Термистор ntc маркировка: что это такое, принцип действия, характеристики

Содержание

назначение, сопротивление и характеристики, маркировка, принцип работы, как проверить и подключить

Сопротивление любого проводника в общем случае зависит от температуры. Сопротивление металлов с нагревом увеличивается. С точки зрения физики это объясняется увеличением амплитуды тепловых колебаний элементов кристаллической решетки и возрастанием сопротивления движения направленному потоку электронов. Сопротивление электролитов и полупроводников при нагреве уменьшается – это объясняют другими процессами.

Что такое терморезистор, общие положения

Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен.

С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества.

В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Основные виды терморезисторов — термисторы и позисторы (с отрицательным и положительным ТКС (температурный коэффициент сопротивления) соответственно. В термисторах с ростом температуры сопротивление падает, а позисторах, наоборот, увеличивается.

Условно-графическое обозначение

На схемах УГО термистора могут незначительно отличаться, но главный признак термосопротивления – символ t рядом с прямоугольником, символизирующим резистор. Без этого символа не определить, от чего зависит сопротивление – схожее УГО имеют, например, варисторы (сопротивление определяется приложенным напряжением) и другие элементы.

Иногда на УГО наносят дополнительное обозначение, определяющее категорию терморезистора:

  • NTC для элементов с отрицательным ТКС;
  • PTC для позисторов.

Эту характеристику иногда обозначают стрелками:

  • однонаправленными для PTC;
  • разнонаправленными для NTC.

Литерное обозначение может быть различным – R, RK, TH и т.п.

Где используется (сфера применения)

Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.

Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.

При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Маркировка

Существует два способа маркировки – буквенно-цифровая и цветовая, в виде колец и полосок. Единых требований для буквенной маркировки не существует – разные производители применяют свои варианты обозначений. Например, на дисковом термисторе могут стоять символы «15D-30», что расшифровывается так: номинальное сопротивление 15 Ом, диаметр изделия 30 мм. Здесь значение диаметра прямо связано с рассеиваемой мощностью – чем больше диаметр, тем больше рассеиваемая мощность термистора.

Заметим, что у другого производителя эти же параметры могут маркироваться совсем другим способом. Поэтому лучше пользоваться технической документацией изготовителя изделия.

Устройство и виды

Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий:

  1. Термисторы — детали с негативным температурным коэффициентом (NTC). Их особенность состоит в падении сопротивления при росте температуры.

  2. Позисторы — элементы, имеющие «плюсовой» температурный коэффициент (PTC). В отличие от прошлого вида, при повышении T сопротивление, наоборот, растет.

В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.

Типы по принципу действия

Терморезисторы различаются по принципу действия. Выделяется два типа:

  1. КОНТАКТНЫЕ. К этой категории относятся термопары, термодатчики, заполненные термометры и термометры биметаллического типа.

  2. БЕСКОНТАКТНЫЕ. В эту группу входят терморезисторы, построенные на инфракрасном принципе действия. Они активно применяются в оборонной сфере, благодаря способности выявлять тепловое излучение ИК и оптических лучей (выделяются газами и жидкостями).

Классификация по температурному срабатыванию

Терморезисторы отличаются по температуре, на которую они реагируют при срабатывании. С этой позиции выделяются следующие типы деталей:

  1. НИЗКОТЕМПЕРАТУРНЫЕ. Такие элементы срабатывают при температуре ниже 170 Кельвинов (минус 1020С). 1 Кельвин = минус 272,150С.
  2. СРЕДНЕТЕМПЕРАТУРНЫЕ. Здесь диапазоне работы выше и находится между 170 и 510 Кельвинами.
  3. ВЫСОКОТЕМПЕРАТУРНЫЕ. Терморезисторы такого класса работают при температурах от 570 Кельвинов.
  4. ОТДЕЛЬНЫЙ КЛАСС. Выделятся также индивидуальная группа высокотемпературных термических резисторов, работающих в диапазоне от 900 до 1300 К.

Вне зависимости от вида (позисторы, термисторы) терморезисторы могут работать в разных температурных режимах и внешних условиях. При эксплуатации в условиях частых изменений температур первоначальные параметры детали могут меняться.

Речь идет о двух параметрах — сопротивлении детали в условиях комнатной температуры и коэффициенте сопротивления.

По виду нагрева

По способу нагревания терморезисторы делятся на два типа:

  1. ПРЯМОГО НАГРЕВА. Подразумевается изменение температуры детали под действием окружающего воздуха или тока, протекающего через деталь. Устройства с прямым нагревом чаще всего применяются для решения двух задач — изменения температуры или восстановления нормального режима. Такие терморезисторы применяются в градусниках, ЗУ, термостатах и других устройствах.
  2. КОСВЕННОГО НАГРЕВА. В отличие от прошлого типа здесь нагрев происходит из-за элементов, находящихся в непосредственной близости от резистора. Узлы никак не взаимосвязаны. При таком подходе сопротивление полупроводника обуславливается изменением тока, который проходит через близлежащий элементы. Терморезисторы, работающие на косвенном принципе, нашли применение в мультиметрах (комбинированных приборах).

Определение

Резистор происходит от английского «resistor» и от латинского «resisto», что в переводе на русский язык звучит как «сопротивляюсь». В русскоязычной литературе наравне со словом «резистор» используют слово «сопротивление». Из названия ясна основная задача этого элемента – оказывать сопротивление электрическому току.

Он относится к группе пассивных элементов, потому что в результате его работы ток может только понижаться, то есть в отличие от активных элементов – пассивные сами по себе не могут усиливать сигнал. Что из второго закона Кирхгофа и закона Ома значит, что при протекании тока на резисторе падает напряжение, величина которого равна величине протекающего тока, умноженного на величину сопротивления. Ниже вы видите, как обозначается сопротивление на схеме:

Условное обозначение на схеме легко запомнить – это прямоугольник, по ГОСТ 2. 728-74 его размеры равны 4х10 мм. Существуют варианты обозначений для резисторов разной мощности рассеивания.

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей.

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

Параметры терморезисторов:

  1. ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
  2. СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
  3. ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
  4. ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
  5. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
  6. Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
  7. Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
  8. Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

  1. Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).

Спецификация модельного ряда серии B598*1

Краткая расшифровка:

Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А). Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента. Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А

Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали. Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд. Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax). Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели)

Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность. Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).

Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Читать также: Как выставить зажигание на яве 6 вольт

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Базовые характеристики терморезисторов

При оценке терморезисторов нужно учесть и проанализировать их характеристики:

  1. Вольтамперная характеристика — кривая на графике, показывающая зависимость напряжения на образце от проходящего через терморезистор тока. График рисуется с учетом теплового равновесия с окружающей природой. Для позисторов и термисторов графики различаются.
  2. Температурная характеристика. При построении графика снимается зависимость сопротивления от температуры в определенном режиме. По оси R выставляется параметр по принципу десятикратного увеличения (10Х), а по оси времени пропускается участок в диапазоне от нуля до 223 Кельвинов.
  3. Подогревная характеристика. С помощью графика можно увидеть параметры термических резисторов, работающих на косвенном принципе. Иными словами, кривая отражает зависимость сопротивления детали от подаваемой к нему мощности. При указании графика масштаб по сопротивлению берется с учетом 10Х.

Общий принцип действия

Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.

В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.

При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.

Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали.

Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.

Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.

При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.

После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.

В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.

NTC

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

PTC

В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

Главные направления применения:

  1. Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
  2. Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
  3. Нагревательный узел в пистолетах для приклеивания.
  4. В машинах для нагрева тракта впуска.
  5. Размагничивание ЭЛТ-кинескопов и т. д.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Один из видов: силовой Т122-25

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

На цифровых мультиметрах есть режим прозвонки, который позволяет проверять полупроводниковые приборы

Далее поочередно прикасаемся щупами к парам выводов:

  • При подключении щупов к аноду и катоду, прибор должен показывать обрыв — «1» или «OL» в зависимости от мультиметра. Если отображаются иные показатели хоть в одном направлении, тиристор пробит.
  • Между анодом и управляющим электродом (выводом) должно быть небольшое сопротивление в одном из направлений. В противоположном — обрыв. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках

Схема проверки работоспособности тиристора мультиметром

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между анодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

Схема проверки тиристора при помощи лампочки и источника питания

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Как проверить с помощью мультиметра

Важный вопрос при эксплуатации термисторов — знание принципов их проверки. При оценке исправности нужно понимать, что термисторы бывают двух видов — с положительными и отрицательным температурным коэффициентом (об этом упоминалось выше). Следовательно, сопротивление детали снижается или уменьшается с ростом температуры.

С учетом этого факта для проверки термистора потребуется всего два элемента — паяльник для нагрева и мультиметр.

Алгоритм действий:

  1. Перевод прибора в режим замера сопротивления.
  2. Подключение щупов к клеммам терморезистора (расположение не имеет значения).
  3. Фиксация сопротивления на бумаге и поднесение нагретого паяльника к детали.
  4. Контроль сопротивления (оно растет или падает в зависимости от вида терморезистора).
  5. Если сопротивление снижается или увеличивается, полупроводник работает правильно.

Для примера можно использовать термистор NTC типа MF 72. В нормальном режиме он показывает сопротивление 6,9 Ом при обычной температуре.

После поднесения паяльника к изделию ситуация изменилась — сопротивление пошло в сторону снижения и остановилось на уровне двух Ом. По этой проверке можно сделать вывод, что терморезистор исправен.

Если сопротивление меняется резко или вообще не двигается, можно говорить о выходе детали из строя.

Стоит учесть, что такая проверка очень грубая. Для точного контроля нужно проверить температуру и сопротивление термистора, а после сравнить данные с официальными параметрами.

Градуировочные таблицы термометров сопротивления

Градуировочные таблицы – это сводная сетка, по которой можно легко определить при какой температуре термометр будет иметь определенное сопротивление. Такие таблицы помогают работникам КИПиА оценить значение измеряемой температуры по определённому значению сопротивления.

В рамках этой таблицы существуют специальные обозначения ТС. Их вы можете увидеть в верхней строчке. Цифра означает значение сопротивления датчика при 0°С, а буква металл, из которого оно создано.

Для обозначения металла используют:

  • П или Pt – платина;
  • М – медь;
  • N – никель.

Например, 50М – это медный ТС, с сопротивлением 50 Ом при 0 °С.

Ниже представлен фрагмент градуировочной таблицы термометров.

50М (Ом)100М (Ом)50П (Ом)100П (Ом)500П (Ом)
-50 °С39.378.640.0180.01401.57
0 °С5010050100500
50 °С60.7121.459.7119.41193.95
100 °С71.4142.869.25138.51385
150 °С82.1164.278.66157.311573.15

Как подключить

Принцип подключения термисторов прост (на примере Arduino). Для этого потребуется монтажная плата, деталь и резистор на 10 кОм. Так как изделие имеет высокое сопротивление, этот параметр для проводников не влияет на конечный результат.

Один контакт сопротивления подключается к контакту 5В, а второй — к контакту термистора.

Вторую отпайку терморезистора необходимо посадить на «землю». Центр двух резисторов подключается к контакту «Аналог 0).

<

Где находится на схеме

Отображение терморезистора на схеме может различаться. Изделие легко найти по обозначениям t и t0. Внешне оно отражается как сопротивление, через которое проходит полоска по диагонали с «подставкой» под t0 снизу. Главные обозначения — R1, Th2 или RK1.

Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.

Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.

Варианты неисправностей в кинескопах

Если при первом включении изображение искажено или наблюдается рябь и полосы, то с высокой долей вероятности виновен позистор. Как проверить мультиметром элемент в цепи? На холодной схеме это сделать легче, ведь сопротивление позистора минимальное.

Часто пайка контактов просто отваливается от длительной работы. Позистор относится к элементам схемы, которые постоянно работают в нагретом состоянии. Омметром проверяют соединение маски экрана с выводом второй ножки позистора. Если оно минимальное, это говорит о надежном соединении. Возможно, элемент не срабатывает на отсечку.

Читать также: Как проверить трансформатор на работоспособность

Если позистор неисправен и закорочен, то при первом включении перегорает предохранитель блока питания. При условии что это происходит без видимого короткого замыкания в цепи, проверить неисправность можно совсем отключив маску экрана и позистор.

теТЕРМИСТОРЫ

NTC термисторы для ограничения пусковых токов.

Термисторы — это по сути термометры сопротивления, выполненные на основе смешанных оксидов переходных металлов. Два основные типа термисторов – NTC (с отрицательным температурным коэффициентом сопротивления) и PTC ( с положительным коэффициентом).

У нас в продаже имеются  термисторы только типа NTC.

                                 номинал розницаопт 100шт.
NTC 1000D-5   1ком 15.00р.8.00р.
NTC 1000D-5   2,2ком 15.00р.8.00р.
NTC 1000D-5   4,7ком 15.00р.8.00р.
NTC 1000D-5   10ком 15.00р.8.00р.
NTC 1000D-5   100ком  15.00р.8.00р.
NTC 10D-5          10ом  0,7АNTP5D-10015.00р.8.00р.
NTC 15D-5          15ом  0,5АNTP5D-15015.00р.8.00р.
NTC 47D-5          47ом  0,3АNTP5D-47015.00р.8.00р.
    
NTC  5D-7            5ом  2АNTP7D-05020. 00р.10.00р.
NTC 10D-7         10ом  1АNTP7D-10020.00р.10.00р.
NTC 22D-7         22ом  0,6 АNTP7D-22020.00р.10.00р.
    
NTC  3D-9           3oм  4А NTP9D-03020.00р.10.00р.
NTC  5D-9           5ом   3АNTP9D-05020.00р.10.00р.
NTC 10D-9        10ом   2АNTP9D-10020.00р.10.00р.
NTC 16D-9        16ом   1АNTP9D-16020.00р.10.00р.
NTC 22D-9        22ом   1АNTP9D-22020.00р.10.00р.
NTC 50D-9        50ом   1АNTP9D-50020.00р.10.00р.
    
NTC  5D-11         5ом   4АNTP11D-05020.00р.10. 00р.
NTC  8D-11         8ом   3АNTP11D-08020.00р.10.00р.
NTC 10D-11       10ом   3АNTP11D-10020.00р.
10.00р.
NTC 16D-11       16ом   2АNTP11D-16020.00р.10.00р.
NTC 50D-11       50ом   2АNTP11D-50020.00р.10.00р.
    
NTC  8D-13         8ом   4АNTP13D-08030.00р.15.00р.
NTC 10D-13       10ом   4АNTP13D-10030.00р.15.00р.
NTC 47D-13       47ом   2АNTP13D-47030.00р.15.00р.
    
NTC  3D-15         3ом   7АNTP15D-03040.00р.20.00р.
NTC  5D-15         5ом   6АNTP15D-05040.00р.20. 00р.
NTC 10D-15      10ом   5АNTP15D-10040.00р.20.00р.
NTC 16D-15      16ом   4АNTP15D-16040.00р.20.00р.
NTC 20D-15      20ом   4АNTP15D-20040.00р.20.00р.
NTC 47D-15      47ом   3АNTP15D-47040.00р.20.00р.
    
NTC  5D-20         5ом   7АNTP20D-05050.00р.30.00р.
NTC  8D-20         8ом   6АNTP20D-08050.00р.30.00р.
NTC 10D-20      10ом   6АNTP20D-10050.00р.30.00р.
NTC 16D-20      16ом   5АNTP20D-16050.00р.30.00р.
NTC 47D-20      47ом   4АNTP20D-470100.00р.80.00р.
    
NTC20D25       20ом  7АNTP25D-200100.
00р.
80.00р.
NTC10D25       10ом  7АNTP25D-100100.00р.80.00р.

    Хата 404

    Хата 404 изображение/svg+xml

    Seçilen ülke ve dil, alışveriş şartlarınızı, ürün fiyatlarını ve özel teklifleri belirler

    Пара Бирими

    Фиятлар

    нетто

    брют

    сеть

    брют

    İlgilendiğiniz konuları bulmak için arama motorunu kullanın veya aşağıdaki alanlardan birine gidin:

    Каталог Nasil сатиновый алинир Ярдим

    вейя гери гидин: Ана Сайфа

    Абоне олманызы тавсие эдиёруз

    Her bültende yeni ürünler, dağıtım ve TME web siteindeki değişiklikler hakkında önemli ve ilgi çekici bilgiler bulacaksınız.
    Buradan ayrıca aboneliğinizi iptal ederek listen çıkabilirsiniz.

    * zorunlu alan

    Abone olAboneliği sonlandır

    TME Haber Bülteni Politikasını okudum ve anladim, işbu vesile ile TME’nin dijital bilgi bülteninin e-posta adresime gönderilmesine izin veriyorum. TME Haber Bülteni Politikası

    *

    1. Transfer Multisort Elektronik sp. о.о., ул. Ustronna 41, 93-350 Łódź işbu vesile ile kişisel verilerinizin sorumlusu olacağını bildirir.
    2. Kişisel veri sorumlusu, bir veri koruma görevlisi atamış olup söz konusu görevliye [электронная почта защищена] e-posta adresinden ulaşabilirsiniz.
    3. Verileriniz, Avrupa Parlamentosu ve Konseyinin, kişisel verilerin işlenmesi ve söz konusu verilerin serbest dolaşımı açısından bireylerin korunması hakkındaki 27 Nisan 2016 tarihli (EU) 2016/ 679 numaralı Düzenlemesinin 6(1) (a) Maddesi ve ilga edici Direktif 95/46 /EC (соответствующий GDPR olarak anılacaktır) uyarınca verilen e-posta adresine TME elektronik haber bültenini göndermek için işlenecektir.


    4. Verilerin verilmesi zorunlu değildir ancak bilgi bülteni göndermek için gereklidir.
    5. Kişisel verileriniz, kişisel verileriniz işleme izninizi iptal edene kadar saklanacaktır.
    6. Veri sorumlusu, izninizi iptal ederseniz veya profile çıkarma durumunda kişisel verilerinizin bu maksatla işlenmesine itiraz ederseniz kişisel verilerinizin pazarlama amaçlarıyla kullanılmasına daha erken bir tarih те сын Верецектир.
    7. Kişisel verilerinize erişme ve düzeltilmesini, silinmesini veya işlenmesinin sınırlandırılmasını isteme hakkınız vardır.
    8. Kişisel verilerinizin veri sorumlusunun meşru çıkarına istinaden işlendiği kadarıyla kişisel verilerinizin işlenmesine itiraz etme hakkınız vardır. Özellikle kişisel verilerinizin pazarlama ve profil çıkarma maksatlarıyla kullanılmasına itiraz etme hakkınız bulunmaktadır.
    9. Kişisel verilerinizin izninize istinaden işlendiği kadarıyla söz konusu izni iptal etme hakkınız vardır. İznin iptal edilmesi, iptal edilme öncesinde yapılan işlemenin meşruluğunu etkilemez.

    10. Kişisel verilerinizin bir anlaşma yapmak veya hükümlerini gerçekleştirmek amacıyla ya da izninize istinaden işlendiği kadarıyla kişisel verilerinizi aktarma, yani verileriniz makine tarafından ok unabilir, yaygın kullanılan, yapılı bir formatta veri sorumlusundan alma, hakkınız vardır. Kişisel verilerinizi farklı bir veri sorumlusuna aktarabilirsiniz.
    11. Denetleyici veri koruma mercine şikayette bulunma hakkınız da bulunmaktadır.

    даха фазла даха аз

    TME Haber Bültenine Абоне Ол

    Özel teklifler — indirimler — yeni ürünler. TME tekliflerini takip edin

    Haber Bülteni Hüküm ve Şartları Aboneliği sonlandır

    Veri işlemesi yapılıyor

    Görev başarıyla tamamlandı.

    Beklenmeyen bir hata oluştu. Lütfen tekrar deneyin.

    Отурум aç

    Парола

    Хата олушту

    Bir müşteri numarası ve bir parola girmeniz gerekiyor

    Alana girilen değer çok kısa. Минимальный размер uzunluk %minLength% karakterden oluşmalıdır

    Kullanıcı adı veya müşteri numarasını girin

    Şifrenizi mi unuttunuz?

    İnternet tarayıcınız artık desteklenmiyor, yeni sürümünü yükleyin

    Хром Индир

    Fire Fox Индир

    Опера Индир

    Microsoft Edge Индир

    Сафари Индир

    Выбрать почтовый ящик

    термисторов НТК измерения температуры Б57703М

    Онлайн-сервисы TTI доступны только членам,
    пожалуйста, войдите или зарегистрируйтесь, чтобы получить доступ!

    accountNumber != ‘na'»> Извини! У вас нет доступа к этой онлайн-службе в учетной записи: {{appAccount.accountNumber}}

    Аккаунты не найдены


    Пожалуйста, выберите одну из следующих учетных записей, у которых есть доступ.

    {{account.accountDisplayData}}

    Ни один аккаунт не имеет доступа.

    Щелкните здесь, чтобы узнать больше о статусе заказа.

    Нажмите здесь, чтобы узнать больше о ezReview.

    Извини! У вас нет доступа к этой онлайн-службе в учетной записи: {{selectedAccount.accountNumber}}

    Аккаунты не найдены


    Приложение {{serviceName}} в настоящее время недоступно.


    Пожалуйста, выберите одну из следующих учетных записей, у которых есть доступ.

    {{account.accountDisplayData}}

    Нет доступа к учетным записям. Пожалуйста, нажмите здесь, чтобы узнать больше о ezBuy.

    Нет доступа к учетным записям. Пожалуйста, нажмите здесь, чтобы узнать больше о ezBuy.

    Доступ к вашей услуге {{serviceName}} в настоящее время недоступен, так как ваша корзина «привязана» к учетной записи TTI. которого нет в вашем профиле {{serviceName}}. Вероятно, это произошло из-за того, что ваша корзина содержит одну или несколько деталей. со сниженными ценами.

    Чтобы восстановить доступ к ezBuy, очистите корзину, разместив заказ или удалив детали со скидкой. Цены.

    Если у вас есть другие вопросы, позвоните своему торговому представителю TTI.

    Корзина заблокирована для:
    {{selectedAccount.accountNumber}}
    {{selectedAccount.billingAddress.name}}
    {{selectedAccount.billingAddress.streetAddress}}
    {{selectedAccount.billingAddress.city}}, {{selectedAccount.billingAddress.state.stateShortName}} {{selectedAccount.billingAddress.zip}}
    {{selectedAccount.billingAddress.country.countryShortName}}

    • {{supportModalInfo.firstName}} {{supportModalInfo.lastName}}
    • {{supportModalInfo.title}}
    • {{supportModalInfo. branch}}
    • {{supportModalInfo.phone}}
    • {{supportModalInfo.email}}
    • {{supportModalInfoTwo.firstName}} {{supportModalInfoTwo.lastName}}
    • {{supportModalInfoTwo.title}}
    • {{supportModalInfoTwo.branch}}
    • {{supportModalInfoTwo.phone}}
    • {{supportModalInfoTwo.email}}

    Электронная почта: {{supportModalInfo.email}}

    Отправить быстрое сообщение

    Предмет:

    Сообщение:

    Сообщение успешно отправлено!


    Не удалось отправить письмо!


    Введите не менее трех символов в поле поиска детали.
    请在“零件搜索”字段至少输入三个字符

    • Дом
    • Производители
    • ЭПКОС / ТДК
    • Рекомендуемые продукты EPCOS / TDK

    Измерение температуры серии EPCOS B57703M Термисторы NTC представляют собой уникальный тип элемента с переменным сопротивлением, который изменяет свое физическое сопротивление в ответ на изменения температуры. Относительно большой отрицательный отклик термисторов для измерения температуры B57703M означает, что даже небольшие изменения температуры могут вызвать значительные изменения их электрического сопротивления. Эти термисторы NTC B57703M очень точны, легко монтируются и обеспечивают хорошую тепловую связь через металлическую бирку. Термисторы EPCOS B57703M для измерения температуры имеют диапазон рабочих температур от -55°C до +300°C и номинальную мощность 150 мВт. Как правило, термисторы B57703M NTC используются в кухонных приборах, коммерческом охлаждении, измерениях температуры поверхности и электрических плитах.

    Особенности

    • Простой монтаж
    • Хорошая тепловая связь через металлическую метку
    • Высокая точность
    • Термистор в металлическом корпусе
    • Сертификат UL (E69802)

    Применение

    • Коммерческое охлаждение
    • Приборы для приготовления пищи
    • Электрические мультиварки
    • Электрические духовки
    • Электрические плиты
    • Морозильники
    • Индукционные плиты
    • Микроволновые печи
    • Пароварки
    • Измерение температуры поверхности:
      • Радиаторы
      • Корпуса

    Технические характеристики

    Параметры Значения
    Ориентировочная теплоемкость 150 мДж/К
    Диапазон рабочих температур от -55°C до +300°C
    Номинальная мощность 150 мВт
    Допуск сопротивления ±2%
    Испытательное напряжение 1000 В переменного тока

    Видео

    В этом видеоролике с техническими характеристиками TTI для термисторов NTC серии EPCOS B57703M для измерения температуры показано, как термисторы EPCOS серий S861 и M703 NTC обеспечивают точные показания температуры в ряде приложений. Датчики серий S861 и M703 сертифицированы AEC-Q200 и оснащены небольшим термистором в эпоксидной капсуле.

    См. расшифровку видео ниже

    Расшифровка видео

    Некоторым электронным устройствам нравится тепло, в то время как другие чувствуют тепло и перестают функционировать. Таким образом, измерение температуры является важным компонентом вашего проекта, независимо от того, пытаетесь ли вы что-то охладить или нагреть. Термисторы EPCOS серий S861 и M703 NTC обеспечивают точные показания температуры в различных приложениях.

    Серия S861 представляет собой датчики, отвечающие требованиям AEC-Q200, с миниатюрным термистором в эпоксидной капсуле. Они обеспечивают короткое время отклика с жестким допуском до 1%. Серия M703 заключает термистор в проушину, что обеспечивает простой монтаж и точную тепловую связь. Эти термисторы NTC являются компонентами, включенными в список UL, которые имеют различные значения сопротивления и художественные характеристики. Провода имеют тефлоновую изоляцию с серебряным покрытием поверх медного или никелевого провода.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *