Проверка обмоток электродвигателя. Неисправности и методы
В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.
Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.
Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.
Виды обмоток
Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.
Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
- Материал провода обмотки должен быть однородным по всей длине.
- Форма и площадь поперечного сечения провода должны иметь определенную точность.
- На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
- Провод обмотки должен обеспечивать прочный контакт при соединении.
Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.
Проверка обмоток электродвигателя 3-фазного мотора. Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.
Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).
На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.
Возможные неисправностиВизуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:
- Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
- Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
- Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
- Пробиванием изоляции между корпусом статора и обмоткой.
Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.
Проверка обмоток электродвигателя на короткое замыканиеПри коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.
Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.
Проверка обмоток электродвигателя на межвитковое замыканиеЭто самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.
Проверка обмоток электродвигателя способом омметраЭтот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.
Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.
Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.
Измерение тока в каждой фазеСоотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.
Проверка обмоток электродвигателя переменным токомНе всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.
Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.
Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.
Проверка обмоток электродвигателя шарикомЭтот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.
Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.
Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.
Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.
Определение полярности обмоток электрическим методомУ обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.
Чтобы определить маркировку, применяют некоторые способы:
- Слабым источником постоянного тока и амперметром.
- Понижающим трансформатором и вольтметром.
Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.
Определение маркировки выводов обмотки амперметром и батарейкойНа наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.
Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.
Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.
Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.
Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.
Определение полярности вольтметром и понижающим трансформаторомПервый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.
Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).
Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.
Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.
Похожие темы:
Как прозвонить электродвигатель мультиметром | Техпривод
Одна из частых неисправностей электродвигателя – отсутствие вращения. Причину поломки можно определить следующим образом. Прежде всего с помощью мультиметра (в режиме вольтметра) проверяется подача питающего напряжения. Если питание подается, проблема заключается в электрической неисправности самого двигателя, соответственно, необходимо проверить целостность подключения и прозвонить обмотки. В большинстве случаев для этого используется обычный мультиметр.
Прозвонка электродвигателя мультиметром
Трехфазный электродвигатель имеет 3 обмотки, у каждой из которых по два вывода. Для измерения сопротивления обмотки мультиметр переводится в режим омметра, его щупы соединяются с парой выводов. Предел измерения — 200 Ом или меньше. Необходимо последовательно прозвонить сопротивления всех трех обмоток. Полярность омметра в данном случае роли не играет.
Как узнать, какое должно быть сопротивление у обмоток? На данном этапе это неважно – главное, чтобы сопротивления были одинаковы. Расхождения показаний по обмоткам должны быть не более 10%.
Логично, что сопротивления обмоток зависят от мощности электродвигателя. У маломощных двигателей (сотни ватт) сопротивление каждой обмотки может составлять десятки Ом, у двигателей средней мощности (несколько киловатт) – единицы Ом. У приводов мощностью десятки киловатт сопротивление составляет доли ома, и обычным мультиметром проблематично точно его измерить.
Если мультиметр показывает 0 Ом, это говорит о коротком замыкании (начало и конец обмотки замкнуты). Можно попытаться устранить замыкание в районе борно, но это удается редко. Обычно в таких случаях двигатель разбирают или перематывают. Если на одной из обмоток мультиметр показывает бесконечность, произошел обрыв, и двигатель также подлежит разборке или перемотке.
Кроме того мультиметр позволяет без труда определить замыкание обмотки на корпус. В этом случае сопротивление между обмоткой и корпусом электродвигателя будет составлять единицы Ом (при нормальной изоляции — Мегаомы).
Проверка борно
Если после прозвонки остались подозрения, нужно вскрыть клеммную коробку (борно). Часто можно увидеть, что в борно плохо затянут крепеж, или отгорели провода. Если для соединения используются гайки, нужно на каждой клемме проверить протяжку не только верхней гайки, которой прикручен питающий проводник, но и осмотреть гайку, которая держит вывод обмотки, уходящий внутрь двигателя.
При отсутствии мультиметра допускается в первом приближении проверять обмотки на обрыв при помощи универсального пробника-прозвонки. Однако, при этом невозможно определить межвитковое и короткое замыкание в обмотках.
Как определить межвитковое замыкание
Межвитковое замыкание можно определить несколькими способами, самый практичный из них – измерение токов по фазам. Если при равенстве фазных напряжений токи отличаются более чем на 15%, и при этом двигатель греется на холостом ходу, можно смело нести его в перемотку.
Выводы
Следуя инструкциям, приведенным в статье, можно при помощи мультиметра определить большинство неисправностей обмотки двигателя. Как правило, при нарушениях целостности обмотки двигатель нужно перематывать.
Другие полезные материалы:
Выбор электродвигателя для компрессора
Типичные неисправности электродвигателя
Трехфазный двигатель в однофазной сети
Измерение сопротивления двигателя — Блог Режимщика
Как известно, обычный мультиметр не может нормально измерить сопротивление порядка 1 ома и ниже. Такое сопротивление имеют измерительные шунты и … обмотки двигателей. И не мудрено. Длина провода одной обмотки двигателя мощностью 260 Вт составляет всего-лишь 30 см.
Для тех, кто любит побыстрее ролик на 1 мин.
Что есть сопотивление двигателя?
Лично у меня сразу возник этот вопрос. Ведь оттуда торчит 3-4 провода (4-й средняя точка звезды). Ответ лежит на поверхности — это сопротивление между любыми двумя проводами (для 3х проводных). Обычно мотают 3 обмотки и соединяют в общем случае либо в звезду, либо в треугольник. На самом деле вариантов тьма тьмущая, но смысл один — сопротивление обмоток, соединенных в треугольник меньше, чем соединеных в звезду. Поэтому для них нужно меньшее напряжение, а ток получается выше. А мы помним, что момент пропорционален току. Чтобы не перегревать обмотки их соединяют в звезду, но при этом падает мощность, поэтому повышают напряжение. Также, двигатели «со звездой» в 1.73 раза крутятся медленнее чем «с треугольником» при одинаковом напряжении. Схему выбирают в зависимоти от нужного момента и требуемой скорости вращения при заданном напряжении. Подробнее неплохо расписано тут.
Как и чем измерять?
И здесь нам опять поможет закон Ома R = U/I. В зависимости от диаметра провода обмотки (которую, обычно, видно), можно прикинуть максимальный ток и отсюда определить максимальное напряжение источника питания. В моем случае имеется двигатель с неизвестными параметрами. На глазок, диаметр провода 0.5 мм, тогда по табличке определяем примерное сопротивление R=0,1 Ом на 1 м, а также длительно допустимый ток не более Iдоп = 1А. В моторе 12 зубьев, т.е. по 4 зуба на обмотку. Можно очень примерно прикинуть кол-во витков и средний диаметр зуба чтобы грубо вычислить длину провода. При соединении в звезду на 2 обмотки в моем моторе больше 1 м вряд-ли влезет, поэтому в первом приближении буду ориентироваться на величину сопротивления 0,1 Ом.
Далее вспомним про кратность пускового тока порядка K = 7 для переменного тока, а для постоянного импульсного можно вполне взять K = 10 (это почти наобум, но с хорошим запасом — см. список в конце статьи). Отсюда делаем вывод, что при измерении сопротивления нужно обеспечить кратковременный ток около I = Iдоп*K = 1*10 = 10А. Это значит, что нам нужно подать напряжение U = I*R = 10 * 0,1 = 1В. Довольно маленькое напряжение при довольно большом токе. Выбор пал на пару оставшихся в живых Ni-Cd аккумуляторов от шуруповерта. Они обеспечивают большой ток разряда при номинальном напряжении 1.2В. В прошлый раз я измерил их внутреннее сопротивление и получил 0.13 и 0.22 Ома соответственно. Остальные 10 штук совсем дохлые. Соединенные параллельно они должны дать около I = U/(Re+R) = 1.2/(0.13*0.22/(0.13+0.22) + 0.1) = 6.6 А. Не много, но ничего мощнее под рукой не оказалось. Если под рукой нет подходящего источника питания можно попробовать подобрать токоограничивающий резистор достаточной мощности чтобы погасить на себе излишки. Если есть источник 5В (например, компьютерный БП обычно дает 12А и более), то в моем случае потребуется шунт Rш = U/I — R = 5/10 — 0.1 = 0.4 Ом. Найти такое сопротивление будет не просто, тем более что оно должно быть мощностью 40W или хотябы кратковременно пропускать такую мощность. Можно посмотреть в сторону ламп накаливания…
Ну а дальше все просто. Кратковременно подключаем нашу батарею к любым двум выводам двигателя. Быстро замеряем напряжение и ток. Делим одно на другое и получаем искомое сопротивление.
Само собой, для измерения я задействовал свой приборчик на Arduino. Честно говоря, изначально именно для этого измерения он и был собран.
Перед измерением хорошенько накачал аккумуляторы. Батарея выдала аж 20 мОм, видимо немного раскачались. А измеренное сопротивление нашего подопытного бесколлекторного двигателя 112 мОм оказалось очень близким к прикидочному и косвенно подтвердило предположение о соединении обмоток в звезду. Так что способ подсчета кол-ва витков также работает, но тут нет гарантии, что намотка не проводилась жгутом из нескольких проводов, да и при малом диаметре и большой плотности навивки подсчитать кол-во витков бывает очень затруднительно.
Зачем вообще это надо?
Знать сопротивление нужно чтобы исходя из диаметра проводов обмоток определить допустимую электрическую мощность двигателя или если проще, то какое максимальное напряжение можно подать на двигатель чтобы он не перегрелся. В современных двигателях постоянного тока все чаще применяют неодимовые магниты (привет, электрокары). Известны случаи построения кулибиными ветрогенераторов мощностью до 5 кВт с использованием этих магнитов. Но есть и недостаток — при температуре выше 90°С он теряет свои суперсвойства, поэтому контроль нагрева таких двигателей очень важен, а значит важно знать сопротивление обмоток.
Тут конечно еще много неизвестных. Нужно определить максимальный ток провода при импульсном питании. Есть такие данные:
1А — 0.05мм, 3А — 0.11мм, 10А — 0.25мм, 15А — 0.33мм,
20А — 0.4мм, 30А — 0.52мм, 40А — 0.63мм, 50А — 0.73мм,
60А — 0.89мм, 70А — 0.92мм, 80А — 1.00мм, 90А — 1.08мм, 100А — 1.16мм
Вроде бьются с моими параметрами, но откуда они я пока не разбирался. Похоже на ток плавкого предохранителя, т.е. прям край-край. Если руководствоваться ими, то в моем случае диаметр 0,4мм «по меди» даст 20А, а мощность при 3S Li-Po батареии составит P = 3*3,7*20 = 222 Вт; при 4S составит P = 4*3,7*20 = 296 Вт. Какое максимальное напряжение можно подать зависит от теплового баланса, т.е. от условий охлаждения, а это посчитать уже проблематично — проще измерить, но это, возможно, тема отдельной статьи.
P.S.
Лично мне измерение сопротивления моего двигателя помогло убедиться в том, что найденные в интернете характеристики мотора, внешне похожего на мой, заслуживают доверия. Его заводские характеристики: ток без нагрузки 0.4А, максимальный ток 22 А, мощность 260 Вт (механическая в соответствии с ГОСТ Р 52776-2007). А в другом месте нашел, что у подобного мотора сопротивление 0.119 Ом, что в принципе, близко к моим результатам.
Купон на 15% скидку на радиоуправляемые игрушки на Алиэкспресс.
Нормальное сопротивление обмотки электродвигателя. Проверка мегомметром сопротивления изоляции двигателя
При поломке электродвигателя, бывает недостаточно просто осмотреть его, чтобы понять причину неисправности.
Постараемся использовать наиболее простые технические способы и минимум оборудования.
Механическая часть
Механическая часть электродвигателя, грубо говоря, состоит всего из двух элементов: 1. Ротор — подвижный, вращающий элемент, который приводит в движения вал двигателя.2. Статор — корпус с обмотками в центре которого находится ротор.
Два этих элемента между собой не прикасаются и разделены только с помощью подшипников.
Проверка электродвигателя начинается с внешнего осмотра
Прежде всего двигатель осматривают на предмет любых заметных дефектов, это могут быть, например, сломанные монтажные отверстия и подставки, потемнение краски внутри электродвигателя что явно говорит о перегреве, наличие загрязнений или посторонних веществ попавших внутрь двигателя, любые сколы и трещины.
Проверка подшипников
Большинство неисправностей электродвигателей вызваны неисправностью его подшипников. Ротор должен свободно втащатся внутри статора, подшипники которые расположены с двух сторон вала, должны минимизировать трение.Есть несколько типов подшипников использующихся в электродвигателях. Два самых популярных типа: латунные подшипники скольжения и шарикоподшипники. Многие из них имеют фитинги для смазки, в другие смазка заложена при производстве и они как-бы «не обслуживаемые».
Для этого поместите электродвигатель на твердую поверхность и положите одну руку на верхнюю часть двигателя, проверните вал другой рукой. Внимательно наблюдайте, старайтесь почувствовать и услышать трение, царапающие звуки, неравномерность вращения ротора. Ротор должен вращаться спокойно, свободно и равномерно.
После этого проверяют продольный люфт ротора, попробуйте потянуть-потолкать ротор в статоре. Характерный небольшой люфт допустим, но не более 3 мм, чем люфт меньше тем лучше. При большом люфте и неисправностях подшипников, двигатель «шумит» и быстро перегревается.
Часто проверить вращение ротора бывает проблематично из-за подключенного привода. Например, ротор двигателя исправного пылесоса довольно легко раскрутить одним пальцем. А чтоб провернуть ротор рабочего перфоратора, придется приложить усилие. Прокрутить вал двигателя, подключенного через червячный редуктор, вообще не получится из-за конструктивных особенностей этого механизма.
По этому проверять подшипники и легкость вращения ротора нужно только при отключенном приводе.
Причиной затрудненного движения ротора может быть отсутствие смазки в подшипнике, загустение солидола или попадание грязи в полость шариков, внутри самого подшипника.
Нездоровый шум во время работы электродвигателя создается неисправными, разбитыми подшипниками с повышенным люфтом. Для того чтоб убедится в этом достаточно пошатать ротор относительно стационарной части, создавая переменные нагрузки в вертикальной плоскости, и попробовать вставлять и вытаскивать его вдоль оси.
Электрическая часть электродвигателя
В зависимости от того, двигатель для постоянного или переменного тока, асинхронный или синхронный, отличается и его конструкция электрической части, но общие принципы работы, основанные на воздействии вращающегося электромагнитного поля статора на поле ротора который передает вращение (валу) приводу.В двигателях постоянного тока магнитное поле статора создается не постоянными магнитами, а двумя электромагнитами, собранными на специальных сердечниках — магнитопроводах, вокруг которых расположены катушки с обмотками, а магнитное поле ротора создается током, проходящим через щетки коллекторного узла по обмотке, уложенной в пазы якоря.
В асинхронных двигателях переменного тока ротор выполнен в виде короткозамкнутой обмотки в которую не подается ток.
В коллекторных электродвигателях используется схема передачи тока от стационарной части на вращающиеся детали с помощью щеткодержателя.
Поскольку магнитопровод изготавливается из пластин специальных сталей, собранных с высокой надежностью, то поломки таких элементов происходят очень редко и под воздействием агрессивных условий работы или запредельных механических нагрузок на корпус. Потому проверять их магнитные потоки не приходится и основное внимание прикладывается состоянию электрообмоток.
Проверка щеточного узла
Графитовые пластины щеток должны создавать минимальное переходное сопротивление для нормальной работы двигателя, они должны быть чистыми и хорошо прилегать к коллектору.Электродвигатель который много работал с серьезными нагрузками, как правило имеет загрязненные пластины на коллекторе с изрядно набитыми в пазах пластин, графитовыми стружками, что довольно сильно ухудшает изоляцию между пластинами.
Щетки усилием пружин прижимаются к пластинам коллекторного барабана. В процессе работы графит истирается а его стержень изнашивается по длине и прижимная сила пружин уменьшается, а это в свою очередь приводит к ослаблению контактного давления и увеличению переходного электрического сопротивление, что вызывает искрение в коллекторе. Начинается повышенный износ щеток и медных пластин коллектора.
Щеточный механизм осматривают на загрязненность, на выработку самых щеток, на прижимную силу пружин механизма, а также на предмет искрения в процессе работы.
Загрязнения убираются мягкой тряпочкой, смоченной спиртом. Зазоры (полости) между пластинами очищаются с помощью зубочистки. Щетки притирают мелкозернистой наждачной шкуркой.
Если на коллекторе имеются выбоины или выгоревшие участки, то его подвергают механической обработке и полировке до нужного уровня.
Проверка обмоток на обрыв или короткое замыкание
Большинство простых однофазных или трехфазных бытовых электродвигателей можно проверить обычным тестером в режиме омметра (в самом низком диапазоне). Хорошо если есть схема обмоток.Сопротивление как правило небольшое. Большое значение сопротивления указывает на серьезную проблему с обмотками электродвигателя, которые могут иметь разрыв.
Проверка на короткое замыкание на корпус
Проверка производится с помощью мультиметра в режиме сопротивления. Зацепив один щуп тестера на корпус, поочередно прикасаются вторым щупом к выводам обмоток электродвигателя. В исправном электродвигателе сопротивление должно быть бесконечным.Проверка изоляции обмоток относительно корпуса
Для нахождения нарушений диэлектрических свойств изоляции относительно статора и ротора применяют специальный прибор — мегомметр. Большинство бытовых мультиметров прекрасно справляются с замером сопротивления до 200МОм и хорошо подойдут для етой цели, но недостатком мультиметров есть низкое напряжение замера сопротивления, оно как правило не больше 10 вольт, а напряжение эксплуатации обмоток намного больше.Но все же если не удалось найти «профессиональный прибор» замер сделаем тестером. Прибор выставляем в максимальное сопротивление (200МОм), один щуп фиксируем на корпусе двигателя или на заземляющем винте, обеспечив надежный контакт с металлом, а вторым поочередно, не прикасаясь руками, прижимаем щуп к контактам обмоток. Следует обеспечить надежную изоляцию щупов от рук и тела, так как измерения будут неверны.
Чем больше сопротивление тем лучше, иногда оно может составлять всего 100 МОм и ето может быть приемлемо.
Иногда в коллекторных двигателях графитовая пыль может «набиваться» между щеткодержателем и корпусом двигателя и можно будет увидеть куда меньшие показатели сопротивления, здесь следует обратить внимание не только на обмотки но и на потенциальные места «пробоя».
Проверка пускового конденсатора
Проверяют конденсатор тестером или же простым омметром.Прикоснитесь щупами к выводам конденсатора, сопротивление должно начинаться с низких показателей и постепенно увеличиваться, так как небольшое напряжение, подающееся от батареек омметра, постепенно заряжает конденсатор. Если конденсатор остается короткозамкнутым или сопротивление не растет, то, вероятно, проблема с конденсатором, его необходимо заменить.
Материалы, применяемые при изоляции обмоток электродвигателей, не являются идеальными диэлектриками и в зависимости от своих физико-химических свойств являются в большей или меньшей степени токопроводящими. Сопротивление изоляции обмоток помимо конструкции самой изоляции и примененных материалов в значительной степени зависит также от влажности изоляции, механических повреждений и загрязнения поверхности.
О сопротивлении изоляции судят по значению проходящего через нее тока при приложении постоянного напряжения. Сопротивление изоляции измеряют мегаомметром с ручным или электрическим приводом либо сетевым мегаомметром, а также методом вольтметра.
Как известно, сопротивление изоляции измеряется в Омах, но так как в обмотках двигателей оно обычно 20 очень велико, то принято его выражать в миллионах ом (мегаомах), откуда и происходит название прибора. Мегаомметр (рис.1) представляет собой генератор постоянного тока, к выводам которого подсоединяется измеряемое сопротивление. Мегаомметр по существу фиксирует ток, проходящий через измеряемое сопротивление, но для удобства пользования шкала его измерительного прибора отградуирована непосредственно в мегаомах.
Рис. 1. Принципиальная схема мегаомметра.
Г — генератор постоянного тока; 1 — последовательная обмотка мегаомметра; 2 — параллельная обмотка мегаомметра; г1, г2 — ограничивающие сопротивления; Л — линейный зажим; 3 — зажим для присоединения заземления; К — кнопка включения; Э — корпус электродвигателя; О — обмотка электродвигателя.
В качестве измерительного прибора в мегаомметре применяется логометр, в котором взаимодействуют две обмотки — обмотка 1, соединенная последовательно с измеряемым сопротивлением, и обмотка 2, подключенная параллельно выводам генератора. Перед измерением производится упрощенная проверка мегаомметра: при вращении ручки и замкнутых накоротко зажимах мегаомметра показание прибора должно быть равно нулю, при разомкнутых — бесконечности. Обмотку перед измерением сопротивления ее изоляции на 1-2 мин заземляют для того, чтобы могущие быть в ее изоляции остаточные заряды стекли в землю и не повлияли на результаты испытания.
Провода, соединяющие мегаомметр с испытуемой обмоткой, а также с корпусом электродвигателя, должны иметь усиленную и надежную изоляцию. Ручку мегаом-
метра следует вращать по возможности равномерно, частота вращения должна быть около 150 об/мин. После разворота ручки мегаомметра до указанной частоты вращения включают кнопку К и тем самым испытуемая обмотка подключается к генератору мегаомметра. В мегаомметрах, у которых кнопки нет, после разворота ручки провод от зажима Л подключают к обмотке электродвигателя щупом (стальная острозаточенная игла с изолированной ручкой из текстолита или эбонита).
В начале замеров стрелка прибора делает бросок к началу шкалы, затем показание прибора медленно начинает увеличиваться и через некоторое время (15-60 с) стрелка устанавливается в некотором положении. Первоначальный бросок стрелки, соответствующий повышенному току генератора мегаомметра, вызывается зарядным током, определяемым емкостью изоляции, который быстро затухает. Относительно медленное движение стрелки после спада емкостного тока определяется токами абсорбции.
Изоляция не является монолитной, ее можно рассматривать состоящей из ряда слоев, т. е. последовательно соединенных емкостей. При приложении напряжения внутренние емкости в этой цепочке заряжаются через сопротивление предшествующих. При хорошей, сухой изоляции сопротивление каждого слоя велико и зарядный ток мал. Поэтому процесс заряда происходит медленно. При сырой изоляции процесс протекает быстро и также быстро стрелка прибора достигает своего максимального значения.
Установившееся показание прибора свидетельствует об окончании зарядки внутренних слоев изоляции (при этом ток абсорбции равен нулю). Это показание определяется только так называемым током сквозной проводимости, т. е. током, проходящим внутри изоляции по капиллярам, заполненным влагой, и током, проходящим по наружной поверхности изоляции, которая всегда в некоторой степени загрязнена и увлажнена.
Таким образом, судить о состоянии изоляции следует по значению тока сквозной проводимости и по скорости спадания тока абсорбции, которая определяется коэффициентом абсорбции
где R15 и R60 — сопротивления изоляции, отсчитанные соответственно через 15 и 60 с после достижения мегаомметром полной частоты вращения.
При хорошей, сухой изоляции коэффициент абсорбции составляет 1,5-2,0, а для увлажненной приближается к единице. Минимальной нормой следует считать &абс=1,3.
Сопротивление изоляции электрической машины относительно ее корпуса и сопротивление изоляции между обмотками при рабочей температуре должно быть не менее значения, получаемого по формуле, но не менее 0,5 МОм:
где U — номинальное напряжение машины, В; Р — номинальная мощность машины, кВт.
Сопротивление изоляции сильно зависит от температуры; с увеличением температуры оно снижается, а при уменьшении температуры повышается. Поэтому, если измерение сопротивления изоляции производится при температуре ниже рабочей, полученное по приведенной формуле сопротивление изоляции следует удваивать на каждые 20°С (полные или неполные) разности между рабочей температурой и той температурой, при которой выполнено измерение. Практически у электродвигателей с высушенной и неповрежденной изоляцией обмотки значение сопротивления изоляции всегда бывает выше нормируемого.
Примененное выше выражение «рабочая температура машины» нуждается в разъяснении.
Рабочей температурой любой части машины называют практически установившуюся температуру этой части, соответствующую номинальному режиму работы машины при неизменной температуре окружающей среды. Очевидно, что каждый тип и типоисполнение электродвигателя имеют свою рабочую температуру; она зависит от конструкции двигателя и его вентиляции, расчетных нагрузок и расчетной температуры охлаждающей среды и может быть приближенно определена тепловым расчетом, выполняемым при проектировании электродвигателя (или серии электродвигателей).
Определенная расчетом рабочая температура позволяет выбрать конструкцию изоляции двигателя и класс ее нагревостойкости таким образом, чтобы была обеспечена длительная работа электродвигателя при номинальном режиме. Поэтому по классу нагревостойкости изоляции, примененной в исполнении завода-изготовителя, можно судить о рабочей температуре электродвигателя. Эти сведения приведены ниже.
ГОСТ 1628-75 предписывает применять при измерении сопротивления изоляции обмоток электродвигателей с номинальным напряжением до 50U Б включительно мегаоммегр на 5ои Б и для электродвигателей напряжением выше 5UU Б — мегаомметр на 1000 Б. Рекомендуется применять мегаомметры, которые приводятся во вращение не вручную, а приводным электродвигателем. Помимо облегчения проведения испытаний это значительно повышает точность результатов.
Для электродвигателей, у которых выведены концы и начала всех фаз, измерение сопротивления изоляции производят между каждой фазой и корпусом. В этом случае допустимое минимальное сопротивление изоляции фазы должно быть повышено в 3 раза.
При измерении сопротивления изоляции каждой из электрических цепей все прочие цепи соединяют с корпусом машины. По окончании измерения сопротивления изоляции каждой электрически независимой цепи следует разрядить ее на заземленный корпус двигателя. Для обмоток на номинальные напряжения 3000 В и выше продолжительность разрядки для двигателей до 1000 кВт не менее 15 с и для электродвигателей мощностью более 1000 кВт — не менее 1 мин.
Рис. 2. Схема сетевого мегаомметра с полупроводниковыми диодами.
На рис. 2 представлена другая схема сетевого мегаомметра, где вместо кенотрона применены полупрородниковые диоды. Это делает сетевой мегаомметр более компактным, легким и более надежным в эксплуатации.
Схема соединения при измерении сопротивления изоляции методом вольтметра при питании от сети постоянного тока приведена на рис. 3.
Рис. 3. Измерение сопротивления изоляции вольтметром при питании от сети постоянного тока.
При измерении предварительно фиксируют напряжение питающей сети U1, для чего переключатель ставят в положение 1. Затем переключатель переводят в положение 2 и замеряют показание вольтметра U2. Так как при этом положении рубильника сопротивление вольтметра Яв (указанное на шкале вольтметра или приведенное в его паспорте) и измеряемое сопротивление R соединены последовательно, то падение напряжения в них будет распределяться прямо пропорционально значениям их сопротивлений.
Падение напряжения в вольтметре составит U2, В, а в изоляции U1-U2, В. Таким образом,
Для получения большей точности измерений вольтметр выбирают с большим собственным сопротивлением. Измерения можно производить не только от стационарной сети постоянного тока, но и от аккумуляторной батареи.
При измерении от электросети, один полюс которой может быть заземлен (на рис. 3 обозначено пунктиром), во избежание короткого замыкания следует подключать заземленный корпус электродвигателя 3 таким образом, чтобы он оказался соединенным с заземленным полюсом сети.
Наряду с питанием от источника постоянного тока можно применить для измерения также выпрямленный ток. На рис. 4 представлена схема измерения сопротивления изоляции при питании от сети переменного тока. Эта схема отличается от приведенной на рис. 3 наличием трансформатора 3 и выпрямителя 4. При питании выпрямленным током, если выпрямитель включен в сеть не непосредственно, а через трансформатор, отделяющий сеть переменного тока от цепи выпрямленного напряжения (как это указано на рис. 4), заземленный корпус электродвигателя может быть присоединен к любому из зажимов выпрямителя.
При ремонтах электродвигателей, связанных с переизолировкой активной стали, возникает необходимость проверить качество лаковой пленки после нанесения лака на листы и его запечки. Одним из показателей служит сопротивление постоянному току изоляции из отлакированных листов стали. В этом случае измерение сопротивления производят на приспособлении, изображенном на рис. 5.
Рис. 4. Измерение сопротивления изоляции вольтметром при питании от сети переменного тока.
Рис. 5. Приспособление для измерения сопротивления изоляции листов активной стали.
Пачку из 20 отлакированных листов 1 сжимают между электродами 2 и 3. Площадь каждого электрода составляет 1 дм2. Под электродом 3 устанавливают изолирующую подкладку 4. Листы сжимают рычагом с подвешенным на его конце грузом 5, который подбирается таким образом, чтобы давление, оказываемое на пачку листов, составляло 6000 Н (удельное давление 0,6 МПа). При указанных условиях сопротивление изоляции должно быть не менее 50 Ом.
Источником питания могут являться аккумуляторная батарея или выпрямитель напряжением 10-15 В. Потенциометром 6 устанавливают ток 0,1 А, при этом показание вольтметра должно быть не менее 5 В. Для предохранения амперметра от повреждения в цепь включают защитное сопротивление 7. Значение защитного сопротивления R, Ом, выбирают таким образом, чтобы при случайном коротком замыкании электродов 2 и 3 ток, проходящий через амперметр, не превосходил предельного значения, на которое рассчитан амперметр, т. е.
где U — напряжение источника питания, В; /амп — предельный ток амперметра, А.
При эксплуатации крупных электродвигателей под влиянием магнитной асимметрии или по некоторым другим причинам в замкнутом контуре (подшипники, вал, фундаментная плита), указанном на рис. 6, может возникнуть электрический ток. Этот ток разъедает шейки вала и вкладыши подшипников, из-за чего работа подшипников ухудшается и они быстро выходят из строя.
Рис. 6. Контур подшипниковых токов.
Для предотвращения возникновения этих токов указанный замкнутый контур разрывают установкой изолирующей текстолитовой или гетинаксовой прокладки между фундаментной плитой и подшипниковой стойкой. Болты, крепящие стойку к плите, изолируют изоляционными втулками и шайбами. При принудительной смазке подшипников во фланцах маслопровода устанавливают изоляционные прокладки и втулки.
В процессе эксплуатации и при ремонте установленную изоляцию необходимо периодически проверять — измерять сопротивления изоляции между подшипниковой стойкой и фундаментной плитой при полностью собранном маслопроводе мегаомметром на 500-1000 В.
Как видно на рис. 6, сопротивление изоляции не может быть проверено в собранном электродвигателе, так как изолированному подшипнику параллельна цепь, составленная валом, другим неизолированным подшипником и фундаментной плитой. Для измерения необходимо приподнять вал и заложить прокладку из электрокартона между шейкой вала и вкладышем неизолированного подшипника. Значение сопротивления не является нормируемым, но должно находиться на достаточно высоком уровне — не ниже 1 МОм, так как оно очень быстро и значительно снижается при загрязнении прокладок.
При ремонте, а также при эксплуатации крупных двигателей, температуру нагрева которых измеряют заложенными в обмотку термодетекторами, необходимо периодически измерять сопротивление изоляции этих термодетекторов, так как нарушение ее может представить серьезную опасность для обслуживающего персонала. Проверку производят мегаомметром на 250 В. Значение сопротивления не является нормируемым; показательным является его сравнение с результатами предыдущих измерений.
Статье Я рассказывал о том, как проверить, найти и устранить неисправности в коллекторных электродвигателях, которые отличаются тем, что у них есть щеточно-коллекторный узел. Сейчас Я расскажу как проверить, найти неисправность и отремонтировать асинхронный электродвигатель, который является самым надежным и простым в изготовлении из всех типов моторов. Они реже встречается в быту (в компрессоре холодильника или в стиральной машине), но за то часто в гараже или мастерской: в станках, компрессорах и т. п.
Починить или проверить своими руками асинхронный электродвигатель будет не тяжело большинству людей. Наиболее частой поломкой у асинхронных двигателей является износ подшипников, реже обрыв или отсыревание обмоток.
Большинство неисправностей можно выявить при внешнем осмотре.
Перед подключением или если долго не использовался мотор, необходимо у него проверить сопротивление изоляции мегомметром. Или если нет знакомого электрика с мегомметром, тогда не помешает в профилактических целях его разобрать и посушить обмотки статора несколько суток.
Прежде чем приступать к ремонту электродвигателя, необходимо проверить наличие напряжения и исправность магнитных пускателей, теплового реле, кабелей подключения и конденсатора, при его наличии в схеме.
Проверка электродвигателя внешним осмотром
Полноценный осмотр можно провести только после разборки электродвигателя, но сразу не спешите разбирать.
Все работы выполняются только после отключения электропитания, проверки его отсутствия на электродвигателе и принятия мер по предотвращению его самопроизвольного или ошибочного включения. Если устройство включается в розетку, тогда просто достаточно достать вилку из нее.
Если в схеме есть конденсаторы , тогда их выводы необходимо разрядить.
Проверьте перед началом разборки:
- Люфт в подшипниках. Как проверить и заменить подшипники читайте в .
- Проверьте покрытие краски на корпусе. Выгоревшая или отлущиваяся местами краска свидетельствует о нагревании двигателя в этих местах. Особенно обратите внимание на места расположения подшипников.
- Проверьте лапы крепления электродвигателя и вал вместе его соединения с механизмом. Трещины или отломанные лапы необходимо приварить.
Например , у мотора от старой стиральной машины есть три вывода. Самое большое сопротивление будет между двумя точками, включающей в себя 2 обмотки, например 50 Ом. Если взять оставшейся третий конец, то это и будет общий конец. Если замерить между ним и 2 концом пусковой обмотки- получите величину около 30-35 Ом, а если между ним и 2 концом рабочей- около 15 Ом.
В двигателях на 380 Вольт, подключенных по схеме необходимо будет разобрать схему и прозвонить отдельно каждую из трех обмоток. У них сопротивление должно быть одинаковым от 2 до 15 Ом с отклонениями не более 5 процентов.
Обязательно необходимо прозвонить все обмотки между собой и на корпус. Если сопротивление не велико до бесконечности, значит есть пробой обмоток между собой или на корпус. Такие двигатели необходимо сдать в перемотку обмоток.
Как проверить сопротивление изоляции обмоток электродвигателя
К сожалению, мультиметром не проверить величину сопротивления изоляции обмоток электромотора для этого необходим мегомметр на 1000 Вольт с отдельным источником питания. Прибор дорогой, но он есть у каждого электрика на работе, которому приходится подключать или ремонтировать электродвигатели.
При измерении один провод от мегомметра присоединяют к корпусу в неокрашенном месте, а второй по очереди к каждому выводу обмотки. После этого измерьте сопротивление изоляции между всеми обмотками. При величине менее 0.5 Мегома- двигатель необходимо просушить.
Будьте внимательны , во избежание поражения электрическим током не прикасайтесь к измерительным зажимам во время проведения измерений.
Все измерения проводятся только на обесточенном оборудовании и по продолжительности не менее 2-3 минут.
Как найти межвитковое замыкание
Наиболее сложным является поиск межвиткового замыкания , при котором замыкается между собой лишь часть витков одной обмотки. Не всегда выявляется при внешнем осмотре, поэтому для этих целей применяется для двигателей на 380 Вольт- измеритель индуктивности. У всех трех обмоток должно быть одинаковое значение. При межвитковом замыкании у поврежденной обмотки индуктивность будет минимальной.
Когда Я был на практике 16 лет назад на заводе, электрики для поиска межвитковых замыканий у асинхронного мотора мощностью 10 Киловатт использовали шарик из подшипника диаметром около 10 миллиметров. Они вынимали ротор и подключали 3 фазы через 3 понижающих трансформатора на обмотки статора. Если все в порядке шарик движется по кругу статора, а при наличии межвиткового замыкания он примагничивается к месту его возникновения. Проверка должна быть кратковременной и будьте аккуратны шарик может вылететь!
Я уже давно работаю электриком и проверяю на межвитковое замыкание, если только двигатель на 380 В начинает сильно греться после 15-30 минут работы. Но перед разборкой, на включенном моторе проверяю величину потребляемого им тока на всех трех фазах. Она должна быть одинаковой с небольшой поправкой на погрешности измерений.
Похожие материалы:
Модификации электродвигателей друг с другом различаются, равно как и их дефекты. Не каждая неисправность может быть диагностирована с помощью тестера, но в большинстве случаев – вполне возможно.
Ремонт начинают со зрительного осмотра: есть ли повреждённые части, не залит ли водой электродвигатель, не появился ли запах горелой изоляции и так далее. Обмотка в асинхронном двигателе может сгореть из-за короткого замыкания между двумя соседними витками. Агрегат перегревается из-за перегрузок, возникновения больших токов.
Нередко обгоревшие обмотки видны при визуальном осмотре, и в этом случае любые измерения будут лишними. Когда никаких шансов на исправление нет, нужно удалить и заменить обмотки на новые. Иногда требуется более тщательно проверить электродвигатель.
Для начала необходимо изучить конфигурацию двигателя, например, какие обмотки используются. Все вращающиеся машины имеют две части: статор и ротор.
В электродвигателях постоянного тока имеются:
- обмотка возбуждения, имеющая важное значение для производства магнитного поля. Она позволяет преобразовать энергию из механической в электрическую и наоборот;
- обмотка якоря, несущая нагрузку току и регулирующая переменный ток для уменьшения вихревых потерь.
Двигатель переменного тока, обычно состоит из двух частей:
- статора, имеющего катушку для создания вращающегося магнитного поля;
- ротора, прикрепленного к выходному валу и предназначенного для производства второго вращающегося магнитного поля.
Как проверить цельность обмоток мотора?
При помощи мультиметра и нескольких подручных средств можно проверить:
- асинхронные движки одно-, трёхфазные;
- коллекторные электродвигатели постоянного, переменного тока;
- асинхронные моторы с короткозамкнутым, фазным ротором.
Тестирование обмоток катушки
Существует простой тест, используемый для проверки состояния катушки мотора. Для чего измеряется сопротивление обмоток, которое варьируется в зависимости от длины, толщины и материала провода. Если сопротивление слишком низкое, это указывает на короткое замыкание изоляции между витками.
Можно использовать мультиметр, но лучше проверить это с мегомметром, потому что на нём используется более высокое напряжение при проверке сопротивления. Это исключает ложные показания, вызванные индуктивностью катушки мотора.
Тест показывает качество изоляции провода, которое определяется по сопротивлению измеряемой детали системы. Полученные результаты сверяются с табличными данными допустимых сопротивлений изоляции кабеля до 1 кВ, изложенными в правилах устройства электроустановок (ПУЭ). По результатам проверки может быть предсказан сбой, прежде чем он произойдёт на самом деле. Это позволяет в производственном цеху осуществить ремонт или замену оборудования во время работы.
Как проверяется катушка электродвигателя мультиметром можно посмотреть на видео:
Диагностика якоря
Проверить исправность электродвигателя тоже можно с помощью цифрового специального устройства проверки якорей Э236. Для этого помещают якорь на призму приборчика, который потом подключают к сети.
Процесс диагностики включает в себя следующие шаги:
- располагают ножовочное полотно параллельно пазу исследуемой детали;
- удерживая одной рукой металл, другой медленно проворачивают якорь.
При наличии межвиткового замыкания полотно, близкорасположенное к пазу, начнет вибрировать и притягиваться к механизму.
Наглядная демонстрация проверки якоря показана по видео:
Чтобы оперативно прозвонить обрыв в цепях движка, можно воспользоваться рабочим стендом с источником постоянного тока, инвертором, цифровым вольтметром, компаратором напряжений, световым индикатором и зуммером обрыва.
На нём же можно определить междувитковое замыкание.
Заключение
Далеко не всегда имеется возможность приобрести дорогостоящие аппараты специального назначения. Поэтому важно знать, как проверить двигатель простым мультиметром, очень нужным в хозяйстве электроизмерительным прибором. Он заменяет множество отдельных инструментов, необходимых для проверки цепей.
Посмотреть видео урок проверки статора на обрыв можно здесь:
В данной статье я хочу рассказать о том,как обнаружить неисправность в цепи электропитания трёхфазного двигателя и как проверить сам двигатель.
Начнём по порядку.
1. Первое что необходимо сделать, это проверить наличие напряжения на автоматическом выключателе (АВ) или магнитном пускателе , т.е. поступает ли напряжение от электрощита. Проверить напряжение можно с помощью контрольной лампы , вольтметром или электротестером , где есть вольтметр. Я не советую пользоваться индикатором напряжения, т.к. наличие входного напряжения вы определите, а отсутствие нуля нет.
2. Проверить сам автоматический выключатель и магнитный пускатель на исправность. Измерьте напряжение на входных контактах обоих устройств, а затем на выходных (автомат должен быть включен и нажата кнопка «Пуск», если стоит магнитный пускатель ), идущих на электродвигатель. Если неисправен автоматический выключатель (нет напряжения), то замените его на аналогичный по напряжению (220 или 380В) и по силе тока (А). Если нет напряжения на выходных контактах магнитного пускателя, то скорее всего выгорели контактные пластины. Если есть возможность, то замените их, если нет, то замените пускатель целиком на аналогичный.
Неисправность: магнитный пускатель не срабатывает.
Проверьте наличие напряжения на контактах катушки пускателя. Следует помнить, что катушки бывают на 220В и 380В.
Если напряжение нет, то замените катушку или пускатель. Если напряжение подаётся, то необходимо «прозвонить» катушку на целостность обмотки. Это можно сделать с помощью электротестера (зуммер) или электробрехунка.
Проверяем исправность и целостность кнопок «Пуск» и «Стоп».
Схема подключения кнопок :
3. Проверяем целостность электропровода (кабеля ) , идущего на электродвигатель.
Так же можно проверить и с помощью контрольной лампы или вольтметра. Отключаем автомат (АВ), отсоединяем провода от электродвигателя. Затем включаем автомат и проверяем наличие напряжения на проводах. Осторожно, работа под напряжением!
Если есть вероятность того, что произошло короткое замыкание в кабеле (спайка и обрыв провода), то необходимо проверить провода на замыкание между собой. Отключаем автомат, отсоединяем провода от электродвигателя. С помощью электротестера (зуммер) или электробрехунка проверяем по очереди провода на замыкание между собой.
4. Проверяем целостность обмоток самого электродвигателя.
Отключаем электропитание (автомат).
Лучше отсоединить запитывающие провода от электродвигателя.
Как проверить обмотку электродвигателя с помощью мультиметра
Автор Alexey На чтение 5 мин. Просмотров 6.9k. Опубликовано Обновлено
При помощи мультиметра и нескольких приспособлений, не особо разбираясь в принципе работы электродвигателей, можно своими руками в домашних условиях проверить:
- Асинхронный трёхфазный двигатель с короткозамкнутым ротором – наиболее лёгкий для проверки, из-за его простого внутреннего устройства, благодаря которому, данный тип электродвигателя имеет наибольшую популярность;
- Асинхронный однофазный (двухфазный, конденсаторный) электродвигатель с короткозамкнутым ротором – часто используется в различной бытовой технике, подключаемой в сеть 220 В. (стиральные машины, пылесосы, вентиляторы).
- Коллекторный электродвигатель постоянного тока – массово применяется в автомобилях в качестве привода для стеклоочистителей (дворников), стеклоподъёмников, насосов, вентиляторов;
- Коллекторный электродвигатель переменного тока – используется в ручных электрических инструментах (дрели, перфораторы, болгарки и т.д.)
- Асинхронный двигатель с фазным ротором – в сравнении с электродвигателем с короткозамкнутым ротором, обладает мощным стартовым моментом, поэтому используется в в качестве привода силового оборудования — подъёмников, лифтов, кранов, станков.
Испытание изоляции обмоток электродвигателя мегомметром
Мегомметр для измерения сопротивления изоляцииНезависимо от конструкции, электродвигатель нужно проверить при помощи мегомметра на пробой изоляции между обмотками и корпусом. Проверки при помощи одного только мультиметра может быть недостаточно для выявления повреждения изоляции, по причине того, что нужно использовать высокое напряжение.
В паспорте электродвигателя должно указываться напряжение для испытания изоляции обмоток на электрическую прочность. Для двигателей, подключаемых к сети 220 или 380 В, при их проверке используются 500 или 1000 Вольт, но за неимением источника, можно воспользоваться сетевым напряжением.
Паспорт асинхронного электродвигателяИзоляция обмоточных проводов низковольтных двигателей не рассчитана выдерживать такие перенапряжения (она может сгореть), поэтому при проверке нужно свериться с паспортными данными. Иногда у некоторых электродвигателей вывод обмоток, соединённых звездой, может быть подключён на корпус, поэтому следует внимательно изучать подключение отводов, делая проверку.
Как правильно проверить обмотоку электродвигателя на обрыв и межвитковое замыкание мультиметром
Чтобы прозвонить обмотки на обрыв нужно переключить мультиметр в режим омметра. Выявить межвитковое замыкание можно сравнив сопротивление обмотки с паспортными данными или с измерениями симметричных обмоток проверяемого электродвигателя.
Нужно помнить, что у мощных электродвигателей поперечное сечение проводов обмоток достаточно большое, поэтому их сопротивление будет близким к нулю, а такую точность измерений в десятые доли Ома обычные тестеры не обеспечивают.
Поэтому нужно собрать измерительное приспособление из аккумулятора и реостата, (приблизительно 20 Ом) выставив ток 0,5-1А. Измеряют падение напряжения на резисторе, подключенном последовательно в цепь аккумулятора и измеряемой обмотки.
Видео: Как определить начало и конца обмоток трехфазного электродвигателя
Для сверки с паспортными данными, можно рассчитать сопротивление по формуле, но, можно этого и не делать – если требуется идентичность обмоток, то достаточно будет совпадения падения напряжения по всем измеряемым выводам.
Измерения можно производить любым мультиметром
Цифровой мультиметр Mastech MY61 58954Ниже приведены алгоритмы проверки электродвигателей, у которых необходимым условием работоспособности является симметричность обмоток.
Проверка асинхронных трёхфазных электродвигателей с короткозамкнутым якорем
У подобных двигателей можно прозвонить только статорные обмотки, электромагнитное поле которых в замкнутых накоротко стержнях якоря наводит токи, создающие магнитное поле, взаимодействующее с полем статора.
Осмотр статора на предмет межвиткового замыканияНеисправности в роторах данных электродвигателей случаются крайне редко, и для их выявления, необходимо специальное оборудование.
Чтобы проверить трёхфазный мотор, нужно снять крышку клеммника – там находятся клеммы подключения обмоток, которые могут быть соединены по типу «звезда» или «треугольник».
«Звезда» «Треугольник»Прозвонку можно сделать, даже не снимая перемычки – достаточно измерить сопротивление между фазными клеммами – все три показания омметра должны совпадать.
Специальная перемычкаПроверка конденсаторных электродвигателей
Чтобы проверить однофазный асинхронный двигатель с короткозамкнутым ротором, по аналогии с трёхфазным мотором, необходимо прозвонить только статорные обмотки.
Трехфазный электромоторНо у однофазных (двухфазных) электродвигателей имеются только две обмотки – рабочая и пусковая.
Схема двухфазного электродвигателяСопротивление рабочей обмотки всегда меньше, чем у пусковой
Таким образом, измеряя сопротивление, можно идентифицировать выводы, если табличка со схемой и обозначениями затёрлась или затерялась.
Часто у таких электродвигателей рабочая и пусковая обмотки соединены внутри корпуса, и от точки соединения сделан общий вывод.
Принадлежность выводов идентифицируют следующим образом – сумма сопротивлений, измеренных от общего отвода должна соответствовать суммарному сопротивлению обмоток.
Проверка коллекторных двигателей
Поскольку коллекторные электродвигатели переменного и постоянного тока имеют схожую конструкцию, то алгоритм прозвонки будет одинаков.
Сначала проверить целостность обмотки статора (в двигателях постоянного тока её может заменять магнит). Потом проверяют роторные обмотки, сопротивление которых должно быть одинаково, коснувшись щупами щёток коллектора, или противоположных контактных выводов.
Удобней проверять обмотки ротора на выводах щёток, прокручивая вал, добиваясь, чтобы щётки контактировали только с одной парой контактов – таким способом можно выявить подгорание у некоторых контактных площадок.
Проверка электромоторов с фазным ротором
Асинхронный электромотор с фазным ротором отличается от обычного трёхфазного электродвигателя тем, что в роторе также имеются фазные обмотки, соединённые по типу «звезда», которые подключаются при помощи контактных колец на вале.
Статорные обмотки проверяются как у обычного трёхфазного электродвигателя.
Фотографии позаимствованы с сайта http://zametkielectrika.ru
Как проверить обмотку электродвигателя мультиметром
Электродвигатели сопровождают конструкции разных устройств и оборудования. Если оно дало сбой, возможно, причина именно в поломке мотора, который является сердцем всей системы. Иногда убедиться в этом можно, просто взглянув на движок. Если же явных видимых повреждений нет, скорее всего, внутри оборвана цепь или случилось короткое замыкание. Обнаружить проблему можно с помощью тестера. Мы расскажем вам, как проверить обмотку электродвигателя мультиметром на исправность.
Правила безопасности
Перед проверкой движка убедитесь в исправности вилки и шнура всего прибора. Если в устройство поступает электроток, контрольная лампочка будет светиться. Если с подачей тока все в порядке, приступаем к проверке мотора, который сначала нужно демонтировать из корпуса агрегата. Выполнять эту операцию можно только при его полном обесточивании!
Не лишним будет проверить исправность мультиметра. Чаще всего уменьшается заряд батареек, из-за чего показания могут быть неточными.
Общая инструкция, как проверить двигатель мультиметром
Не все движки можно протестировать мультиметром. К примеру, сложно проверять электродвижки постоянного тока, потому что их обмотка с нулевым сопротивлением. Для исследования применяется такой способ: одновременно проверяются значения с вольтметра, амперметра и вычисляются результаты по закону Ома.
Так нужно протестировать все сопротивления якорных обмоток, измеряя показания между коллекторными пластинами. Различия в значениях указывают на неисправность. Отличия между соседними коллекторными пластинами в исправном механизме составляют максимум 10%. Только если имеется уравнительная обмотка, эта цифра может подняться до 30% в норме.
Электромашины переменного тока делятся на синхронные, асинхронные (например, трехфазные) и коллекторные. Их можно протестировать обычным измерителем. Советуем прочитать статью о правильном использовании мультиметра.
Итак, узнаем, как прозванивать двигатель мультиметром.
Проверяем обрыв
Если произошел обрыв одной фазы в обмотке, которая соединена “звездочкой”, в ней не будет тока, а в иных фазах его значение завышенное. В такой ситуации мотор не функционирует. Ещё может произойти обрыв параллельной фазной ветви, из-за чего перегревается исправная ветвь.
При обрыве одной обмоточной фазы (меж двух проводников), которая соединена “треугольником”, в других проводниках будет намного меньше тока по сравнению с третьим. Обрыв роторной обмотки приводит к снижению оборотов движка, появляется вибрация, гудение.
Мультиметром важно прозвонить каждую обмотку, прозвания её и тестируя сопротивление. Несколько общих моментов, как прозвонить электродвигатель мультиметром:
- Если мотор функционирует от 220 В, важно прозвонить рабочую или пусковую обмотки. Показания последней должны быть больше первой в полтора раза.
- В движках, которые работают от 380 В, подключаемых “треугольничком” или “звездочкой”, схема разбирается и отдельно проверяются все обмотки. Омы должны быть практически равные (отличия максимум 5%). Если произошел обрыв, тестер покажет слишком большие Омы, то есть бесконечное сопротивление.
Кроме того, можно использовать режим прозвонки на мультиметре, благодаря чему проверка осуществляется быстрее, потому что при обрыве нет звука, а он указывает на исправность обмотки.
Тестируем на замыкание между витками
Такое замыкание вызывает гудение мотора, который становится менее мощным. Для его выявления лучше использовать мультиметр, дающий самую малую погрешность.
Всё, что нужно сделать для измерений, — подключить наконечники щупов тестера к кончикам различных витков и проверить, есть ли контакт при прозвонке или в режиме тестирования сопротивления. Отличие больше 10% говорит о возможности замыкания.
Проверяем на короткое замыкание
Проверка электродвигателя мультиметром осуществляется так:
- Выбрать на измерителе максимальный диапазон сопротивления.
- Соединить щупы между собой, чтобы убедиться в работоспособности тестера.
- Один наконечник соединить с корпусом движка.
- Другой наконечник по очереди присоединить к выводам всех фаз.
Работоспособный мотор показывает высокие значения на мультиметре, это могут быть сотни и тысячи МОм (мегаомы).
Ещё удобнее прозванивать корпус. Для этого нужно сделать всё то же самое, но в режиме прозвона. Если слышите звук, значит, обмоточная изоляция нарушена и произошло замыкание.
Теперь немного подробнее поговорим о том, как мультиметром прозвонить моторчики разных видов.
Проверка асинхронных движков
Именно асинхронные движки чаще всего эксплуатируются в бытовых агрегатах, которые функционируют от 220 В. После того, как вынули мотор из оборудования, нужно замерить сопротивление между моторными выводами:
- Выбрать функцию измерения сопротивления и диапазон до 100 Ом.
- Соединить наконечники с выводами подключаемой обмотки. Между средним и крайним в норме значение 30-50 Ом, между средним и другим крайним 15-20.
Также важно проверить утечку тока:
- Выбрать функцию измерения сопротивления с диапазоном 2000 кОм.
- По очереди соединять каждую клемму с корпусом движка.
- На дисплее не должно быть значений. Если вы используете аналоговый мультиметр, стрелка не отклоняется.
Если выявляются проблемы, придется разбирать устройство, чтобы провести более тщательные исследования. Часто возникает межвитковое замыкание. Для их выявления выбирается диапазон 100 Ом, после чего прозванивается каждый контур статора. Сильное отклонение одного показания от другого говорит о замыкании обмотки.
Видео о том, как прозвонить двигатель мультиметром:
Проверка коллекторных движков
Такие моторы применяют в цепи постоянного тока. Перед тем, как прозванивать электродвигатель мультиметром, лучше всего полностью разобрать мотор.
На мультиметре выбирается функция измерения сопротивления с диапазоном 200 Ом. Обычно статор движка данного типа имеет две независимые обмотки, их и нужно протестировать.
Какой показатель считается нормальным, написано в технической документации к двигателю, но на исправность указывает невысокое сопротивление. Если движок очень мощный, сопротивление статора будет совсем маленьким. В моторах с обычной мощностью сопротивление обмотки может быть в пределах 5-30 Ом. Для прозвонки необходимо наконечниками щупов мультиметра дотронуться до выводов обмоток. Если хотя бы в одном контуре нет сопротивления, использовать устройство не нужно.
У ротора коллекторного движка много обмоток, но тестировать якорь легко. Проверка мультиметром двигателя коллекторного типа:
- Выбрать функцию измерения сопротивления и диапазон в 200 Ом.
- Поместить наконечники щупов на коллекторе так, чтобы они были как можно дальше друг от друга.
- Если на дисплее тестера показываются какие-то цифры, без снятия щупов нужно немного провернуть ротор, чтобы другая обмотка соединилась с щупами.
- Если показания почти равные, с якорем всё в порядке.
Также полезно проверить устройство на утечку электротока.
Подробное видео о том, как проверить мультиметром моторчик коллекторный:
Теперь вы знаете, как проверить обмотку электродвигателя мультиметром и сможете тестировать разное оборудование. Даже если вы захотите узнать, как прозвонить мультиметром насос, вам будет полезна эта статья, ведь у бензонасосов тоже есть электромотор. Также вы сможете проверить движок домашней стиральной машины. Словом, умея пользоваться тестером, можно “дружить” с самым разным оборудованием.
Желаем безопасных и точных измерений!
Вопрос — ответ
Вопрос: Как прозвонить электродвигатель цифровым мультиметром?
Ответ: Перед проверкой движка убедитесь в исправности вилки и шнура всего прибора. Если с подачей тока все в порядке, мотор нужно демонтировать из корпуса агрегата. Выполнять эту операцию можно только при его полном обесточивании. Затем можно приступать к проверке асинхронного или коллекторного мотора.
Вопрос: Как проверить электродвигатель на обрыв мультиметром?
Ответ: Если мотор функционирует от 220 В, важно прозвонить рабочую или пусковую обмотки. Показания последней должны быть больше первой в полтора раза. В движках 380 В, подключаемых “треугольничком” или “звездочкой”, схема разбирается и отдельно проверяются все обмотки.
Вопрос: Как проверить асинхронный электродвигатель на исправность мультиметром?
Ответ: Чтобы замерить сопротивление между моторными выводами, нужно выбрать функцию измерения сопротивления и диапазон до 100 Ом. Затем соединить наконечники с выводами подключаемой обмотки. Между средним и крайним в норме значение 30-50 Ом, между средним и другим крайним 15-20.
Вопрос: Как проверить моторчик на короткое замыкание мультиметром?
Ответ: Выбрать на измерителе максимальный диапазон сопротивления. Один наконечник от мультиметра соединить с корпусом движка. Другой по очереди присоединить к выводам всех фаз. Ещё можно прозвонить корпус.
Вопрос: Как проверить коллекторный двигатель мультиметром?
Ответ: На мультиметре выбирается функция измерения сопротивления с диапазоном 200 Ом. Обычно статор движка данного типа имеет две независимые обмотки, их и нужно протестировать. У ротора коллекторного движка много обмоток, но тестировать якорь не сложно.
Сопротивление обмоток компрессоров Атлант
- Подробности
-
Категория: Устройство холодильника
Сопротивление обмоток компрессоров Атлант, все данные приведены в следующих таблицах.
Таблица 1
Компрессор | Сопротивление при 25 °С*, Ом |
Пусковое реле |
Защитное реле |
|
рабочей обмотки |
пусковой обмотки |
|||
СКНА61Н50 | 43,35 | 43.25 | ||
СКНА68Н50 | 33,41 | 37.58 | РКТ5 | |
СКНА72Н50 | 28,85 | 34.98 | РТ | |
СКНА81Н50 | 28,65 | 34.47 | РКТ6 | |
СКНА96Н50 | 26.33 | 35,72 | ||
СКНА101Н50 | 19.00 | 21,20 | ||
TLX4KK.3 | 61,00 | 19.00 | RSB609C19BU | |
TLX4.8 КК.З | 46,00 | 22.00 | ||
TLX5.7KK.3 | 37,00 | 21.00 | ||
TLX6.5KK.3 | 30,00 | 15.00 | RSB611С19СС | |
TLX7.5KK.3 | 29,00 | 30.00 | ||
TLX8.7KK.3 | 19,00 | 13.00 |
ЕРТС или РТС |
DSB614C19BU |
TLY4KK.3 | 48,06 | 15.69 | RSB609C19BU | |
TLY4.8KK.3 | 38,25 | 17.65 | ||
TLY5.7KK.3 | 34,33 | 20.60 | ||
TLY6.5KK.3 | 27,75 | 24.62 | RSB612C19BU | |
TLY7.5KK.3 | 23,24 | 20.69 | RSB613C19BU | |
TLY8.7KK.3 | 17,06 | 14.42 | DSB612G19BU |
Компрессор | Сопротивление при 25 °С*, Ом |
Пусковое реле |
Защитное реле |
|
рабочей обмотки |
пусковой обмотки |
|||
С-К100Н5 | 18,94 | 27.88 | ||
С-К 100Н5-02 | 18,94 | 27,88 | РКТ1 | |
С-КМ 100Н5-10 | 17,61 | 27.88 | ||
С-К120Н5 | 18,29 | 21,08 | ||
С-К 120Н5-02 | 18,29 | 21,08 | ||
С-К140Н5 | 15,10 | 20,10 | ||
С-К 140Н5-02 | 15,10 | 20,10 | ||
С-К 160Н5-02 | 14,74 | 19,60 | РКТ2 | |
С-К 160Н5-1 | 14,74 | 19,60 | ||
С-К 160Н5-1-02 | 14,74 | 19,60 | ||
С-К 175Н5-02 | 14,29 | 19,08 | ||
С-К 175Н5-1 | 14,29 | 19,08 | ||
С-К 175Н5-1-02 | 14,29 | 19,08 | ||
С-К 200Н5-02 | 11,87 | 17,61 | ||
С-К 200Н5-1 | 11,87 | 17,61 | РКТЗ | |
С-К 200Н5-1-02 | 11,87 | 17,61 | ||
С-КО 60Н5-02 | 40,40 | 63,47 | РТ | |
С-КО 75Н5-02 | 26,40 | 43,41 | РКТ1 | |
С-КО 100Н5-02 | 48,94 | 27,88 | ||
С-КО 120Н5-02 | 18,29 | 21,08 | ||
С-КО 140Н5-02 | 15,10 | 20,10 | ||
С-КО 140Н5-1-02 | 15,10 | 20,10 | РКТ2 | |
С-КО 160Н5-02 | 14,74 | 19.60 | ||
С-КО 160Н5-1-02 | 14,74 | 19.60 | ||
С-КО 175Н5-02 | 14,29 | 19.08 | ||
С-КО 175Н5-1-02 | 14,29 | 19.08 | ||
С-КО 200Н5-02 | 11,87 | 17.61 | ||
С-КО 200Н5-1-02 | 11,87 | 17.61 | РКТЗ | |
С-КО 200Н5-03 | 11,87 | 17.61 | ||
С-КН 60Н5-02 | 23,00 | 35.00 | ||
С-КН 80Н5-02 | 23,00 | 35.00 | РКТ5 | |
С-КН 90Н5-02 | 18,94 | 27.88 | ||
С-КН 110Н5-02 | 18,29 | 21.08 | ||
С-КН 130Н5-02 | 18,29 | 21.08 | РКТ6 | |
С-КН 150Н5-02 | 15,10 | 20,10 |
Тест сопротивления обмотки — Анализатор обмоток
Для чего это используется?
Проверка сопротивления обмотки используется для обнаружения обрывов обмоток, короткого замыкания на землю, неправильного подсчета витков, неправильного калибра проводов, резистивных соединений, круглых проводов в руке, которые не соединены в катушке, некоторых ошибок подключения, баланса сопротивления между фазами и в некоторых случаях закорочены витки.
Сопротивление обмотки является важным измерением, потому что другие тесты и измерения не обнаружат некоторых проблем, которые обнаружит измерение сопротивления.Некоторые из них — проблемы с калибром проводов, резистивные соединения, а также перегоревшие или отсоединенные магнитные провода в руке.
Как это работает:
Испытания сопротивления обмотки — это измерение приложенного постоянного напряжения и тока к тестируемому устройству — DUT. По закону Ома сопротивление вычисляется анализатором обмоток в мкОм (микроОм) или мОм (миллиОм).
Для трехфазного двигателя обычно выполняются 3 измерения сопротивления между фазами, и баланс или дисбаланс между 3 измерениями вычисляется и отображается вместе с измеренными значениями.
Для одиночных катушек, а иногда и для двигателей, измеренные сопротивления можно сравнивать со значением сопротивления вместо расчета баланса. Затем рассчитывается разница в процентах от заданного значения сопротивления.
Температурный поправочный коэффициент может автоматически применяться для корректировки измерения до стандартной температуры, поэтому результаты можно более точно отслеживать с течением времени с помощью анализатора обмотки.
2-проводное и 4-проводное измерение сопротивления
Сопротивление можно измерить с помощью двух проводов, подключенных к ИУ.Этот тип измерения сопротивления будет включать выводы тестера при измерении сопротивления обмотки. Лучше измерение в четырех отведениях. Он устраняет сопротивление проводов и, как правило, является более точным.
Все измерения сопротивления обмоток, выполняемые с помощью тестеров электродвигателей Electrom Instruments, выполняются с помощью четырехпроводной системы. Для iTIG III модели D выводы являются выводами высокого напряжения, поэтому измерение сопротивления обмотки в микроомах может быть частью автоматической последовательности испытаний двигателя, включая испытания высоковольтным напряжением.
Тест сопротивления обмотки — Анализатор обмоток
Сопротивление обмоткиСопротивление обмотки, сопротивление отрезка медных проводов или стержней от одного конца до другого, является мерой постоянного напряжения и тока и применением закона Ома следующим образом:
где R — сопротивление в Ом, V — приложенное напряжение в вольтах, а I — результирующий ток в амперах.
2-проводное и 4-проводное измерение
Сопротивление обмотки можно измерить двумя проводами от измерительного устройства, подключенного к каждому концу ИУ.В этом случае измеренное сопротивление будет включать сопротивление проводов от измерительного устройства к тестируемому устройству.
В нашем 4-проводном измерении сопротивления используются клещи Кельвина для повышения точности
При 4-проводном измерении 4 провода выходят из измерительного устройства и попарно подключаются к концам DUT с помощью так называемых зажимов Кельвина. Каждая пара имеет приводной вывод и сенсорный провод, а сопротивление «считывается» или измеряется от одного зажима Кельвина к другому. Другими словами, измеряется только сопротивление тестируемого устройства, сопротивление в выводах от измерительного устройства к тестируемому устройству устраняется.Следовательно, измерение сопротивления ИУ более точное.
4-проводное измерение сопротивления использует мост Кельвина или мост Уитстона для устранения сопротивления проводов в измерительном приборе.
Что делает Electrom Instruments
В серии тестеров и анализаторов обмотокElectrom iTIG III используются высокоточные 4-проводные измерения сопротивления обмоток. Модели поставляются с измерениями, выполняемыми с помощью отдельного набора зажимов Кельвина или с помощью зажимов Кельвина, подключенных к выходным выводам высокого напряжения, используемым для испытаний на скачки постоянного тока и импульсных перенапряжений.Измерения могут производиться в миллиомах или микроомах от нескольких мкОм до 2 кОм.
Почему сопротивление обмотки является важным измерением
При измерении сопротивления обмотки могут быть обнаружены проблемы, не обнаруженные при других испытаниях и измерениях (кроме измерений импеданса), и поэтому это очень важно. Ниже приведены проблемы, которые можно найти.
Распространенное недоразумение
Распространенное заблуждение состоит в том, что при импульсном испытании всегда можно обнаружить выброс в двигателе с произвольной обмоткой.Это происходит, если есть короткое замыкание, замыкание между катушками или замыкание на землю. Но в ситуации, подобной той, что описана ниже, неисправность не будет обнаружена с помощью импульсного теста, потому что нет никаких изменений в индуктивности обмотки, мало, если вообще есть, в емкости обмотки, и испытание на выброс не зависит от сопротивления обмотки. См .: Что вызывает различия в волнах импульсных испытаний?
Пример частичного выброса: Четыре в руке (или 4 параллельных провода магнита на катушку), два перегоревших, нет поворота для короткого замыкания и нет замыкания на землю.Два провода остались целы, поэтому индуктивность в катушке не изменилась.
Частичный выброс: четыре в руке, два вылетели, нет поворота на короткое замыкание и нет замыкания на землю.
Стандарты
Сопротивление обмотки можно сравнить с абсолютным числом Ом или долями Ом, если заданное сопротивление известно. Это также может быть сравнение фазных сопротивлений в трехфазном двигателе или генераторе с расчетом баланса (или дисбаланса).
Баланс рассчитывается как процент максимальной разницы между тремя измерениями сопротивления, деленный на среднее значение трех измерений между фазами: (R_max — R_min) / R_avg%.
Температурная компенсация
Если измерения сопротивления обмоток необходимо сравнивать и отслеживать с течением времени, измерения необходимо компенсировать на температуру, если только температура не всегда одинакова. Медь, например, имеет температурный коэффициент около 0,0039 на градус Цельсия для умеренных температур. Это означает, что если температура изменится на 10 ° C, сопротивление изменится примерно на 4%.
Если важен баланс сопротивлений в фазах, то температурная компенсация не требуется, поскольку расчет баланса является соотношением и коэффициент компенсации выпадает.
Испытание сопротивления обмотки трансформатора
Испытание сопротивления обмотки трансформатора проводится как типовое испытание, стандартное испытание, а также как полевое испытание.
На заводе это помогает определить следующее:
- Расчет потерь I 2 R в трансформаторе.
- Расчет температуры обмотки в конце испытания трансформатора на превышение температуры.
- В качестве эталона для оценки возможных повреждений в полевых условиях.
Процедура измерения сопротивления обмотки трансформатора
Для обмотки, соединенной звездой, сопротивление должно быть измерено между линией и нейтралью.
Для автотрансформаторов с соединением звездой сопротивление стороны ВН измеряется между клеммой ВН и клеммой IV, затем между клеммой IV и нейтралью.
Сопротивление на обмотку = 1,5 × Измеренное значение
Для обмоток, соединенных треугольником, измерение сопротивления обмотки должно выполняться между парами линейных выводов. Поскольку при соединении треугольником сопротивление отдельной обмотки не может быть измерено отдельно, сопротивление каждой обмотки должно быть рассчитано по следующей формуле:Сопротивление измеряется при температуре окружающей среды и затем преобразуется. сопротивление при температуре 75 o C для всех практических целей сравнения с заданными расчетными значениями, предыдущими результатами и диагностикой.
Сопротивление обмотки при стандартной температуре 75 o C
R t = Сопротивление обмотки при температуре t
t = Температура обмоткиОбычно обмотки трансформатора погружены в изоляционную жидкость и покрыты бумажной изоляцией, поэтому Невозможно измерить фактическую температуру обмотки в обесточивающем трансформаторе во время измерения сопротивления обмотки трансформатора . Для расчета температуры обмотки в этих условиях разработана аппроксимация:
Температура обмотки = Средняя температура изоляционного маслаСреднюю температуру изоляционного масла следует измерять через 3-8 часов после обесточивания трансформатора и когда разница между верхней и нижней температурами масла становится меньше 5 90-106 o 90-107 C.
Сопротивление можно измерить с помощью простого вольтметра, амперметра, измерителя моста Кельвина или комплекта для автоматического измерения сопротивления обмотки (омметр, предпочтительно комплект на 25 ампер).
Внимание при использовании метода вольтметра-амперметра: ток не должен превышать 15% номинального тока обмотки. Большие значения могут вызвать неточность из-за нагрева обмотки и, соответственно, изменения ее температуры и сопротивления.
Примечание. Измерение сопротивления обмотки трансформатора следует проводить на каждом отводе.
Измерение сопротивления обмоток методом напряжения тока
Сопротивление обмоток трансформатора можно измерить методом напряжения тока. В этом методе измерения сопротивления обмотки испытательный ток подается на обмотку и измеряется соответствующее падение напряжения на обмотке. Применяя простой закон Ома, то есть R x = V / I, можно легко определить значение сопротивления.
Порядок измерения сопротивления обмоток методом измерения напряжения тока
- Перед измерением трансформатор следует выдержать в выключенном состоянии без возбуждения не менее 3–4 часов.За это время температура обмотки сравняется с температурой масла в ней.
- Измерение выполняется с помощью D.C.
- Чтобы минимизировать ошибки наблюдения, полярность намагничивания сердечника должна поддерживаться постоянной во время всех измерений сопротивления.
- Провода вольтметра должны быть независимыми от токоподводов, чтобы защитить их от высоких напряжений, которые могут возникнуть во время включения и выключения токовой цепи.
- Показания снимают после того, как ток и напряжение достигли установившихся значений.В некоторых случаях это может занять несколько минут в зависимости от сопротивления обмотки.
- Испытательный ток не должен превышать 15% номинального тока обмотки. Большие значения могут вызвать неточность из-за нагрева обмотки и, следовательно, изменения ее сопротивления.
- Для выражения сопротивления необходимо указать соответствующую температуру обмотки во время измерения вместе со значением сопротивления. Как мы уже говорили ранее, после нахождения в выключенном состоянии в течение 3-4 часов температура обмотки сравняется с температурой масла.Температура масла во время испытания принимается как среднее значение температуры масла в верхней и нижней части трансформатора.
- Для трехфазной обмотки, соединенной звездой, сопротивление на фазу будет составлять половину измеренного сопротивления между двумя линейными выводами трансформатора.
- Для трехфазной обмотки, соединенной треугольником, сопротивление на каждую фазу будет в 0,67 раза больше измеренного. сопротивление между двумя линейными выводами трансформатора.
- Этот метод измерения текущего напряжения для измерения сопротивления обмотки трансформатора следует повторить для каждой пары линейных выводов обмотки в каждом положении ответвления.
Мостовой метод измерения сопротивления обмотки
Основной принцип мостового метода основан на сравнении неизвестного сопротивления с известным сопротивлением. Когда токи, протекающие через плечи мостовой схемы, уравновешиваются, показания гальванометра показывают нулевое отклонение, что означает, что в сбалансированном состоянии ток не будет проходить через гальванометр.
Очень малое значение сопротивления (в диапазоне миллиомов) может быть точно измерено методом моста Кельвина, тогда как для более высокого значения применяется метод измерения сопротивления с помощью моста Уитстона.В мостовом методе измерения сопротивления обмоток погрешности сведены к минимуму.
Сопротивление, измеренное мостом Кельвина,
Все остальные шаги, которые необходимо предпринять во время измерения сопротивления обмотки трансформатора этими методами, аналогичны методу измерения напряжения тока измерения сопротивления обмотки трансформатора , за исключением метода измерения сопротивления.
Сопротивление, измеренное мостом Уитстона,
Объяснение испытания сопротивления обмотки трансформатора
Это руководство представляет собой введение в методы и процедуры испытания сопротивления обмотки трансформатора.Фото: TestGuy
Измерение сопротивления обмотки — важный диагностический инструмент для оценки возможных повреждений трансформаторов в результате плохой конструкции, сборки, обращения, неблагоприятных условий окружающей среды, перегрузки или плохого обслуживания.
Основная цель этого испытания — проверить большие различия между обмотками и обрыв в соединениях. Измерение сопротивления обмоток трансформатора гарантирует, что каждая цепь подключена правильно и все соединения герметичны.
Сопротивление обмоток трансформаторов изменится из-за короткого замыкания витков, ослабленных соединений или ухудшения контактов в переключателях ответвлений. Независимо от конфигурации, измерения сопротивления обычно производятся между фазами, и показания сравниваются друг с другом, чтобы определить, приемлемы ли они.
Измерения сопротивления обмотки трансформатора получают путем пропускания известного постоянного тока через испытуемую обмотку и измерения падения напряжения на каждой клемме (закон Ома).Современное испытательное оборудование для этих целей использует мост Кельвина для достижения результатов; Вы можете представить себе набор для измерения сопротивления обмотки как очень большой омметр с низким сопротивлением (DLRO).
Содержание руководства
Будьте осторожны при тестировании
Перед проведением испытания сопротивления обмотки трансформатора важно, чтобы соблюдал все предупреждения по технике безопасности и принимал надлежащие меры. Убедитесь, что все тестируемое оборудование правильно заземлено, и относитесь ко всему высоковольтному силовому оборудованию как к находящемуся под напряжением, пока не будет доказано обратное с помощью надлежащих процедур блокировки / маркировки.
Во время испытания важно не отключать провода тока или напряжения, пока ток все еще течет через трансформатор. Это приведет к возникновению чрезвычайно высокого напряжения в точке обрыва тока, что может привести к возникновению смертельного напряжения.
Подключение тестового набора
Доступно оборудование для испытания сопротивления обмотки в различных стилях в зависимости от конкретного применения. Испытательный комплект, используемый для силового трансформатора, будет сильно отличаться от комплекта, разработанного для небольших измерительных трансформаторов.Независимо от типа, измерители сопротивления обмоток всегда оснащены токовым выходом, измерителем напряжения и измерителем сопротивления. Фото: Testguy
.Как первичные, так и вторичные выводы трансформатора должны быть изолированы от внешних подключений, а измерения должны выполняться на каждой фазе всех обмоток. Подключение испытательного оборудования производить в следующем порядке:
- Заземление Убедитесь, что трансформатор сначала заземлен непосредственно на землю местной станции, а затем подсоедините заземление испытательного комплекта.
- Принадлежности Подключайте любые необходимые принадлежности, такие как пульты дистанционного управления, сигнальный маяк, ПК и т. Д.
- Тестовые провода Отключив измерительные провода от тестируемого устройства, подключите провода тока и напряжения к испытательному комплекту и проверьте герметичность всех соединений.
- Подключение к трансформатору Для каждой конфигурации трансформатора требуются разные тестовые соединения, некоторые примеры приведены в следующем разделе.Особое внимание следует уделить , чтобы не допустить выпадения проводов во время тестирования или подключения проводов друг к другу или слишком близко друг к другу. Выводы напряжения всегда должны быть размещены внутри (между) токоподводами и трансформатором.
- Входная мощность Подключите испытательный комплект. Перед выполнением этого подключения убедитесь, что заземление источника питания имеет путь с низким сопротивлением к заземлению местной станции.
Подключение к тестируемому трансформатору
Для однофазных и простых конфигураций Delta-Wye можно использовать следующие соединения.Имейте в виду, что каждая конфигурация трансформатора отличается, и ваша конкретная настройка может не применяться к тому, что показано ниже. Для получения дополнительной информации обратитесь к руководству пользователя, прилагаемому к вашему испытательному комплекту.
Пример однофазного трансформатораСоединения для проверки сопротивления обмотки трансформатора — одиночная обмотка. Фото: TestGuy
Пример трехфазной обмотки треугольником
Соединения для проверки сопротивления обмотки трансформатора — трехфазная обмотка, треугольник. Фото: TestGuy
№ испытания. I + И- V1 + V1- V2 + V2- A-фаза h2 h3 h2 h3 – – B-фаза h3 h4 h3 h4 – – C-фаза h4 h2 h4 h2 – – Пример трехфазной вторичной обмотки звездой
Соединения для проверки сопротивления обмотки трансформатора — трехфазная обмотка звездой.Фото: TestGuy
Тест № I + И- V1 + V1- V2 + V2- A-фаза Х1 Х0 Х1 X0 – – B-фаза Х2 X0 Х2 X0 – – C-фаза Х3 X0 Х3 Х0 – – Пример испытания двойной обмотки (однофазный)
Чтобы сэкономить время при испытании двухобмоточных трансформаторов, можно одновременно проверять первичную и вторичную обмотки, используя соединения, показанные ниже:
Соединения для проверки сопротивления обмотки трансформатора — двойная обмотка.Фото: TestGuy
Тест № I + Джемпер И- V1 + V1- V2 + V2- 1 h2 h3-X1 Х3 h2 h3 Х1 Х2 Пример испытания двойной обмотки (трехфазный)
Соединения для проверки сопротивления двух обмоток трехфазного трансформатора.Фото: TestGuy
Тест № I + Джемпер И- V1 + V1- V2 + V2- A-фаза h2 h3-X1 Х0 h2 h3 Х1 Х0 Фаза B h3 h4-X2 Х0 h3 h4 Х2 Х0 C-фаза h4 h2-X3 Х0 h4 h2 Х3 Х0 Для сокращения времени насыщения сердечника перемычка, используемая для соединения обеих обмоток, должна быть подключена к противоположным полярностям трансформатора.Если положительный вывод тока подключен к положительному выводу первичной обмотки, испытательный ток возбуждения от первичной обмотки h3 перескакивает на положительный вывод вторичной обмотки X1.
Примечание: Если сопротивление между двумя обмотками больше, чем в 10 раз, может быть желательно получить более точные показания, протестировав каждую обмотку отдельно.
Пример трансформатора тока
Соединения для проверки сопротивления обмотки трансформатора тока.Фото: TestGuy
Измерение сопротивления обмотки
При измерении сопротивления обмотки следует наблюдать и записывать показания , когда значение сопротивления стабилизируется . Значения сопротивления сначала будут «дрейфовать» из-за индуктивности трансформатора, которая более характерна для больших обмоток, соединенных треугольником.
Для небольших трансформаторов дрейф длится всего несколько секунд; для однофазных трансформаторов высокого напряжения дрейф может длиться менее минуты; для больших трансформаторов необходимое время дрейфа может составлять пару минут и более.Любое изменение тока приведет к изменению значения сопротивления.
Сопротивление обмотки устройства РПН
Многие силовые и распределительные трансформаторы оснащены переключателями ответвлений для увеличения или уменьшения коэффициента передачи в зависимости от напряжения питания. Поскольку изменение передаточного числа связано с механическим перемещением из одного положения в другое, каждый отвод следует проверять во время испытания сопротивления обмотки.
Во время планового технического обслуживания не всегда возможно проверить каждый отвод из-за ограничений по времени или других факторов.В таких случаях допустимо измерять сопротивление каждой обмотки только в обозначенном положении отвода.
Для ответвлений «без нагрузки» трансформатор должен разряжаться между переключениями ответвлений. Устройства РПН и регуляторы напряжения могут работать с включенным испытательным комплектом при переключении от ответвления к ответвлению, это не только экономит время, но также позволяет проверить функцию включения перед размыканием переключателя ответвлений.
Результаты испытаний
Интерпретация результатов сопротивления обмотки обычно основана на сравнении каждого значения сопротивления с каждой соседней обмоткой на одном отводе.Если все показания находятся в пределах одного процента друг от друга, считается, что образец выдержал испытание.
Также можно проводить сравнения с исходными данными испытаний, измеренными на заводе, с использованием значений с поправкой на температуру, имея в виду, что испытания на сопротивление в полевых условиях не предназначены для дублирования протокола испытаний изготовителя, который, скорее всего, проводился в контролируемой среде на заводе-изготовителе. время изготовления.
Пример данных испытаний
В зависимости от размера тестируемой обмотки трансформатора показания сопротивления будут выражаться в омах, миллиомах или микромомах.В таблице ниже показано, как можно записать данные испытаний для простого трехфазного трансформатора 13,200–208 / 120 В с тремя положениями переключателя ответвлений без напряжения.
ОБМОТКИ ПОЛОЖЕНИЕ ОТВЕРСТИЯ СОПРОТИВЛЕНИЕ (МИЛЛИОМОВ) h2-h3 1 750,3 h3-h4 1 749,8 h4-h2 1 748.5 h2-h3 2 731,8 h3-h4 2 731,4 h4-h2 2 729,4 h2-h3 3 714,6 h3-h4 3 714,3 h4-h2 3 712.3 X1-X0 НЕТ 0,3550 X2-X0 НЕТ 0,3688 X3-X0 НЕТ 0,3900 Температурная коррекция
Поскольку сопротивление зависит от температуры, при сравнении результатов для данных трендов необходимо использовать скорректированные значения. Очень важно оценить температуру обмотки во время измерения.
Если трансформатор имеет датчик температуры обмотки, используйте эти показания, в противном случае предполагается, что температура обмотки равна температуре масла. Если трансформатор измеряется без масла, температура обмотки обычно принимается такой же, как температура окружающего воздуха.
Измеренное сопротивление следует скорректировать на обычную температуру, например 75 ° C или 85 ° C, по следующей формуле:
где:
- R C — скорректированное сопротивление
- R M — измеренное сопротивление
- C F — поправочный коэффициент для меди (234.5) или алюминиевые (225) обмотки
- C T — скорректированная температура (75C или 85C)
- W T — температура обмотки (C) во время испытания
Трансформатор размагничивания
После завершения всех испытаний выполните операцию размагничивания трансформатора. Этот шаг очень важен для бесперебойной работы трансформатора при вводе в эксплуатацию.
Размагничивание трансформатора устраняет остаточный магнитный поток, вызванный пропусканием поляризованного постоянного тока через обмотки во время испытания сопротивления.Фото: Викимедиа.
Если операция размагничивания не выполняется, избыточный остаточный магнитный поток в сердечнике трансформатора может вызвать большие пусковые токи на первичной стороне, которые могут привести к срабатыванию защитных реле. Размагничивание трансформатора достигается пропусканием нескольких циклов пониженного тока через обмотку как в положительном, так и в отрицательном направлении (переменный постоянный ток).
Размагничивание необходимо выполнять только на одной обмотке после завершения всех испытаний сопротивления.При использовании современных испытательных комплектов с функцией размагничивания рекомендуется подключать провода как тока, так и напряжения к обмотке на стороне высокого напряжения для процесса размагничивания.
Для трансформаторов тока выполните испытание на насыщение, чтобы размагнитить ТТ по завершении всех испытаний сопротивления обмоток.
Список литературы
Комментарии
Войдите или зарегистрируйтесь, чтобы оставить комментарий.Сопротивление обмотки двигателя Tuhorse
Статическое сопротивление обмотки двигателя Tuhorse (при 25 ° C) Линейное сопротивление (Ом) кВт Вольт BL-YL YL — КРАСНЫЙ BL — КРАСНЫЙ Соединение обмотки
автоматический выключатель , используемый в панели энергоснабжения
3 «Однофазный, 3-проводный 3 / 4HP 0.55 230 4,6 11,3 16 3-х проводный 15 1HP 0,75 230 3,7 8,3 12 3-х проводный 15 4 «однофазный 230 В, 3-проводный 1HP 0.75 230 2,7 5,1 7,8 3-х проводный 15 1,5 л.с. 1,1 230 2,2 3,6 5,8 3-х проводный 20 2HP — 2015 г. и ранее 1,5 230 1,5 3,7 4.1 3-х проводный 25 2HP — 2016 и после 1,5 230 1,5 2,6 4,1 3-х проводный 25 3HP — 2015 г. и ранее 2,2 230 1,1 2,7 3,8 3-х проводный 30 3HP — 2016 и после 2.2 230 1,1 2,1 3,3 3-х проводный 30 5HP 3,7 230 0,9 2,2 3,1 3-х проводный 50 4 «однофазный, 2-проводный 1HP 0.75 230 – – 2,7 2-проводный 20 1,5 л.с. 1,1 230 – – 2,1 2-проводный 25 4 «3 фазы 230 В 2HP 1.5 230 2,5 2,5 2,5 Дельта 20 3 л.с. 2,2 230 1,5 1,5 1,5 Дельта 25 5,5 л.с. 4 230 0,9 0,9 0,9 Дельта 30 4 «3 фазы 460 В 3 л.с. 2.2 460 6,1 6,1 6,1 звезда 15 5,5 л.с. 4 460 3,6 3,6 3,6 звезда 20 6 «3 фазы 230 В 10HP с масляным охлаждением 7.5 230 0,5 0,5 0,5 Дельта 60 10HP с водяным охлаждением 7,5 230 0,4 0,4 0,4 Дельта 60 20HP с масляным охлаждением 15 230 0,2 0,2 0.2 2-дельта 100 20HP с водяным охлаждением 15 230 0,2 0,2 0,2 2-дельта 100 6 дюймов, 3 фазы, 460 В 10HP с масляным охлаждением 7.5 460 2 2 2 звезда 35 10HP с водяным охлаждением 7,5 460 1,7 1,7 1,7 звезда 35 20 л.с. с масляным охлаждением 15 460 0,8 0,8 0.8 Дельта 60 20 л.с. с водяным охлаждением 15 460 0,8 0,8 0,8 Дельта 60 30 л.с. с масляным охлаждением 22 460 0,5 0,5 0,5 Дельта 80 30 л.с. с водяным охлаждением 22 460 0.6 0,6 0,6 Дельта 80 Солнечная 1000 Вт 110 В 4 « 1 110 0,6 0,6 0,6 Дельта НЕТ 500 Вт 48 В 3 « 0.5 48 0,4 0,4 0,4 Дельта НЕТ 210W 36V 3 « 0,21 36 0,5 0,5 0,5 Дельта НЕТ Почему испытание сопротивления обмотки важно для двигателя?
Измерения сопротивления обмотки. обнаруживает различные неисправности в двигателях и трансформаторах: короткое замыкание витков, неплотные соединения, обрывы жил и неисправные механизмы переключателя ответвлений.
Исследования отказов электрического вращающегося оборудования, проведенные IEEE и Исследовательским институтом электроэнергетики (EPRI), показывают, что 48% отказов электродвигателей происходят из-за сбоев в электросети.
Измерения сопротивления обмотки выявляют в двигателях проблемы, которые другие тесты могут не обнаружить.Эти проблемы включают:
1. Частично или полностью закорочены катушки.
2. Плохие обжимы или соединения.
3. Несбалансированность фаз (неправильное включение фаз) и неправильное подключение катушек (фазировка).
Метод испытания сопротивления обмотки:
Испытания сопротивления обмотки — это измерение приложенного постоянного напряжения и тока к тестируемому устройству — DUT. По закону Ома сопротивление вычисляется анализатором обмоток в мкОм (микроОм) или мОм (миллиОм).
Визуализация закона ОмаДля трехфазного двигателя обычно выполняются 3 измерения сопротивления между фазами, и баланс или дисбаланс между 3 измерениями вычисляется и отображается вместе с измеренными значениями.
Для одиночных катушек, а иногда и для двигателей, измеренные сопротивления можно сравнивать со значением сопротивления вместо расчета баланса. Затем рассчитывается разница в процентах от заданного значения сопротивления.
Температурный поправочный коэффициент может автоматически применяться для корректировки измерения до стандартной температуры, поэтому результаты можно более точно отслеживать с течением времени с помощью анализатора обмотки.
источник: electrominst.com
Измеритель сопротивления обмотки Aarohi
Измеритель сопротивленияAAROHI измеряет широкий диапазон значений сопротивления с высокой точностью.
RR2204CZZ — это высокоточный портативный измеритель сопротивления, способный измерять сопротивление с чрезвычайно высокой точностью при низкой температуре окружающей среды. эффект.
Измеритель сопротивления обмотки AarohiИдеально подходит для тестирования и обслуживания
- Электродвигатели,
- Насосные агрегаты и другое оборудование с обмотками.
Этот прибор основан на 4-проводном методе Кельвина для измерения низкого сопротивления.
Чтобы узнать больше об инструменте, посетите: https: // www.aarohies.com/service/resistance-meterИзмерение сопротивления обмотки трансформатора в диагностических целях
Диагностика силового трансформатора
В этом примечании по применению основное внимание уделяется использованию измерений сопротивления обмотки силовых трансформаторов для диагностических целей . Цель состоит в том, чтобы помочь оператору выбрать подходящий метод измерения и помочь в интерпретации полученных результатов испытаний.
Измерение сопротивления обмотки трансформатора в диагностических целяхЭто не полная пошаговая процедура для выполнения тестов и не заменяет руководство пользователя для реального прибора.Перед выполнением любого теста с прибором прочтите руководство пользователя и соблюдайте все указанные меры безопасности.
Измерение сопротивления обмотки (WRM)
Измерение сопротивления обмотки в трансформаторах имеет фундаментальное значение для следующих целей:
- Расчеты I 2 R составляющей потерь в проводнике.
- Расчет температуры обмотки в конце цикла температурных испытаний.
- В качестве диагностического прибора для оценки возможных повреждений в полевых условиях.
Трансформаторы подвержены вибрации .
Проблемы или неисправности возникают из-за плохой конструкции, сборки, обращения, плохих условий окружающей среды, перегрузки или плохого обслуживания. Измерение сопротивления обмоток гарантирует правильность соединений, а измерения сопротивления показывают отсутствие серьезных несоответствий или обрывов.
Многие трансформаторы имеют встроенные ответвители. Эти краны позволяют увеличивать или уменьшать коэффициент на доли процента.
Если какое-либо из изменений передаточного числа связано с механическим перемещением контакта из одного положения в другое, эти переключения должны также проверяться во время испытания сопротивления обмотки.
Независимо от конфигурации, звезда или треугольник, измерения обычно выполняются между фазами, и выполняется сравнение, чтобы определить, сопоставимы ли показания. Если все показания находятся в пределах одного процента друг от друга, они приемлемы.
Имейте в виду, что цель теста не состоит в том, чтобы дублировать показания изготовленного устройства , которое было испытано на заводе в контролируемых условиях и, возможно, при других температурах.
Когда измерять сопротивление обмотки?
При установке
При перемещении трансформатора возникает значительный риск повреждения. Это присуще типичной конструкции трансформатора и используемым видам транспорта. Повреждение также может произойти при разгрузке и сборке. Повреждение часто затрагивает токоведущий компонент, такой как переключатель LTC, RA или соединитель.
Повреждение таких компонентов может привести к изменению сопротивления постоянному току, измеренного через них .Следовательно, рекомендуется перед подачей напряжения измерять сопротивление постоянному току на всех ответвлениях под нагрузкой и без нагрузки.
Если трансформатор новый, проверка сопротивления также служит проверкой работы производителя. Установочные размеры должны быть сохранены для использования в будущем.
Принцип измерения обмоток трансформатора — Испытательный постоянный ток подается через измеряемую обмотку (-ы), измеряется падение напряжения, а также испытательный ток и рассчитывается сопротивление.При плановом (плановом) техническом обслуживании трансформатора
Текущее обслуживание выполняется для проверки работоспособности и обеспечения надежности . Тесты выполняются для выявления зарождающихся проблем.