Стабилизатор частоты вращения коллекторного электродвигателя: Регулятор-стабилизатор частоты вращения коллекторного двигателя с МК — Меандр — занимательная электроника – Стабилизатор частоты вращения коллекторного двигателя

Содержание

Стабилизатор частоты вращения коллекторного двигателя


Стабилизатор частоты вращения коллекторного двигателя

  Предлагаемый стабилизатор частоты вращения предназначен для работы с коллекторными двигателями и представляет собой полностью аналоговое устройство. Стабилизатор имеет обратную связь по частоте вращения, в то же время он не требует установки никакого тахогенератора.

  Наиболее распространенным типом стабилизаторов частоты вращения ведущего двигателя кассетных магнитофонов является регулятор с положительной обратной связью по току [1]. Регулирование происходит параметрически, поэтому частота довольно сильно меняется при изменении нагрузки на валу двигателя. Для повышения качества работы стабилизатора необходимо ввести обратную связь по частоте вращения. Обычно при этом на вал двигателя устанавливается специальный датчик, чаще всего оптический [2]. Такой датчик включает в себя оптопару, световой поток которой прерывается крыльчаткой (или диском с отверстиями), которая насаживается на вал двигателя. Крыльчатка прерывает световой поток, и на выходе оптопары формируются импульсы с частотой вращения двигателя, умноженной на количество прорезей в крыльчатке. Иногда применяется и другой вид датчиков — магнитный. Тогда на вал двигателя устанавливается шестеренка из ферромагнитного материала, рядом с которой крепится магнитная головка. При вращении шестеренки на выводах головки появляется переменное напряжение с амплитудой около милливильта и частотой, равной частоте вращения двигателя, умноженной на количество зубъев на шестеренке. Однако, при доработке готового ЛПМ часто бывает трудно найти место для установки какого-либо датчика. Но это и не обязательно. Дело в том, что информацию о частоте вращения коллекторного двигателя можно извлечь из потребляемого им тока. Этот ток содержит переменную составляющую, первая гармоника которой имеет частоту, равную частоте вращения двигателя, умноженную на число пластин коллектора. Двигатели, которые чаще всего применяются в магнитофонах, имеют три пластины коллектора. Поэтому эта частота равна утроенной частоте вращения двигателя. Именно на этом принципе и построен описываемый регулятор.


Рис. 1. Принципиальная схема стабилизатора частоты вращения.

  Для получения сигнала обратной связи в цепь питания двигателя включен датчик тока R1 (рис. 1). Ток, потребляемый двигателем, создает на этом резисторе падение, которое имеет переменную составляющую около 100 мВ peak-to-peak (рис.2, график 1). Основная гармоника выделяется с помощью простейшего ФНЧ R2C1 и через разделительный конденсатор C2 поступает на вход усилителя, собранного на ОУ U1A. Коэффициент усиления задан резисторами R4R5 так, чтобы усилитель работал в режиме ограничения. На его выходе формируетя практически прямоугольный сигнал с частотой, равной утроенной частоте вращения двигателя (рис. 2, график 2). Этот сигнал дифференцируется с помощью цепочки C3R6R7R8 (рис. 2, график 3). Отрицательный выброс ограничивается диодом VD1. Далее сигнал поступает на компаратор, в роли которого использован ОУ U1B. Опорное напряжение задается с помощью делителя R9R10. На выходе компаратора формируются прямоугольные импульсы постоянной длительности (рис. 2, график 4). Постоянная составляющая такой импульсной последовательности пропорциональна частоте следования импульсов, т.е. частоте вращения двигателя. Импульсная последовательность интегрируется с помощью цепочек R11R12C5 и R13C6. Постоянное напряжение, пропорциональное частоте вращения, поступает на пропорционально-интегрирующий регулятор, собранный на ОУ U1C. Для получения образцового напряжения применен регулируемый стабилитрон U2. Нужную частоту вращения устанавливают регулировкой этого напряжения с помощью переменного резистора R19. Выход ОУ U1C умощнен комплементарным эмиттерным повторителем на транзисторах VT1VT2. Казалось бы, направление тока питания двигателя всегда одно и то же и достаточно было бы одиночного эмитерного повторителя, который обеспечивал бы вытекающий ток. Но на самом деле с двухтактным эмиттерным повторителем гораздо лучше поведение системы во время переходных процессов (при пуске двигателя или при резких колебаниях нагрузки на валу) [2].

Рис.2. Форма сигналов в контрольных точках.

  Нужно отдельно остановиться на проблеме устойчивости системы автоматического регулирования. В данной ситуации дело усложняется тем, что на устойчивость влияют и механические параметры системы, которые количественно учесть очень трудно. Поэтому в некоторых случаях придется подобрать АЧХ регулятора с помощью элементов R16C7 или даже ограничить коэффициент усиления, включив параллельно этой цепочке резистор. Подбор нужно вести по критерию устойчивости регулятора как в установившемся режиме, так и во время переходных процессов. Для этого нужно с помощью осциллографа контролировать напряжение питания двигателя. При включении оно должно плавно достичь номинального значения, причем без колебательного процесса. Если при работающем двигателе изменить нагрузку на валу, напряжение питания также должно принять новое значение без колебательного процесса. В регуляторе вместо LM324 можно применить практически любые ОУ, например, LM2902, или сдвоенные LM358, LM2904, или даже обычные KP140УД6, УД7. В зависимости от потребляемого двигателем тока может понадобиться установить транзистор VT1 на теплоотвод. Транзистор VT2 теплоотвода не требует.

Литература:
1. З. Гасымов. Стабилизатор частоты вращения электродвигателя. Радио, №12, 1987 г., стр. 48.
2. В. Псурцев. Модернизация ЭПУ G-602. Радиоежегодник, 1987 г., стр. 132 – 140.

Ридико Леонид Иванович
e-mail: wubblick (at) yahoo.com
«Схемотехника» №4, 2001

Источник: shems.h2.ru

Регулятор оборотов с обратной связью для коллекторных двигателей переменного тока — Меандр — занимательная электроника

Большинство мировых производителей профессиональных угловых шлифовальных машинок (болгарок) таких как Bosch, Metabo, Makita, DeWalt и других используют два типа регуляторов оборотов с обратной связью.

С помощью таходатчика

На конце якоря мотора установлен кольцевой магнит с прорезью или срезом, а на плате регулятора установлена ка­тушка индуктивности или датчик Холла. Такой регулятор обес­печивает максимально точную стабилизацию оборотов дви­гателя при изменении нагрузки.

На основе измерения падения напряжения на электро­двигателе

В этом случае измеряется падение напряжения на дви­гателе, и схема управления изменяет длительность открытия силового ключа. Такой регулятор, если он правильно наст­роен, обеспечивает также хорошую стабилизацию оборотов двигателя при изменении нагрузки.

Все промышленные регуляторы, собранные на микро­контроллерах, полностью залитые эпоксидной смолой и в ито­ге они не пригодны для ремонта, а цена за новый регулятор достаточно большая, и составляет примерно 20-30% от сто­имости самого электроинструмента.

В поиске специализированных микросхем для решения данной задачи мне приглянулись регуляторы Phase Control фирмы Atmel. Например, простой вариант регулятора на ми­кросхеме U2008B. Рассмотрим схему регулятора на ИМС U2008B приведенную на рис.1. В данном регуляторе можно использовать обратную связь по току или режим плавного пуска, однако в нём нет защиты от перегрузки. Если исполь­зовать плавный пуск тогда нужны только элементы С1, R4 и перемычку Х1 не ставим, а если нужна обратную связь — тог­да все наоборот.

Рис. 1

Так как ИMC U2008B не может одновременно работать в режиме плавного пуска и обратной связи, она не подходит для нашей задачи. На рис.2 пока­зана схема регулятора на микросхеме U2010B, у которой есть обратная связь по току, защи­та от перегрузки и плавный старт одновре­менно. Светодиод D2 индицирует перегрузку электродвигателя. Переключатель SA1 «Mode» обеспечивает возможность выбора действий при перегрузке на двигателе в трех режимах: Положение А — индикация перегрузки и по­следующий сброс на минимальные обороты. Для восстановления рабочих оборотов, необходимо выключить инструмент.

Рис. 2

Положение В — индикация перегрузки, по­следующий сброс на минимальные обороты, по­сле снятие нагрузки с инструмента, восста­навливаются установленные обороты, т.е. про­исходит авто старт.

Положение С — только индикация перегруз­ки, без остановки двигателя и защиты.

Подбором ёмкости конденсатора СЗ от 1 до 10 мкФ можно изменять длительность и плав­ность пуска двигателя.

Настройка регулятора.

В техническом описании к ИМС U2010B в схеме подключения обозначено только падение напряжение на R6 в 250 мВ и не указано, ка­ким именно должен быть этот резистор.

Рассчитать сопротивление R6 можно исходя из мощнос­ти двигателя по формуле:

R6 = UR6/(Рдвиг/Uпит),

где:
UR6 — напряжение на R6 (250 мВ),
Рдвиг — мощность двигателя,
UПИТ — напряжение питания сети.

Например, для двигателя мощностью 750 Вт рассчитыва­ем: R6= 0,25/(750/220) = 0,07 Ом.

Номиналы резисторов R6 и R11, в зависимости от мощ­ности электродвигателя, приведены в таблице.

R11 Мощность, ВтR6*, ОмНихром, D 1 ммНихром, D 0,8 ммR11*, кОм
2500,223019180-270
3000,182717180-220
5500,12516180
7000,082014160
8500,071711150
10000,0551510100-120
12000,04713990-110
15000,0412880-100
18000,0310770-100
20000,0288665-90
22000,0257565-90

Главное правильно подбирать резистор R6 под мощность двигателя. Выше представленная формула правильная, но на практике может потребоваться некоторая коррекция по по­ведению двигателя под нагрузкой. Если резистор великоват, то двигатель довольно резко стартует (т.е. происходит боль­шая компенсация нагрузки, чем надо), а потом отключается, а если резистор будет мал, то не будет обеспечиваться ком­пенсация нагрузки.

В Datasheet к ИМС U2010B ёмкость конденсатора С2 указана 0,01 мкФ, но она рассчитана на 60-герцовую сеть, и при использования ИМС в сети 50 Гц за период выдава­лось несколько импульсов управления. В итоге, обороты эле­ктродвигателя практически не  регулировались и двигатель ра­ботал на полную мощность. Для сети с частотой 50 Гц нуж­но ёмкость конденсатора С2 увеличить до 0,015 мкФ.

Первый пуск

Переменный резистор Р1 (регулятор оборотов) нужно установить на минимальные обороты двигателя, по схеме движок потенциометра должен быть повернут в сторону ре­зистора R13. Затем подстроенный резистор R10 (компенса­ция нагрузки) установить в среднее положение, а на место R11 (перегрузка) временно подпаять постоянный резистор сопротивлением 62 кОм. Потом включить регулятор в сеть 220 В / 50 Гц и подстроенным резистором R8 выставить са­мые минимальные обороты двигателя.

Нужно сделать так, чтобы при включении двигатель на­чинал вращаться на минимальных оборотах. Если настроить устройство так, чтобы совсем не было напряжения на элек­тродвигателе, то тогда становится слишком нелинейная за­висимость управления резистором Р1 — при его повороте сначала двигатель не крутится, а потом резко стартует без плавного пуска.

Далее нужно подключить вольтметр с диапазоном изме­рения 300 В к выводам двигателя, включить двигатель и на средних оборотах, зажимая вал или привод двигателя через тряпку рукой, выставить такое положение резистора R10, что­бы обороты электродвигателя не менялись при изменении нагрузки на его валу. Одновременно с этим нужно смотреть на вольтметр, подключенный к двигателю. При увеличении нагрузки на валу электродвигателя регулятор прибавляет напряжение, и двигатель крутится с одинаковыми оборота­ми, независимо от нагрузки.

И вот в последнюю очередь настраивается резистор R11 (перегрузка). Постоянный резистор номиналом 62 кОм вы­паиваем и вместо него ставим подстроенный или перемен­ный резистор номиналом 220 кОм. На оборотах двигателя чуть больше минимальных, сильно зажимая вал или привод двигателя, стараемся почти заклинить вал двигателя, и по степенно изменяем величину резистора R11, пока не начнет срабатывать защита, и не станет светиться VD2. Затем из­мерьте сопротивление переменного резистора тестером и за­паяйте в устройство соответствующий резистор. В таблице указано приблизительные значения сопротивления R11,

Детали регулятора

Купить микросхемы U2008B, U2010B можно через сайт AliExpress (www.ru.aliexpress.com) в Китае с бесплатной до­ставкой на Украину, а далее посылка бесплатно отправляется через «Укрпочту» в любое почтовое отделение на тер­ритории Украины. Доставка на Украину производится на про­тяжении 25-40 дней. Например, цена 1 шт. микросхемы U2010B зависит от корпуса исполнения, примерно 0,9 USD в корпусе S016 и 1,2 USD в корпусе DIP16, а симистора ВТА24-800 — 0,4 USD.


Печатная плата устройства изготовлена из односторонне­го фольгированного стеклотекстолита толщиной 1 мм.

Симистор VS1 лучше использовать с изолированной пло­щадкой под радиатор серии ВТА, например BTA12-800, BTA16-800, BTA24-800, или применить другие. При мощнос­ти двигателя до 400 Вт, VS1 можно не устанавливать на ра­диатор. Все SMD детали типоразмера 1206, их можно запа­ять обычным паяльником с тонким жалом.

Подстроенные резисторы — типа СП3-19а или другой ма­логабаритный. Переменный резистор Р1 любой на 47-50 кОм, можно малогабаритные СП4-1, СП3-9. Резистор R1 мощностью не менее 2 Вт, например, типа MЛT-2 или др. Резистор R6 изготовлен из нихромовой проволоки диаметром 0,7 — 1 мм. Автор использовал нихромовый провод из старого блока сопротивлений для зажигания автомобилей ГАЗ с маркировкой 1402.3729. Все электролитические конденса­торы на напряжение не менее 50 В. Диод D1 — типа 1N4007 или КД208, также можно использовать диод в SMD исполне­нии. Светодиод D2 любой малогабаритний диаметром 3-5 мм красного света. Переключатель SA1 любой малогабаритный 3-х позиционный. Если нужен только один режим перегруз­ки, тогда вместо него можно установить перемычку.

Литература:

  1. Бирюков С. Автомат плавного пуска коллекторных эле­ктродвигателей. // Радио. — 1997. — №7. — С.40-42.

Печатная плата для схемы показанной на рисунке 2:

[hidepost]Скачать[/hidepost]

Автор: Валентин Шипляк, г. Ужгород

Регулятор оборотов электродвигателя 220В | 2 Схемы

Качественный и надёжный контроллер скорости вращения для однофазных коллекторных электродвигателей можно сделать на распространённых деталях буквально за 1 вечер. Эта схема имеет встроенный модуль обнаружения перегрузки, обеспечивает мягкий пуск управляемого двигателя и стабилизатор скорости вращения мотора. Работает такой блок с напряжением как 220, так и 110 вольт.

Технические параметры регулятора

  • напряжение питания: 230 вольт переменного тока
  • диапазон регулирования: 5…99%
  • напряжение нагрузки: 230 В / 12 А (2,5 кВт с радиатором)
  • максимальная мощность без радиатора 300 Вт
  • низкий уровень шума
  • стабилизация оборотов
  • мягкий старт
  • размеры платы: 50×60 мм

Принципиальная электросхема

Схема регулятор мотора на симисторе и U2008

Схема модуля системы регулирования основана на генераторе ШИМ импульсов и симисторе управления мотором — классическая схемотехника для подобных устройств. Элементы D1 и R1 обеспечивают ограничение величины напряжения питания до значения безопасной для питания микросхемы генератора. Конденсатор C1 отвечает за фильтрацию напряжения питания. Элементы R3, R5 и P1 являются делителем напряжения с возможностью его регулирования, который используется для задания величины мощности, подаваемой в нагрузку. Благодаря применению резистора R2, непосредственно входящего в цепь поступления на м/с фазы, внутренние блоки синхронизированы с симистором ВТ139.

Печатная плата

На следующем рисунке показано расположение элементов на печатной плате. Во время монтажа и запуска следует обратить внимание на обеспечение условий безопасной работы — регулятор имеет питание от сети 220В и его элементы непосредственно подключены к фазе.

Увеличение мощности регулятора

В испытательном варианте был применен симистор BT138/800 с максимальным током 12 А, что дает возможность управления нагрузкой более 2 кВт. Если необходимо управление ещё большими токами нагрузки — советуем тиристор установить за пределами платы на большом радиаторе. Также следует помнить о правильном выборе предохранителя FUSE в зависимости от нагрузки.

Кроме управления оборотами электромоторов, можно без каких-либо переделок использовать схему для регулировки яркости ламп.

Регулятор оборотов коллекторного двигателя без потерь

Обороты двигателяДля выполнения многих видов работ по обработке древесины, металла или других типов материалов требуются не высокие скорости, а хорошее тяговое усилие. Правильнее будет сказать — момент. Именно благодаря ему запланированную работу можно выполнить качественно и с минимальными потерями мощности. Для этого в качестве приводного устройства применяются моторы постоянного тока (или коллекторные), в которых выпрямление питающего напряжения осуществляется самим агрегатом. Тогда для достижения требуемых рабочих характеристик необходима регулировка оборотов коллекторного двигателя без потери мощности.

Особенности регулирования скорости

Важно знать, что каждый двигатель при вращении потребляет не только активную, но и реактивную мощность. При этом уровень реактивной мощности будет больше, что связано с характером нагрузки. В данном случае задачей конструирования устройств регулирования скорости вращения коллекторных двигателей является уменьшение разницы между активной и реактивной мощностями. Поэтому подобные преобразователи будут довольно сложными, и самостоятельно их изготовить непросто.

Своими руками можно сконструировать лишь некоторое подобие регулятора, но говорить о сохранении мощности не стоит. Что такое мощность? С точки зрения электрических показателей, это произведение потребляемого тока, умноженное на напряжение. Результат даст некое значение, которое включает активную и реактивную составляющие. Для выделения только активной, то есть сведения потерь к нулю, необходимо изменить характер нагрузки на активную. Такими характеристиками обладают только полупроводниковые резисторы.

Следовательно, необходимо индуктивность заменить на резистор, но это невозможно, потому что двигатель превратится во что-то иное и явно не станет приводить что-либо в движение. Задача регулирования без потерь заключается в том, чтобы сохранить момент, а не мощность: она все равно будет изменяться. Справиться с подобной задачей сможет только преобразователь, который будет управлять скоростью за счёт изменения длительности импульса открытия тиристоров или силовых транзисторов.

Обобщенная схема регулятора

Как устроен регуляторПримером регулятора, который осуществляет принцип управления мотором без потерь мощности, можно рассмотреть тиристорный преобразователь. Это пропорционально-интегральные схемы с обратной связью, которые обеспечивают жесткое регулирование характеристик, начиная от разгона-торможения и заканчивая реверсом. Самым эффективным является импульсно-фазовое управление: частота следования импульсов отпирания синхронизируется с частотой сети. Это позволяет сохранять момент без роста потерь в реактивной составляющей. Обобщенную схему можно представить несколькими блоками:

  • силовой управляемый выпрямитель;
  • блок управления выпрямителем или схема импульсно-фазового регулирования;
  • обратная связь по тахогенератору;
  • блок регулирования тока в обмотках двигателя.

Перед тем как углубляться в более точное устройство и принцип регулирования, необходимо определиться с типом коллекторного двигателя. От этого будет зависеть схема управления его рабочими характеристиками.

Разновидности коллекторных двигателей

Известно, как минимум, два типа коллекторных двигателей. К первому относятся устройства с якорем и обмоткой возбуждения на статоре. Ко второму можно отнести приспособления с якорем и постоянными магнитами. Также необходимо определиться, для каких целей требуется сконструировать регулятор:

  • Виды регуляторовЕсли необходимо регулировать простым движением (например, вращением шлифовального камня или сверлением), то обороты потребуется изменять в пределах от какого-то минимального значения, неравному нулю, — до максимального. Примерный показатель: от 1000 до 3000 об/мин. Для этого подойдёт упрощённая схема на 1 тиристоре или на паре транзисторов.
  • Если необходимо управлять скоростью от 0 до максимума, тогда придется использовать полноценные схемы преобразователей с обратной связью и жёсткими характеристиками регулирования. Обычно у мастеров-самоучек или любителей оказываются именно коллекторные двигатели с обмоткой возбуждения и тахогенератором. Таким мотором является агрегат, используемый в любой современной стиральной машине и часто выходящий из строя. Поэтому рассмотрим принцип управления именно этим двигателем, изучив его устройство более подробно.

Конструкция мотора

Конструктивно двигатель от стиральной машины «Индезит» несложен, но при проектировании регулятора управления его скоростью необходимо учесть параметры. Моторы могут быть различными по характеристикам, из-за чего будет изменяться и управление. Также учитывается режим работы, от чего будет зависеть конструкция преобразователя. Конструктивно коллекторный мотор состоит из следующих компонентов:

  • Якорь, на нем имеется обмотка, уложенная в пазы сердечника.
  • Коллектор, механический выпрямитель переменного напряжения сети, посредством которого оно передается на обмотку.
  • Статор с обмоткой возбуждения. Он необходим для создания постоянного магнитного поля, в котором будет вращаться якорь.

Принцип работы двигателяПри увеличении тока в цепи двигателя, включенного по стандартной схеме, обмотка возбуждения включена последовательно с якорем. При таком включении мы увеличиваем и магнитное поле, воздействующее на якорь, что позволяет добиться линейности характеристик. Если поле будет неизменным, то получить хорошую динамику сложнее, не говоря уже о больших потерях мощности. Такие двигатели лучше использовать на низких скоростях, так как ими удобнее управлять на малых дискретных перемещениях.

Организовав раздельное управление возбуждением и якорем, можно добиться высокой точности позиционирования вала двигателя, но схема управления тогда существенно усложнится. Поэтому подробнее рассмотрим регулятор, который позволяет изменять скорость вращения от 0 до максимальной величины, но без позиционирования. Это может пригодиться, если из двигателя от стиральной машины будет изготавливаться полноценный сверлильный станок с возможностью нарезания резьбы.

Выбор схемы

Выяснив все условия, при которых будет использоваться мотор, можно начинать изготавливать регулятор оборотов коллекторного двигателя. Начинать стоит с выбора подходящей схемы, которая обеспечит вас всеми необходимыми характеристиками и возможностями. Следует вспомнить их:

  • Регулирование скорости от 0 до максимума.
  • Обеспечение хорошего крутящего момента на низких скоростях.
  • Плавность регулирования оборотов.

Рассматривая множество схем в интернете, можно сделать вывод о том, что мало кто занимается созданием подобных «агрегатов». Это связано со сложностью принципа управления, так как необходимо организовать регулирование многих параметров. Угол открытия тиристоров, длительность импульса управления, время разгона-торможения, скорость нарастания момента. Данными функциями занимается схема на контроллере, выполняющая сложные интегральные вычисления и преобразования. Рассмотрим одну из схем, которая пользуется популярностью у мастеров-самоучек или тех, кто просто хочет с пользой применить старый двигатель от стиральной машины.

Всем нашим критериям отвечает схема управления скоростью вращения коллекторным двигателем, собранная на специализированной микросхеме TDA 1085. Это полностью готовый драйвер для управления моторами, которые позволяют регулировать скорость от 0 до максимального значения, обеспечивая поддержание момента за счёт использования тахогенератора.

Особенности конструкции

Сфера применения регулятораМикросхема оснащена всем необходимым для осуществления качественного управления двигателем в различных скоростных режимах, начиная от торможения, заканчивая разгоном и вращением с максимальной скоростью. Поэтому ее использование намного упрощает конструкцию, одновременно делая весь привод универсальным, так как можно выбирать любые обороты с неизменным моментом на валу и использовать не только в качестве привода конвейерной ленты или сверлильного станка, но и для перемещения стола.

Характеристики микросхемы можно найти на официальном сайте. Мы укажем основные особенности, которые потребуются для конструирования преобразователя. К ним можно отнести: интегрированную схему преобразования частоты в напряжение, генератор разгона, устройство плавного пуска, блок обработки сигналов Тахо, модуль ограничения тока и прочее. Как видите, схема оснащена рядом защит, которые обеспечат стабильность функционирования регулятора в разных режимах.

На рисунке ниже изображена типовая схема включения микросхемы.

Схема несложная, поэтому вполне воспроизводима своими руками. Есть некоторые особенности, к которым относятся предельные значения и способ регулирования скоростью:

  • Схема регулятор без потерь Максимальный ток в обмотках двигателя не должен превышать 10 А (при условии той комплектации, которая представлена на схеме). Если применить симистор с большим прямым током, то мощность может быть выше. Учтите, что потребуется изменить сопротивление в цепи обратной связи в меньшую сторону, а также индуктивность шунта.
  • Максимальная скорость вращения достигается 3200 об/мин. Эта характеристика зависит от типа двигателя. Схема может управлять моторами до 16 тыс. об/мин.
  • Время разгона до максимальной скорости достигает 1 секунды.
  • Нормальный разгон обеспечивается за 10 секунд от 800 до 1300 об/мин.
  • На двигателе использован 8-полюсный тахогенератор с максимальным выходным напряжением на 6000 об/мин 30 В. То есть он должен выдавать 8мВ на 1 об/мин. При 15000 об/мин на нем должно быть напряжение 12 В.
  • Для управления двигателем используется симистор на 15А и предельным напряжением 600 В.

Если потребуется организовать реверс двигателя, то для этого придется дополнить схему пускателем, который будет переключать направление обмотки возбуждения. Также потребуется схема контроля нулевых оборотов, чтобы давать разрешение на реверс. На рисунке не указано.

Принцип управления

При задании скорости вращения вала двигателя резистором в цепи вывода 5 на выходе формируется последовательность импульсов для отпирания симистора на определенную величину угла. Интенсивность оборотов отслеживается по тахогенератору, что происходит в цифровом формате. Драйвер преобразует полученные импульсы в аналоговое напряжение, из-за чего скорость вала стабилизируется на едином значении, независимо от нагрузки. Если напряжение с тахогенератора изменится, то внутренний регулятор увеличит уровень выходного сигнала управления симистора, что приведёт к повышению скорости.

Микросхема может управлять двумя линейными ускорениями, позволяющими добиваться требуемой от двигателя динамики. Одно из них устанавливается по Ramp 6 вывод схемы. Данный регулятор используется самими производителями стиральных машин, поэтому он обладает всеми преимуществами для того, чтобы быть использованным в бытовых целях. Это обеспечивается благодаря наличию следующих блоков:

  • Особенности запуска двигателяСтабилизатор напряжения для обеспечения нормальной работы схемы управления. Он реализован по выводам 9, 10.
  • Схема контроля скорости вращения. Реализована по выводам МС 4, 11, 12. При необходимости регулятор можно перевести на аналоговый датчик, тогда выводы 8 и 12 объединяются.
  • Блок пусковых импульсов. Он реализован по выводам 1, 2, 13, 14, 15. Выполняет регулировку длительности импульсов управления, задержку, формирования их из постоянного напряжения и калибровку.
  • Устройство генерации напряжения пилообразной формы. Выводы 5, 6 и 7. Он используется для регулирования скорости согласно заданному значению.
  • Схема усилителя управления. Вывод 16. Позволяет отрегулировать разницу между заданной и фактической скоростью.
  • Устройство ограничения тока по выводу 3. При повышении напряжения на нем происходит уменьшение угла отпирания симистора.

Использование подобной схемы обеспечивает полноценное управление коллекторным мотором в любых режимах. Благодаря принудительному регулированию ускорения можно добиваться необходимой скорости разгона до заданной частоты вращения. Такой регулятор можно применять для всех современных двигателей от стиралок, используемых в иных целях.

Подборка схем регулятора оборотов двигателя постоянного тока

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания резистор. Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

На транзисторе VT1 (однопереходном) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 играет роль компаратора, создающего ШИМ на базе транзистора VT2. В результате получается ШИМ регулятор оборотов двигателя.

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на популярном таймере NE555. Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах возможно применить следующие замены радиодеталей: транзистор КТ817Б — КТ815, КТ805; КТ117А возможно поменять КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 возможно поменять мощным полевым транзистором, например, IRF3905 или ему подобный.

Радиоаматор, 4/2008

Регулятор скорости коллекторного двигателя / Проекты / DIGECT.RU

Регулятор скорости коллекторного двигателя с компенсацией нагрузки и защитой от перегрузки предназначен для изменения скорости вращения двигателя. При включении обеспечивая плавный старт при этом скорость вращения двигателя стабилизируется в независимости от нагрузки на валу двигателя. Регулятор выполнен по типовой схеме включения ИМС U2010B.

Особенности

Особенностью данного устройства перед системами с таходатчиком, является то, что нет необходимости вмешиваться в конструкцию двигателя (УШМ, гравера и.тд), нет необходимости даже разбирать. Устройство можно выполнить ввиде промежуточного блока, включенного между электрической розеткой и двигателем.

Функции регулятора:

  1. Плавный старт. При подаче питания двигатель запускается плавно и без рывка, что сбережет редуктор, предохранит двигатель от преждевременного износа.
  2. Защита от перегрузки. При чрезмерной нагрузке на валу двигателя светодиод на регуляторе загорится указывая на то, что устройство перегружено, с еще большим увеличением нагрузки (вплоть до заклинивания) — регулятор остановит двигатель, восстановление работоспособности двигателя будет осуществлено согласно установленному режиму работы (см режимы работы).
  3. Функция регулирования оборотов двигателя. Возможность изменять обороты двигателя от нуля до максимума.
  4. Функция стабилизации оборотов двигателя. В середине диапазона оборотов регулятор будет пытаться стабилизировать обороты двигателя вне зависимости от нагрузки на валу двигателя.

Внимание!

Устройство, находится под высоким напряжением и не имеет гальванической развязки от питающей сети. Поэтому при работе с ним нужно соблюдать предельную осторожность. ВСЕ МАНИПУЛЯЦИИ с регулятором можно проводить ТОЛЬКО ПОСЛЕ ВЫКЛЮЧЕНИЯ ПИТАНИЯ И ПОЛНОГО ОТКЛЮЧЕНИЯ ИХ ОТ СЕТИ В регуляторе отсутствует предохранитель, поэтому необходимо предусмотреть его установку. Эксплуатация устройства без предохранителя не допускается так как в случае короткого замыкания это может привести к пожару и другим негативным последствиям.

Регулятор оборотов может работать в трех режимах, которые определяются положением перемычки X1.

Режимы работы.

  1. Индикация перегрузки и последующий сброс на минимальные обороты. Для восстановления рабочих оборотов, необходимо выключить инструмент.
  2. Индикация перегрузки, последующий сброс на минимальные обороты, после снятие нагрузки с инструмента, восстанавливаются установленные обороты, т.е. происходит авто старт. Данный режим устанавливается при отсутствии перемычки, и является режимом по умолчанию.
  3. Только индикация перегрузки, без остановки двигателя и защиты.

Регулировка изделия.

Установите переменный резистор в положение соответствующем минимальным оборотам , подстроечный резистор R10 (компенсация нагрузки) установить в среднее положение , включаем устройство к сети 220В. Резистором R8 (amax) выставить минимальные обороты, Минимальные обороты должны быть таковы чтобы при включении питания двигатель начинал устойчиво вращаться. Далее необходимо настроить компенсацию нагрузки. Необходимо отметить что компенсация нагрузки, работает не во всем диапазоне оборотов двигателя, например на максимальных оборотах невозможно регулировать нагрузку так как на двигатель всегда подается максимальное напряжение. Установите обороты двигателя в среднее положение, при этом увеличивая нагрузку на валу любым доступным способом, например зажимая вал двигателя тряпкой, добейтесь поворотом резистора R10 такого состояния чтобы обороты двигателя были стабильными в независимости от нагрузки. В последнюю очередь настройте защиту от перегрузки. Выставьте обороты двигателя близко к минимальным и попробуйте затормозить двигатель выставив резистором R11 такое положение при котором при повышенной нагрузке загорался светодиод VD2, а при чрезмерном либо при заклинивании двигатель обесточивался.

Вышеописанная методика была позаимствована из следующих источников:

На симистор VS1 для охлаждения возможно придется установить радиатор, а при мощности устройства более 1 кВт его установить просто необходимо чтобы избежать выход из строя устройства в результате перегрева.

Внешний вид и расположение элементов.

Расположение элементов.
  1. Напряжение питания ≈220 В.
  2. Нагрузка, коллекторный двигатель.
  3. Светодиод индикации перегрузки.
  4. Регулировка компенсации нагрузки.
  5. Регулировка перегрузки.
  6. Переменный резистор регулировки оборотов двигателя.
  7. Регулировка пределов регулировки скорости.
  8. Перемычка для установки режима работы устройства.
  9. Шунт R6, измерителя тока.
Подсоединение внешних элементов.

Вы можете приобрести готовое устройство (без шунта, и переменного резистора), , также вы можете купить пустую печатную плату и собрать устройство самостоятельно. Пишите мне в Контактах 700 руб готовое, 300 руб пустая плата

регулятор оборотов с поддержанием мощности

Здравствуйте дорогие мои посетители. Хочу сегодня продолжить тему о коллекторных электродвигателях, а именно как подключить двигатель от стиральной машины с помощью платы регулирования оборотов с поддержкой мощности. Как вы, видели, я затрагивал уже эту тему. Снимал по этому поводу видео «Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат». Это видео стало очень популярным на моём канале, зрители оставили множество разных комментариев по этой теме. Также я там выложил источник, где я взял схему регулятора оборотов с поддержкой мощности коллекторных электродвигателей. И как мне показалось на тот момент, что человек скачает себе этот файл и соберет себе такую же схему как у меня, и будет её использовать. Но нет, оказалось не все так просто как мне этого хотелось, посыпалась, куча вопросов от людей не только гуманитариев, но и совсем не плохих радиолюбителей. Были даже предложения о покупке плат регулирования оборотов.

Что бы сразу ответить на многие вопросы, Вам, мои дорогие читатели, и появилась эта статья.

 Занимаюсь я ремонтом электроинструмента в частности перемоткой электродвигателей. И во время ремонта качественного электроинструмента замечал там «Константную электронику»,  которая при снижении оборотов на электроинструменте поддерживала мощность электродвигателя. Меня это очень заинтересовало, начал пробовать различные простые регуляторы оборотов, регуляторы оборотов с обратной связью по току, в общем, кучу разных штуковин. Пока не наткнулся на сайт «chipmaker.ru» где пользователь  «Bogdan» выложил «схему управления коллекторным двигателем на TDA1085». Собственно говоря, вот эта ссылка: http://www.chipmaker.ru/files/file/1490/ . После того как Вы перешли, жмем на кнопку «Загрузить» 

В следующем окне обратно жмем «Загрузить» 

У нас скачивается архив, разархивировав который, видим в нем несколько файлов (два варианта схем для управления двигателями постоянного и переменного тока с монтажными платами), нам для двигателя переменного тока нужны PSD файлы с пометкой «АС» 


Распечатав  их (принципиальная, монтажная и печатная плата), я отнес их своему очень хорошему товарищу Игорю , который мне спая регулятор оборотов с поддержкой мощности (сам я, к сожалению, не люблю работу с паяльником). Я испытал регулятор оборотов электроинструмента на TDA1085 на своей «болгарке». К счастью мой товарищ оказался хорошим радиолюбителем и нашел некоторые неточности в этих схемах и исправил их.

 


 Я не могу вам сейчас сказать что этот регулятор оборотов коллекторных электродвигателей панацея, возможно, есть что-то и лучше я не знаю. Как поведет она себя на высоких или даже средних оборотах, честно сказать я не знаю( здесь уже можно посмотреть тест этой платы в разных режимах). Эта схема отлично ведет себя на низких оборотах, и вот уже целый год  отлично себя показывает на Самодельном лобзиковом станке , приводом там служит та самая «болгарка»  на которой я испытывал регулятор оборотов.

Если Вы уже собрались делать себе регулятор оборотов, давайте немного разберем его:

К клеммам «Фаза и Ноль» подключаем напряжение 220 Вольт (фазировка не влияет на работу схемы), светодиод «HL» служит нам индикатором питания платы регулятора оборотов, к клеммам « М1» подключаем наш электродвигатель, «таходатчик» который выдает постоянный ток подключаем к «Х3» а если же у вас он выдает переменный ток или импульсы, то к «Х2» (Как сделать таходатчик). К контактам «Х4» можно подключить тумблер (выключатель) который будет отключать наш двигатель, его ставить не обязательно, можно также отключать двигатель с помощью  регулятора оборотов «R1» который подключается к контактам «Х1». У Bogdana  на этой схеме не был указан конденсатор «С 100µF х25V» хотя он присутствует на монтажной плате (забыл указать). Также у него в схеме находится очень мощный симистор «ВТА41 800V» который подходит для управления мощными коллекторными электродвигателями, а для нас подойдет совсем другой на 10…16 Ампер (по цене будет на много дешевле). Симистор должен обязательно быть  с радиатором (вся эта схема построена  для управления этим симистором, который в свою очередь управляет непосредственно нашим электродвигателем). Ниже симистора на схеме указаны два мощных сопротивления «R31» и «R33» рассчитанные на 0,1 Ом и мощностью 5 Ватт каждый. Под каждые электродвигатель нужно индивидуально настраивать плату регулятора оборотов (как это сделать). Регулируется схема с помощью подстрочных сопротивлений «R3» и «R21». Построечный резистор «R3» регулирует плавность пуска двигателя, а «R21» служит для быстроты реагирования на нагрузку электродвигателя (в зависимости отнего схема будет реагировать плавно или резко на нагрузку).

 Для лучшего удобства я подготовил Вам список всех деталей, которые применяются в этом регуляторе оборотов с поддержкой мощности («+» обозначены полярные конденсаторы):

20кОм

Пременное         1шт

20кОм

Подстроечное   1шт

R3

1,2кОм    0,25-0,125W

3шт

R4;5;9

160кОм     0,25-0,125W

2шт

R6;8

24 Ом     0,25-0,125W

1шт

R7

1м      0,25-0,125W

1шт

R10

120кОм       0,25-0,125W

1шт

R11

47кОм       0,25-0,125W

1шт

R12

470кОм      0,25-0,125W

1шт

R13

220кОм      0,25-0,125W

1шт

R14

51 Ом       0,25-0,125W

4шт

R15;19;25;30

2,2кОм     0,25-0,125W

2шт

R16;22

68кОм      0,25-0,125W

1шт

R17

820 Ом     0,25-0,125W

1шт

R18

2,7кОм      0,25-0,125W

1шт

R20

10кОм

Подстроечное  1шт

R21

390кОм       0,25-0,125W

4шт

R23;24;28;29

1шт

R26

1шт

R27

1шт

32

2шт

R31;33

1шт

R34

1шт

35

3шт

С1;5;неуказанный

3шт

C2;8;9

3шт

С3;4;7

820р

1шт

С6

1шт

С10

1шт

С11

1шт

С12

1шт

С13

1шт

С14

1шт

С15

1шт    Микросхема

МС1

ВТА41   800V  (не обязат)

1шт    Семистор

Т1

1шт   стабилитрон

1шт   стабилитрон

1шт диод

1шт    предохранитель

FU1

На  3В

1шт     светодиод

Изначально автор Bogdan на монтажной плате регулятора оборотов не указал буквенные обозначения всех деталей, но благодаря моему товарищу (огромное ему спасибо) он расставил все обозначения и исправил все неточности которые были у Bogdanа 


ВНИМАНИЕ!!! В расположении деталей ОШИБКА! Сопротивление R21 обозначено как R27. Будьте внимательны!

Ссылки для скачивания:

ОЧЕНЬ интересные видео по теме!!!

Агрессивные тесты.

Добавлено Анатолием:

Я думаю Александр не обидится если я в его теме выскажу несколько своих соображений.
Собрал уже не одну плату и могу сказать со сто процентной уверенностью. Если у кого то что то не работает, то проверяйте качество изготовления платы, качество и правильность монтажа, исправность элементов и двигателя. Все причины не работы (некорректной работы) кроются только в этом. Печатки и схемы выложенные в нете рабочие. Сам недавно столкнулся с подобным, две разные платы, а проявление неисправности одно и тоже. При включении и добавлении оборотов двигатель раскручивается рывками было ощущение как будто семистор работает на одном полупериоде. Оказалось на одной плате при травлении исчезла дорожка к конденсатору С10 на 47,0х16V, во втором случае этот же конденсатор был высохший.
Попутно убедился, что если уменьшить С11 идущий на 14 ногу микросхемы до 22Н, то двигатель стартует, набирает максимальные обороты и обороты не регулируются. Поэтому с ним тоже нельзя ошибаться 47Н и точка.
Теперь по поводу замеров напряжения.
Я собираю платы с отдельным блоком питания, поэтому промеры даю для этого случая.
Исходные условия, к плате подключен двигатель с таходатчиком, регулятор оборотов в нулевом положении (минимум до конца), блок питания в розетку включён, 220В на плату не подаётся.
1-0,17В
2-0,17В
3-2,63В
4-0
5-0
6-2,4В
7-0,05В
8-0
9-14,65В
10-13,7В
11-12,83В
12-0,55В
13-0
14-11,34В
15-0,03В
16-0,03В

Условия те-же, но подключено 220В и регулятор стоит на небольших оборотах. Двигатель медленно вращается.
1-0,25В
2-0,3В
3-2,62В
4-0,55В
5-0,55В
6-2,4В
7-1,14В
8-0
9-14,2В
10-14,2В
11- не измеряется.
12-0,74В
13-0,69В
14-4,8В при касании щупом двигатель ускоряется.
15-0,73В
16-0,58В
Отличия могут быть но не очень большие. Напряжение на ноге 3 устанавливается регулятором R21.
Кроме этого советовал бы увеличить резистор R9 вместо 1,2 кОм ставить 20кОм. Этим уменьшается напряжение с таходатчика. И R17 вместо 68кОм ставить 27кОм. Ну и диод для защиты микросхемы само собой. 

Пару слов по немецкой схеме. При правильной сборке, правильно выполненной печатке и исправных деталях всё работает без вопросов. Рекомендовал бы такую последовательность действий. Собрали плату, проверили сборку, микросхему не ставим. В панельку микросхемы подключаем на ноги 8-9 резистор 1,6кОм 1Вт, подключаем питание 220В, двигатель и таходатчик не подключен (это не принципиально), и меряем напряжение на подключённом резисторе. Должно быть 15-17В. Ставим микросхему, подключаем мотор и таходатчик и наслаждаемся работой. В немецкую схему советую внести следующее изменение. На регуляторе частоты вращения, на центральном отводе, запаять резистор 1,2кОм и второй конец этого резистора на клемму Х2-2, по семе. Боковую ногу регулятора которая раньше шла на центральный отвод, подключаем на корпус. Что это даёт. Раньше, при выведенном в ноль регуляторе, двигатель продолжал вращаться, теперь стоит как ему и положено. А методика настройки простая. Регулятор на ноль, включили, добавили немного оборотов, крутим Р1 пока обороты не станут красивыми на слух и визуально, обороты на максимум, крутим ограничение максимальных оборотов Р3, наслаждаемся своим мастерством. 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*