентабельными и получат очень широкое распространение.

Подходящие подручные материалы

Схема солнечной батареи на диодахМногие горячие головы задают себе вопрос: а можно ли изготовить солнечную батарею из подручных материалов. Конечно же, можно! У многих со времен СССР сохранилось большое количество старых транзисторов. Это наиболее подходящий материал для создания мини-электростанции собственными руками.

Также можно изготовить солнечную батарею из кремниевых диодов. Еще одним материалом для изготовления солнечных батарей является медная фольга. При применении фольги для получения разницы потенциалов используется фотоэлектрохимическая реакция.

Этапы изготовления транзисторной модели

Подбор деталей

Наиболее подходящими, для изготовления солнечных батарей, являются мощные кремниевые транзисторы с буквенной маркировкой КТ или П. Внутри они имеют большую полупроводниковую пластину, способную генерировать электрический ток под воздействием солнечных лучей.

Совет специалистов: подбирайте транзисторы одного наименования, так как у них одинаковые технические характеристики и ваша солнечная батарея будет стабильнее в работе.

Транзисторы должны быть в рабочем состоянии, в противном случае толку от них не будет. На фото представлен образец такого полупроводникового прибора, но можно взять транзистор и другой формы, главное, он должен быть кремниевым.

Следующий этап – это механическая подготовка ваших транзисторов. Необходимо, механическим путем, удалить верхнюю часть корпуса. Проще всего произвести эту операцию с помощью небольшой ножовки по металлу.

Подготовка

Зажмите транзистор в тисках и аккуратно сделайте пропил по контуру корпуса. Вы видите кремниевую пластину, которая будет выполнять роль фотоэлемента. Транзисторы имеют три вывода – базу, коллектор и эмиттер.

В зависимости от структуры транзистора (p-n-p или n-p-n), будет определена полярность нашей батареи. Для транзистора КТ819 база будет плюсом, эмиттер и коллектор минусом.

Наибольшая разница потенциалов, при подаче света на пластину, создается между базой и коллектором. Поэтому в нашей солнечной батарее будем использовать коллекторный переход транзистора.

Проверка

После спиливания корпуса транзисторов их необходимо проверить на работоспособность. Для этого нам необходим цифровой мультиметр и источник света.

Базу транзистора подключаем к плюсовому проводу мультиметра, а коллектор к минусовому. Измерительный прибор включаем в режим контроля напряжения с диапазоном 1В.

Направляем источник света на кремниевую пластину и контролируем уровень напряжения. Оно должно быть в пределах от 0.3В до 0.7В. В большинстве случаев один транзистор создает разницу потенциалов 0.35В и силу тока 0.25 мкА.

Для подзарядки сотового телефона нам необходимо создать солнечную панель примерно из 1000-ти транзисторов, которая будет выдавать ток в 200-ти мА.

Сборка

Собирать солнечную батарею из транзисторов можно на любой плоской пластине из материала, не проводящего электричество. Все зависит от вашей фантазии.

При параллельном соединении транзисторов увеличивается сила тока, а при последовательном повышается напряжение источника.

Кроме транзисторов, диодов и медной фольги для изготовления солнечных батарей можно использовать алюминиевые банки, например, пивные, но это будут батареи нагревающие воду, а не вырабатывающие электроэнергию.

Смотрите видео, в котором специалист подробно объясняет, как сделать солнечную батарею из транзисторов своими руками:

Оцените статью: Поделитесь с друзьями!

Как сделать очень дешевый самодельный фотоэлектрический солнечный элемент

Солнечный элемент — это основной элемент солнечной панели, устройства, преобразующего солнечный свет в электричество. Профессионально сделанные солнечные элементы сделаны из специального полупроводникового материала, зажатого между металлическими контактами и слоем неотражающего стекла. Полупроводник специально сделан так, чтобы быть чувствительным к фотоэлектрическому эффекту и реагировать на свет, высвобождая поток электронов. Хотя эти материалы дороги, вы можете сделать свой собственный солнечный элемент дома из материалов, которые намного дешевле и легче найти.Самодельный солнечный элемент идеально подходит для демонстраций в научных классах, научных ярмарок и даже для питания ваших собственных небольших устройств.

TL; DR (слишком долго; не читал)

Самодельный солнечный элемент, сделанный из медного листа и соленой воды, может дать представление о физике фотоэлектрического эффекта.

Нагрейте медный лист

Зажгите пропановую горелку и возьмите ее в одну руку. Другой рукой возьмите лист меди с помощью щипцов. Подержите лист меди в огне.Нагрейте медь, пока участок под пламенем не станет раскаленным докрасна в течение как минимум минуты.

Положите медный лист на огнеупорную поверхность. Снова возьмите его щипцами, чтобы вы могли удерживать другое место и нагреть горелкой новый участок. Повторяйте этот процесс, пока не обработаете несколько разных точек на медном листе.

Положите медный лист на огнеупорную поверхность и дайте ему остыть до температуры воздуха. Области, которые вы нагревали, должны быть черными, хотя могут присутствовать и другие цвета.

Подготовка первого провода

Зачистите 1 дюйм изоляции с каждого конца одного медного провода с помощью приспособлений для зачистки проводов. Прикрепите один конец провода к медному листу зажимом типа «крокодил». Убедитесь, что он прижат к чистой, непрозрачной меди.

Подготовка солевой смеси

Смешайте соль в стакане воды до тех пор, пока она не перестанет растворяться. На данный момент солевой раствор имеет максимальную крепость. Нанесите несколько капель соленой воды на разные почерневшие участки меди.Из-за микроскопических неровностей на поверхности меди каждая капля дает разные результаты.

Подготовка второго провода

Зачистите один конец изоляции с каждого конца другого провода с помощью приспособлений для зачистки проводов. Поместите один конец этой проволоки в одну из капель солевого раствора на почерневших участках меди. Поместите груз на проволоку, чтобы удерживать ее на месте. Теперь фотоэлемент готов. Если подсоединить другие концы проводов к маленькой лампочке, когда ячейка находится под прямыми солнечными лучами, она загорится.Если вы подключите их к вольтметру, вы сможете увидеть, какое напряжение вырабатывает ваш солнечный элемент.

Итак, кремний: исследователи создают солнечные панели из дешевого оксида меди

Этот сайт может получать партнерские комиссии за ссылки на этой странице. Условия эксплуатации.

Исследователи из Калифорнийского университета и лаборатории Беркли открыли способ изготовления фотоэлементов из любого полупроводникового материала, а не только из красивых, дорогих кристаллов кремния.В принципе, это может открыть двери для гораздо более дешевой солнечной энергии.

Почти каждая солнечная панель на рынке сделана путем отрезания двух тонких (200 микрон, 0,2 мм) срезов от большого кристалла кремния и последующего легирования их примесями для усиления фотоэлектрического эффекта — фосфором для получения кремния n-типа. , и бор для получения кремния p-типа. Эти срезы накладываются друг на друга, сверху и снизу добавляются электроды, все это обрамлено защитным стеклом — и вуаля, стандартный фотоэлектрический элемент.

Теоретически можно легировать любой полупроводник, но более дешевые и более доступные полупроводники, такие как оксид меди, не очень хорошо удерживают легирующие примеси, что в конечном итоге приводит к разрушению p-n-переходов. Кремний очень хорошо удерживает присадки, но стоит недешево.

Чтобы обойти эту проблему, калифорнийские исследователи разработали новый тип солнечных элементов, названный экранирующими фотоэлектрическими элементами с полевым эффектом, или сокращенно SFPV. Вместо физического легирования SFPV используют небольшое электрическое поле для достижения такого же легирующего эффекта.Пока это электрическое поле присутствует, p-n-переход остается, и фотоэлектрический элемент продолжает вырабатывать много электричества. Энергия, необходимая для создания этого электрического поля, по-видимому, намного меньше энергии, производимой фотоэлектрическим эффектом.

Эффект электрического поля не нов (возможно, вы слышали о полевых транзисторах?), Но его применение в фотоэлектрических элементах является новым. Основная проблема, с которой столкнулись исследователи из UoC и Berkeley Lab, заключается в том, что вам нужен контакт над полупроводником для создания электрического поля, но, конечно, это закрывает полупроводник от солнечного света.Решение, придуманное исследователями, простое: вы либо используете очень тонкий контакт, такой как графен (который является прозрачным), либо вы используете серию узких, похожих на плавники контактов (на фото выше).

Что дальше? «Это исследование открывает множество новых полупроводников (многие оксиды, сульфиды и фосфиды металлов) для практических фотоэлектрических применений, поэтому в настоящее время мы определяем те, которые имеют наибольший потенциал для недорогих и высокоэффективных солнечных элементов», — говорит Уилл Риган. ведущий автор — Ars Technica.

После того, как будет найден лучший материал, все равно будет нелегко: существует огромная промышленность (в основном в Китае), занимающаяся производством стандартных фотоэлементов, и им не хватает оборудования или опыта для производства SFPV. Это не так плохо, как индустрия компьютерных микросхем, где триллионы долларов инвестируются в кремний, но все же потребуются значительные усилия, чтобы переориентировать отрасль на SFPV. Тем не менее, есть возможность сэкономить — и я осмелюсь сказать, что первая компания, производящая солнечную энергию, которая значительно дешевле ископаемого топлива, оказывается в выигрыше.

Прочтите: Солнечные панели, изготовленные из ионных пушек, достаточно дешевы, чтобы бросить вызов ископаемому топливу

Исследовательская статья: DOI: 10.1021 / nl3020022

Электрохимия — Сделайте солнечный элемент на своей кухне

Сделайте солнечную батарею на своей кухне

Солнечный элемент — это устройство для преобразования энергии из солнце в электричество. Высокоэффективная солнечная ячеек, которые вы можете купить в Radio Shack и других магазинах, сделаны из высокотехнологичного кремния и требуют огромных фабрики, высокие температуры, вакуумное оборудование и много денег.

Если мы готовы пожертвовать эффективностью ради способности делать собственные солнечные батареи на кухне из материалов из хозяйственного магазина мы можем продемонстрировать рабочий солнечный элемент примерно за час.

Наши солнечные батареи изготовлены из оксида меди вместо кремний. Закись меди — один из первых известных материалов. для отображения фотоэффекта , в котором свет заставляет электричество течь в материале.

Размышления о том, как объяснить фотоэлектрический эффект, что привело Альберта Эйнштейна к Нобелевской премии по физике, и к теории относительности.

Материалы, которые вам понадобятся

Фотоэлемент изготавливается из следующих материалов:

  1. Лист меди из строительного магазина. Обычно это стоит около 5 долларов за квадратный фут. Нам понадобится примерно пол квадратного фута.
  2. Два провода с зажимом типа «крокодил».
  3. Чувствительный микроамперметр, считывающий токи от 10 до 50 мкА. Radio Shack продает маленькие ЖК-мультиметры, которые подойдут, но я использовал небольшой лишний метр с иглой.
  4. Плита электрическая. Моя кухонная плита газовая, поэтому я купил небольшая электрическая плита с одной конфоркой примерно за 25 долларов. В маленькие 700-ваттные горелки, вероятно, не подойдут — моя 1100 Вт, поэтому конфорка раскаливается докрасна.
  5. Большая прозрачная пластиковая бутылка, у которой можно отрезать верхнюю часть. Я использовал 2-литровую бутылку с родниковой водой. Большой ротовой стакан jar тоже подойдет.
  6. Соль поваренная. Нам понадобится пара столовых ложек соли.
  7. Водопроводная вода.
  8. Наждачная бумага или проволочная щетка на электродрели.
  9. Ножницы для резки листового металла.

Как построить солнечную батарею

Моя горелка выглядит так:

Первым делом нужно вырезать кусок медной пленки. это примерно размер горелки на плите. Вымойте свой руки, чтобы на них не было смазки или масла. Затем промойте медный лист с мылом или моющим средством, чтобы удалить масло или смажьте его.Используйте наждачную бумагу или проволочную щетку, чтобы тщательно очистить медь. защитное покрытие, так что любая сульфидная или другая легкая коррозия удаленный.

Затем поместите очищенный и просушенный медный лист на горелку. и включите горелку на максимальную мощность.

Когда медь начнет нагреваться, вы увидите красивое окисление. начинают формироваться узоры. Апельсины, пурпур и красный покроют медь.

По мере того, как медь нагревается, цвета заменяются черным. покрытие из оксида меди .Это , а не оксид мы хотим, но позже он отслоится, показывая красные, оранжевые, розовые и пурпурные цвета слоя закиси меди внизу.

Последние цветные пятна исчезают, когда горелка начинает светиться красным.

Когда горелка раскалится докрасна, лист меди будет покрытый черным слоем оксида меди. Пусть варится на половину час, поэтому черный налет будет густым. Это важно, так как толстый слой будет хорошо отслаиваться, а тонкий слой останется прилипшим к меди.

По прошествии получаса варки выключите конфорку. Оставьте горячую медь на горелке, чтобы она медленно остыла. Если охладить его слишком быстро, черный оксид останется прилип к меди.

По мере охлаждения медь дает усадку. Черный оксид меди также дает усадку. Но они сжимаются с разной скоростью, поэтому отслаивается черный оксид меди.

Маленькие черные хлопья соскальзывают с меди с достаточно силы, чтобы заставить их пролететь несколько дюймов.Этот означает немного больше усилий по очистке вокруг плиты, но на это интересно смотреть.

Когда медь остынет до комнатной температуры (это займет около 20 минут) большая часть черного оксида исчезнет. Легкая очистка руками под проточной водой удалите большую часть мелких биты. Не поддавайтесь искушению удалить все черные точки с помощью жесткая очистка или сгибание мягкой меди. Это может повредить тонкий слой красной закиси меди, необходимый для работы солнечных элементов.

В остальном сборка выполняется очень просто и быстро.

Отрежьте еще один лист меди примерно того же размера, что и первый. Осторожно согните обе части, чтобы они вошли в пластиковую бутылку. или банку, не касаясь друг друга. Покрытие из оксида меди то, что было обращено вверх на горелке, обычно лучше всего лицом к лицу наружу в банке, потому что у нее самая гладкая и чистая поверхность.

Присоедините два провода зажима типа «крокодил», один к новой медной пластине, и один к пластине, покрытой оксидом меди.Подключите провод от чистую медную пластину к положительной клемме счетчика. Подключите провод от пластины с оксидом меди к отрицательному терминал счетчика.

Теперь смешайте пару столовых ложек соли с горячей водой из-под крана. Размешайте соленую воду, пока вся соль не растворится. Затем осторожно вылейте соленую воду в банку, стараясь не чтобы намочить провода зажима. Соленая вода не должна полностью накройте тарелки — вы должны оставить около дюйма тарелки над водой, поэтому вы можете перемещать солнечный элемент без намочить зажим ведет.

На фото выше виден солнечный элемент в моей тени, когда я снимал картина. Обратите внимание, что измеритель показывает около 6 мкА. тока.

Солнечный элемент — это батарея, даже в темноте, и обычно покажите несколько микроампер тока.

На фото выше виден солнечный элемент на солнце. Обратите внимание, что метр подскочил примерно до 33 микроампер. тока. Иногда будет зашкаливать 50 мкА, раскачиваясь игла до упора вправо.

Как оно это делает?

Оксид меди — это тип материала, который называется полупроводником . Полупроводник находится между проводником, где электричество может течет свободно, и изолятор, где электроны прочно связаны к своим атомам и не текут свободно.

В полупроводнике есть промежуток, называемый запрещенной зоной между электроны, которые прочно связаны с атомом, и электроны находящиеся дальше от атома, которые могут свободно перемещаться и проводить электричество.

Электроны не могут оставаться в запрещенной зоне. Электрон не может получить немного энергии и отойти от ядра атома в запрещенную зону. Электрон должен набрать достаточно энергии, чтобы двигаться дальше от ядра, вне запрещенной зоны.

Точно так же электрон вне запрещенной зоны не может немного потерять немного энергии и упасть чуть ближе к ядру. Он должен потерять достаточно энергии, чтобы упасть за запрещенную зону в область, где разрешены электроны.

Когда солнечный свет попадает на электроны в закиси меди, некоторые из электроны получают достаточно энергии от солнечного света, чтобы перепрыгнуть через запрещенную зону и стал свободным проводить электричество.

Свободные электроны перемещаются в соленую воду, затем в чистую медную пластину, в провод, через счетчик и обратно к пластине с закисью меди.

По мере того, как электроны проходят через счетчик, они выполняют работу, необходимую для переместите иглу. Когда тень падает на солнечный элемент, меньше электронов пройдите через глюкометр, и стрелка снова опустится вниз.

Примечание о мощности

Ячейка вырабатывает 50 микроампер при 0,25 вольт.
Это 0,0000125 Вт (12,5 мкВт).
Не ждите, что вы зажжете лампочки или зарядите батареи с помощью это устройство. Его можно использовать как датчик света или люксметр, но для того, чтобы привести ваш дом в действие, потребуются акры земли.

0,0000125 Вт (12,5 микроватт) для ячейки 0,01 квадратного метра, или 1,25 милливатт на квадратный метр. Чтобы зажечь 100-ваттную лампочку, необходимо для солнечной стороны потребовалось бы 80 000 квадратных метров закиси меди, и 80 000 квадратных метров меди для темного электрода.Чтобы запустить 1000 ватт плита, вам понадобится 800000 квадратных метров закиси меди, а еще 800 000 квадратных метров простой меди, или 1 600 000 квадратных метров вместе. Если бы это было крышей дома, каждый дом был бы 282 метра. длиной и шириной 282 метра, если предположить, что все, для чего им нужно электричество, было одна плита.

На 1 600 000 квадратных метров приходится 17 222 256,7 квадратных футов. Если медная пленка стоит 5 долларов за квадратный фут, сама медь будет стоить 86 110 283,50 долларов США.Сделав его в одну десятую толщины, можно это снизить. до 8 611 028,35 долл. США. Поскольку вы покупаете оптом, вы можете получить его вдвое дешевле, или около 4 300 000 долларов США.

Если бы вы использовали кремниевые солнечные панели по цене 4 доллара за ватт, вы могли бы запустить то же самое. плита за 4000 долларов. Но панели будут всего около 10 квадратных метров.

Или примерно за доллар вы можете построить солнечную печь из алюминиевой фольги и картона. Примерно за 20 долларов вы можете построить очень красивую параболическую солнечную плиту из полированного алюминия.

Следующий: плоская солнечная батарея .

Очень вкусно

Некоторые из моих других веб-сайтов:


Отправить письмо на Саймон Квеллен Филд через [email protected] > Google

Как сделать солнечную батарею (самодельную солнечную батарею) из медного листа

Вы можете сделать солнечную батарею для выработки электричества от солнца, используя лист меди.Нагревая медь и охлаждая ее, как показано на видео ниже, вы формируете оксид меди (Cu 2 O), также известный как оксид меди, слой на нем. Этот слой — полупроводник. Самые современные солнечные батареи работать с полупроводником из обработанного кремния.

Обратите внимание, что это не дает полезного количества электричество, в отличие от кремния и других коммерческих солнечных батарей, но это весело делать. Вам понадобятся акры этих медных солнечных батарей для питания вашего дом.

Обратите внимание, как ближе к концу видео эффект демонстрируется измерение силы тока солнечной батареи при солнечном свете. Когда солнечный свет заблокирован, ток падает.

Для тех, кому интересно узнать об этом эффекте, вот несколько исследовательских работ. о солнечных элементах с закисью меди:

  1. Солнечные элементы на основе оксида меди (I) (Cu 2 O) — обзор (PDF-файл), Абду Ю.и Муса, A.O
  2. Производство закиси меди, материала солнечных элементов, термическим способом. окисление и изменение его физических и электрических свойств, А.О. Муса, Т. Акомолафе, М.Дж. Картер

Самая простая в изготовлении схема — это та, что используется в приведенном выше видео и показано на следующей диаграмме. Убедитесь, что провода, соединить две пластины выше уровня воды. Электрический контур замыкается за счет самой соленой воды.Соль делает комбинация воды и соли, способная проводить электричество. Убеждаться у вас есть амперметр, который может отображать в диапазоне от 0 до 50 мкА, так как количество тока, которое производит этот тип элемента, очень мало.

Схема для самостоятельной солнечной батареи в соленой воде.

Экспериментальная установка для тестирования солнечных батарей своими руками.

Как показано выше, соленая вода служит исключительно в качестве проводник заряда с внешней поверхности слоя закиси меди вернуться к медная пластина, которую покрывает оксид меди.В дальнейшем диаграмма иллюстрирует, если вы можете найти способ электрического подключения к слою оксида меди, не закрывая его от солнечного света, то вы можно обойтись без соленой воды и другой медной пластины. Эта проблема состоит в том, что слой оксида меди не проводит электричество через его поверхность, поэтому заряд на поверхности не может сделать это к соединительному проводу. Это была работа соленой воды, другая пластина и соединительные провода выше.

Распределение заряда на солнечном элементе с закисью меди и проводке.

Один из способов сделать это — прижать металлическую сетку к медистому оксида (см. диаграмму ниже). Некоторое количество солнечного света будет проходить через отверстия. в сетке к закиси меди и заставит заряд переместиться в поверхность к сетке. Сетка токопроводящая и выдерживает заряд к соединительному проводу. Это будет быть менее эффективным, так как вы блокируете часть медистого оксид с сеткой.Также вы заберете только заряд с закись меди, которая находится рядом с проволочной сеткой.

Фотоэлемент с металлической сеткой своими руками.

Другой возможный способ — использовать стекло с прозрачным электрически проводящее покрытие и прижмите эту проводящую сторону против закиси меди (см. диаграмму ниже). Так как стекло и его покрытие прозрачное, солнечный свет не блокируется.Покрытие все еще может вызывать некоторую потерю пропускания солнечного света, но он все равно будет лучше, чем сеточный подход. Пример это стекло с покрытием из диоксида олова, используемое в современной квартире ЖК-экраны компьютеров. Сам я не пробовал этот метод, но если да, пожалуйста, дайте мне знать, как это работает. Если вы сделаете снимок или видео, то я включу его сюда.

Самодельный фотоэлемент со слоем диоксида олова.

Новая техника сочетает в себе солнечные элементы и полупроводники

Калла Кофилд

Гибкая механическая модель со встроенными фотоэлектрическими элементами микромасштаба.

Стремясь снизить стоимость солнечных элементов и повысить их функциональность, ученые из Sandia National Laboratories производят элементы, используя производственные процессы полупроводниковой и микроэлектронной промышленности. На апрельском заседании APS ученый из Sandia Джефф Нельсон подчеркнул прогресс в выводе на рынок этих небольших, легких и гибких солнечных элементов.

Солнечные элементы, представленные сегодня на рынке, чаще всего изготавливаются из кристаллического кремния, используемого из-за его высокой эффективности преобразования света в энергию. Кремний также является основным материалом, используемым в полупроводниках и компьютерной электронике, стоимость которых резко снизилась за последние три десятилетия. Итак, «Почему солнечная промышленность не должна увидеть аналогичного падения цен?» — говорит Випин Гупта, один из руководителей группы компаний Sandia Microsystems Enabled Photovoltaics. «Кажется, есть интуитивное ощущение, что эти два понятия должны быть связаны.

На пресс-конференции на апрельской встрече APS Джефф Нельсон представил продукт усилий Сандии по объединению этих двух областей: пузырек с жидкостью, содержащий настолько маленькие солнечные элементы, что они выглядят как кусочки декоративного блеска, что принесло им награду. прозвище «солнечный блеск».

Солнечные элементы с основным кристаллическим кремнием изготавливаются из кремниевых пластин размером примерно от четырех до шести дюймов в квадрате и толщиной 200 микрон. Каждая пластина образует одну ячейку, и ячейки выстраиваются вместе, чтобы образовать солнечные панели, которые необходимо помещать между стеклянными пластинами для работы.В целом это делает панели жесткими и тяжелыми. Команде Sandia удалось разрезать солнечные кремниевые пластины на множество более мелких ячеек, размером от 100 до 750 микрон в квадрате, и утонить их до толщины от 10 до 20 микрон.

Отдельные ячейки, вырезанные из одного и того же куска кремния, могут быть соединены в отдельные панели, но установлены в гибких и легких материалах, а не в стекле. В конце концов, это могут быть солнечные элементы в ткани, такие как одежда или палатки, и солнечные панели, которые подходят для самых разных поверхностей и легко перемещаются.

На рынке существуют и другие тонкопленочные солнечные элементы, но Нельсон говорит, что в этих пленках не используется кристаллический кремний, что снижает их эффективность. По словам Нельсона, для создания солнечного блеска команда Sandia использовала «стандартные методы переноса слоев»: липкая полимерная пленка с рисунком межсоединений наносится на верхнюю часть пластины толщиной 200 микрон, а затем снимается, забирая множество новых, 10 к солнечным элементам толщиной 20 микрон. Более 90 процентов преобразования света происходит в первых 20 микронах солнечного элемента, поэтому теряется небольшая эффективность.После снятия верхнего слоя кремниевой пластины оставшийся кремний можно использовать для создания большего количества ячеек, что снизит стоимость материала и не оставит пустых отходов.

«Другие люди смогли взять пластину и высвободить небольшие слои, но это занимает много времени, что увеличивает стоимость и не подлежит производству», — сказал Нельсон на пресс-конференции на апрельском заседании. Эти процессы также занимают намного больше времени, чем метод отслаивания, используемый Sandia, который, по словам Нельсона, позволяет ученым «высвобождать эти клетки, когда они нам нужны.”

Использование ячеек меньшего размера означает, что многие методы и инструменты из полупроводниковой и микроэлектронной промышленности доступны инженерам по солнечным панелям. Ячейки с солнечным блеском более надежны, чем ячейки большего размера, поэтому с ними можно работать с помощью так называемых инструментов «подобрать и разместить», которые работают с микроэлектроникой, что означает, что многие производственные процессы уже налажены. Гупта говорит, что меньшие элементы также позволяют использовать различные «архитектуры межсоединений», которые команда уже использует для повышения производительности элементов в полутени — эффективность большинства солнечных элементов снижается, когда они не подвергаются воздействию полного солнечного света.И команда работает над внедрением устройства под названием «микроконцентратор», которое фокусирует больше света в каждой отдельной ячейке, увеличивая ее общее поглощение и снижая стоимость ватта.

Ученые Sandia также используют методы из науки об интегральных схемах, чтобы связать вместе три типа солнечного блеска — один из кремния, другой из арсенида галлия и один из фосфида индия-галлия, вместо использования более дорогостоящего процесса выращивания их вместе.В совокупности различные материалы собирают больше длин волн света и повышают эффективность ячейки.

«Мы предлагаем особый способ проектирования, моделирования, изготовления, сборки, упаковки и определения характеристик [солнечных] элементов с использованием полупроводников, ЖК-дисплеев и микросистемных инструментов», — сказал Гупта. «Мы выкладываем, вот как вы это делаете, шаг за шагом».

В течение следующих двух-трех лет Нельсон говорит, что проект будет продолжен в Sandia, где, по его словам, «мы возьмем множество концепций и ячеек, которые мы создали, и разработаем их в более крупных приложениях.«После этого лаборатория намеревается найти партнеров в отрасли для коммерциализации технологии.

Как сделать простой солнечный элемент? Работа фотоэлектрического элемента

Как построить простой солнечный элемент? (Шаг за шагом) | Основной принцип работы фотоэлектрического элемента

Введение в солнечные элементы или фотоэлектрические элементы

Солнечный элемент (или фотоэлектрический элемент ) представляет собой устройство, которое вырабатывает электрический ток за счет химического воздействия или преобразования света к электрическому току при воздействии солнечных лучей.В данной статье мы остановимся только на солнечных элементах.

Также прочтите

Солнечный элемент также известен как фотоэлектрический элемент, который вырабатывает электрический ток, когда поверхность подвергается воздействию солнечного света. В ходе этой статьи мы будем ссылаться на солнечный свет как на электромагнитное излучение (ЭМ-излучение).

В солнечных элементах количество электроэнергии, генерируемой элементами, зависит от интенсивности электромагнитного излучения, которое достигает поверхности элемента.Солнечная батарея преобразует электромагнитное излучение в постоянный ток. Таким образом, мы можем сказать, что солнечный элемент — это устройство с полупроводниковым соединением, которое преобразует поступающее к нам электромагнитное излучение от солнца в электрическую энергию. Как указано выше, генерируемый ток является постоянным.

Основной принцип работы фотоэлектрического / солнечного элемента

Принцип работы солнечного элемента аналогичен проводимости в полупроводнике, таком как кремний. Как видно на картинке, темная поверхность — это часть, подверженная воздействию солнечного света.Когда электромагнитное излучение попадает на поверхность клетки, оно возбуждает электроны и заставляет их перепрыгивать с одного энергетического уровня (орбиты) на другой, оставляя дыры позади.

Эти дырки служат носителями положительного заряда, а электроны — носителями отрицательного заряда. Не запутайтесь, электроны или дырки не создают электрические заряды. Они несут только обвинения. Таким образом, электромагнитное излучение преобразуется в электрическую энергию. Солнечные элементы изготавливаются в основном из полупроводников, таких как кремний и селен, которые наиболее широко используются.

Чтобы лучше понять это, давайте рассмотрим различные типы полупроводниковых материалов, поскольку материалы, широко используемые в производстве солнечных элементов, являются полупроводниками.

Типы полупроводников

У нас есть два типа полупроводников: внутренние и внешние полупроводники.

Внутренние полупроводники :

Это полупроводники, чистые по своей форме. Никаких примесей для улучшения их проводимости не добавляется.Полупроводники этого типа при нулевом градусе Цельсия имеют очень мало или совсем не имеют свободных дырок и электронов для проводимости.

Внешние полупроводники :

Эти типы полупроводников не являются чистыми в том смысле, что они легированы (вещества, которые служат в качестве примесей, добавляются для повышения их проводимости). Когда полупроводник легирован, обнаруживаются следующие материалы;

  • Полупроводники P-типа

    Этот вид полупроводников образуется, когда кремний, селен или германий легируют трехвалентным элементом (элементом с тремя валентными электронами), например бором.Дырки (положительные носители заряда) являются основными носителями заряда в полупроводниках этого типа.

  • N — Type Semiconductors

    Электроны являются основными носителями заряда в этом типе полупроводников. Они несут отрицательный заряд. Они образуются при легировании кремния или любого другого полупроводника пятивалентным элементом (элементом с пятивалентным электроном на внешней оболочке).

  • PN — Тип полупроводников

    Когда полупроводники типа P и N соединяются путем их плавления I.е. подвергая соприкасающиеся поверхности воздействию высокой температуры (не плавя их полностью, чтобы они образовывали единое целое), между ними образуется граница или стык размером порядка 10 -3 мм. Образовавшееся соединение называется PN-переходом. Высокая концентрация дырок на одной стороне перехода и высокая концентрация электронов на другой стороне заставляет два носителя заряда диффундировать соответственно к другой стороне перехода.

Как построить простой фотоэлектрический / солнечный элемент?

Кремний и селен — наиболее широко используемые полупроводники в производстве солнечных элементов.Также используются галлий, арсенид, арсенид индия, сульфид кадмия и т. Д., Но наиболее широко используются кремний и селен.

Зная, что полупроводниковые материалы, такие как кремний и селен, могут быть довольно дорогими, мы поговорим о том, как построить солнечный элемент с использованием таких материалов, как кремний, а также о том, как построить солнечный элемент из дешевых материалов, которые можно найти вокруг нас.

Обратите внимание, что использование дешевых материалов не даст эквивалентной выходной мощности по сравнению с кремнием или селеном, и, во-вторых, чем больше поверхность материала, подверженного электромагнитному излучению, тем больше энергии будет произведено.

Конструкция солнечного элемента с использованием кремниевого полупроводника

Как было сказано ранее, поверхность представляет собой материал P-типа. Материал P-типа должен быть тонким, чтобы световая энергия (электромагнитное излучение) могла проникать через переход и достигать материала N-типа, чтобы обеспечить диффузию электронов и дырок.

Никелированное кольцо вокруг материала P-типа служит положительной выходной клеммой, а покрытие в нижней части материала N-типа служит отрицательной выходной клеммой.

Как построить простой солнечный элемент? (Шаг за шагом)

Теперь, когда вы знаете, как из кремния производятся солнечные элементы, давайте посмотрим, как мы можем изготовить фотоэлектрический элемент из различных материалов. Вместо закиси меди мы будем использовать другие материалы. Необходимые материалы следующие:

  • Стеклянные пластины (например, крышки предметных стекол микроскопа)
  • Деионизированная вода
  • Мультиметр
  • Прозрачная лента
  • Мелкая тарелка
  • Электрическая плита (1100 Вт, если возможно)
  • Раствор диоксида титана
  • Уголь (графитовый карандаш или графит) смазка)
  • Раствор йодида
  • Зажимы для связки
  • Зажимы типа «крокодил»

В нашей последней работе материал P-типа был обращен к солнцу и был более проводящим по сравнению с материалом N-типа.Стекло — это полупроводник с частичной проводимостью. Чтобы одна из стеклянных пластин действовала как материал P-типа, а другая — как материал N-типа, вы должны обработать их химикатами, чтобы в конце одна из них была более проводящей, чем другая. Шаги следующие.

  1. Тщательно очистите поверхности двух стеклянных пластин этанолом. Не касайтесь поверхности стеклянных пластин руками после очистки.
  2. Используя миллиметр, проверьте, насколько токопроводящими являются поверхности пластин, и обратите внимание на наиболее проводящую поверхность каждой из пластин.Поместите пластины рядом так, чтобы проводящая поверхность одной из пластин была обращена вниз, а другая проводящая поверхность была обращена вверх.
  3. После шага 2 приклейте прозрачную ленту, чтобы скрепить стеклянные пластины. Ленту следует наклеивать вдоль любой из длинных сторон пластин. Лента должна перекрывать края примерно на 1 мм. Также поместите ленту на внешнюю часть стеклянной пластины, обращенной вверх на 4–5 мм.
  4. Равномерно нанесите капли диоксида титана на поверхность стеклянных пластин и равномерно распределите раствор.Позвольте раствору покрыть проводящую поверхность, обращенную вниз.
  5. Когда закончите с нанесением диоксида титана, удалите ленты, которые скрепляют пластины.
  6. Поместите проводящую поверхность лицевой стороной вверх на электрическую плитку на ночь, чтобы на ней запекся диоксид титана. Очистите диоксид титана, который находится на проводящей поверхности лицевой стороной вниз, и поместите его в чистое место.
  7. Возьмите неглубокую посуду и наполните ее краской, приготовленной из ежевичного, малинового или гранатового сока и т. Д.Замочите пластину с покрытием из диоксида титана, обращенную вниз, как минимум на 10 минут.
  8. Очистите вторую пластину этанолом, пока пластина из диоксида титана пропитывается красителем. После очистки проверьте проводимость его поверхности. Отметьте сторону, которая не проводит электрический ток, как положительную. Нанесите графитовую смазку или графитовый карандаш на проводящую сторону и покройте всю поверхность.
  9. Выньте из красителя пластину, покрытую диоксидом титана. Промойте сначала деионизированной водой, затем этанолом.Вытрите этанол с пластины чистой тканью.
  10. Соберите две пластины вместе так, чтобы покрытия касались друг друга, а пластины были слегка смещены. Удерживайте пластины на месте с помощью зажимов для бумаги. Они должны быть смещены, потому что края будут служить выводами.
  11. Нанесите капли раствора йодида на покрытие, на которое попадают солнечные лучи. Дайте покрытиям полностью погрузиться в раствор. Суть раствора йодида состоит в том, чтобы помочь электронам течь от пластины, покрытой диоксидом титана, к покрытой углеродом пластине при воздействии электромагнитного излучения.При избытке раствора йодида сотрите раствор с поверхности, которая будет подвергаться воздействию солнечных лучей.
  12. Прикрепите зажим «крокодил» или зажим «крокодил» к участкам покрытой поверхности по обе стороны от ячейки. Один зажим прикреплен к поверхности, покрытой графитом, который служит опорой, в то время как зажим из кожи аллигатора прикреплен к поверхности, покрытой диоксидом титана. Это, конечно, катод. Подсоедините токопроводящие провода к зажимам и поместите его так, чтобы свет падал на поверхность пластины.Ваш фотоэлемент готов к использованию. Вы можете проверить величину напряжения и тока, которые производит солнечный элемент, с помощью мультиметра. Очевидно, что напряжения недостаточно для зарядки телефона, но для этого вы можете сделать цепочку из этих солнечных элементов!

Преимущества использования солнечных батарей

Ниже приведены преимущества использования солнечных батарей:

  • Не производит шума
  • Не требует топлива для питания
  • Его движущая сила составляет бесплатно по своей природе
  • Требует небольшого обслуживания

Недостатки использования солнечных элементов

Недостатки использования солнечных элементов

  • Поверхность элемента должна быть большой, чтобы производить разумное количество электроэнергии.
  • Когда солнце скрывается в облаках, количество вырабатываемой энергии сокращается.
  • Их нельзя использовать в качестве источника энергии из-за колебаний количества вырабатываемой энергии.

Применение и использование солнечных элементов

Солнечные элементы имеют множество применений, несмотря на следующие недостатки:

  • Группа последовательно соединенных солнечных элементов, которые могут использоваться в качестве зарядного устройства для батарей
  • Они являются широко используется в качестве источника питания для спутников
  • Многоблочные кремниевые фотоэлектрические устройства могут использоваться для восприятия света в таких приложениях, как считывание перфокарт в промышленности обработки данных
  • Германиевые элементы, легированные золотом, с контролируемой спектральной характеристикой могут использоваться в качестве инфракрасных детекторов .

Вы также можете читать:

Введите свой адрес электронной почты для получения последних обновлений, подобных указанному выше!

DIY солнечные панели — Монокристаллический против поликристаллического дизайна — Solar GOOD

Большинство солнечных панелей DIY созданы с использованием полупроводников кристаллического кремния. Однако сегодня доступны два разных типа кремниевых солнечных элементов — монокристаллические и поликристаллические.

В чем разница? И какой тип выбрать для вашей солнечной установки DIY ? Быстрый обзор плюсов и минусов показывает явного победителя.

DIY солнечная панель, тип 1: монокристаллический кремний

Монокристаллический кремний, или монокристаллический, был разработан в 1950-х годах. И спустя 65 лет технология далеко не устарела. Фактически, монокристаллический элемент по-прежнему широко используется сегодня, поскольку он считается наиболее эффективным типом кремниевых элементов.

Монокристаллические фотоэлектрические панели способны преобразовывать больше солнечной энергии в электричество благодаря высокочистому силикону, из которого они сделаны. Но за такую ​​эффективность приходится платить, потому что монокристаллические фотоэлектрические панели обычно стоят больше, чем поликристаллические модули.

DIY солнечная панель, тип 2: поликристаллический кремний

Поликристаллический кремний, или мультикристаллический, был разработан в 1981 году. Этот тип ячейки состоит из нескольких кристаллов кремния и имеет гораздо более простой производственный процесс, чем монокристаллические ячейки. Из-за этого, а также из-за того, что при изготовлении мультикристаллических солнечных элементов тратится меньше кремния, поликристаллические фотоэлектрические панели своими руками дешевле.

Несмотря на это очевидное преимущество, мультикристаллические фотоэлектрические панели имеют фатальный недостаток — они менее эффективны при выработке электроэнергии, чем монокристаллические модули.

Какие фотоэлектрические панели своими руками выбрать?

Так что же выбрать? Более высокая эффективность или более низкая стоимость?

Бюджет, конечно же, является важным фактором для многих людей, инвестирующих в DIY солнечную энергию . Покупка поликристаллических модулей может сэкономить вам деньги, поэтому может показаться, что они имеют смысл. Но — и вот что главное — экономия не так уж и значительна! Фактически, выбор этих фотоэлектрических панелей приводит к незначительному снижению стоимости вашей системы.

Точно так же монокристаллические панели не дадут вам намного больше электроэнергии, чем мультикристаллические модули. Новейшие поликристаллические модели предлагают КПД до 16 процентов. Монокристаллические модели лишь немного выше, большинство из них составляет от 17 до 20 процентов. Чистая разница составляет в среднем около 10 процентов.

Однако, в зависимости от размера вашей системы, эти 10 процентов могут иметь большое значение со временем.

Смотрите не только на стоимость и функции

Решение о том, какой тип фотоэлектрических панелей «сделай сам» выбрать, может основываться только на затратах или эффективности.Однако следует учитывать и другие факторы.

Сравните выходную мощность, указанную в ваттах, а также допустимое отклонение мощности или диапазон, который панель соответствует номинальной мощности или превышает ее. Авторитет и надежность производителя также важны. Ваши солнечные панели будут поставляться с 25-летней гарантией производительности, поэтому убедитесь, что вы выбрали марку, которая прослужит столько же, сколько и ваша фотоэлектрическая система.

Для некоторых домовладельцев внешний вид когда-то был важным фактором. Монокристаллические солнечные панели традиционно отличались особенным внешним видом, поскольку каждая ячейка имела срезанные углы.Поликристаллические модули имеют квадратные или прямоугольные синие ячейки, которые часто имеют пятнистый вид. Однако сегодня вы можете выбрать любой из этих типов.

Для получения дополнительной информации о наборах для самостоятельной сборки солнечных батарей и индивидуальном дизайне системы, посетите веб-сайт Solar GOODs . Solar GOODs — это ваш интернет-магазин, где можно самостоятельно разработать и установить системы. Мы являемся лидером в производстве высококачественных и простых в установке солнечных панелей своими руками.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*