характеристики и параметры, принцип действия и классификация
Развитие электроники с каждым годом набирает обороты. Но, несмотря на новые изобретения, в электрических схемах надёжно работают устройства, сконструированные ещё в начале XX века. Один из таких приборов — термистор. Форма и назначение этого элемента настолько разнообразны, что быстро отыскать его в схеме удаётся только опытным работникам сферы электротехники. Понять, что такое термистор, можно лишь владея знаниями о строении и свойствах проводников, диэлектриков и полупроводников.
Описание прибора
Датчики температуры широко используются в электротехнике. Почти во всех механизмах применяются аналоговые и цифровые микросхемы термометров, термопары, резистивные датчики и термисторы. Приставка в названии прибора говорит о том, что термистор — это такое устройство, которое зависит от влияния температуры. Количество тепла в окружающей среде — главенствующий показатель в его работе. Благодаря нагреванию или охлаждению, меняются параметры элемента, появляется сигнал, доступный для передачи на механизмы контроля или измерения.
Термистор — это прибор электроники, у которого значения температуры и сопротивления связаны обратной пропорциональностью.
Существуют и другое его название — терморезистор. Но это не вполне правильно, так как на самом деле термистор является одним из подвидов терморезистора. Изменение теплоты может влиять на сопротивление резистивного элемента двумя способами: либо увеличивая его, либо уменьшая.
Поэтому термосопротивления по температурному коэффициенту подразделяются на РТС (положительные) и NTC (отрицательные). РТС — резисторы получили название позисторов, а NTC — термисторов.
Отличие РТС и NTC приборов состоит в изменении их свойств при воздействии климатических условий. Сопротивление позисторов прямо пропорционально количеству тепла в окружающей среде. При нагреве NTC — приборов его значение уменьшается.
Таким образом, повышение температуры позистора приведёт к росту его сопротивления, а у термистора — к падению.
Вид терморезистора на электрических принципиальных схемах похож на обыкновенный резистор. Отличительной чертой является прямая под наклоном, которая перечёркивает элемент. Тем самым показывая, что сопротивление не постоянно, а может изменяться в зависимости от увеличения или уменьшения температуры в окружающей среде.
Основное вещество для создания позисторов — титанат бария. Технология изготовления NTC — приборов более сложная из-за смешивания различных веществ: полупроводников с примесями и стеклообразных оксидов переходных металлов.
Классификация термисторов
Габариты и конструкция терморезисторов различны и зависят от области их применения.
Форма термисторов может напоминать:
- плоскую пластину;
- диск;
- стержень;
- шайбу;
- трубку;
- бусинку;
- цилиндр.
Самые маленькие терморезисторы в виде бусинок. Их размеры меньше 1 миллиметра, а характеристики элементов отличаются стабильностью. Недостатком является невозможность взаимной подмены в электрических схемах.
Классификация терморезисторов по числу градусов в Кельвинах:
- сверх высокотемпературные — от 900 до 1300;
- высокотемпературные — от 570 до 899;
- среднетемпературные — от 170 до 510;
- низкотемпературные — до 170.
Максимальный нагрев хоть и допустим для термоэлементов, но сказывается на их работе ухудшением качества и появлением значительной погрешности в показателях.
Технические характеристики и принцип действия
Выбор терморезистора для контролирующего или измерительного механизма проводят по номинальным паспортным или справочным данным. Принцип действия, основные характеристики и параметры термисторов и позисторов похожи. Но некоторые отличия все же существуют.
РТС — элементы оцениваются тремя определяющими показателями: температурной и статической вольт — амперной характеристикой, термическим коэффициентом сопротивления (ТКС).
У термистора список более широкий.
Помимо параметров, аналогичных позистору, показатели следующие:
- номинальное сопротивление;
- коэффициенты рассеяния, энергетической чувствительности и температуры;
- постоянная времени;
- температура и мощность по максимуму.
Из этих показателей основными, которые влияют на выбор и оценивание термистора, являются:
- номинальное сопротивление;
- термический коэффициент сопротивления;
- мощность рассеяния;
- интервал рабочей температуры.
Номинальное сопротивление определяется при конкретной температуре (чаще всего двадцать градусов Цельсия). Его значение у современных терморезисторов колеблется в пределах от нескольких десятков до сотен тысяч ом.
Допустима некоторая погрешность значения номинального сопротивления. Она может составлять не более 20% и должна быть указана в паспортных данных прибора.
ТКС зависит от теплоты. Он устанавливает величину изменения сопротивления при колебании температуры на одно деление. Индекс в его обозначении указывает на количество градусов Цельсия либо Кельвина в момент измерений.
Выделение теплоты на детали появляется из-за протекания по ней тока при включении в электрическую цепь. Мощность рассеяния — величина, при которой резистивный элемент разогревается от 20 градусов Цельсия до максимально допустимой температуры.
Интервал рабочей температуры показывает такое её значение, при котором прибор работает длительное время без погрешностей и повреждений.
Принцип действия термосопротивлений основан на изменении их сопротивления под влиянием теплоты.
Происходит это по нескольким причинам:
- из-за фазового превращения;
- ионы с непостоянной валентностью более энергично обмениваются электронами;
- сосредоточенность заряженных частиц в полупроводнике распределяется другим образом.
Термисторы используются в сложных устройствах, которые применяются в промышленности, сельском хозяйстве, схемах электроники автомобилей. А также встречаются в приборах, которые окружают человека в быту — стиральных, посудомоечных машинах, холодильниках и другом оборудовании с контролем температуры.
8.1.1. Принцип действия термисторов
Термистор – это полупроводниковый терморезистор с отрицательным температурным коэффициентом сопротивления.
В термисторах прямого подогрева сопротивление изменяется или под влиянием теплоты, выделяющейся в них при прохождении электрического тока, или в результате изменения температуры термистора из-за изменения его теплового облучения (например, при изменении температуры окружающей среды).
Уменьшение сопротивления полупроводника с увеличением температуры (отрицательный температурный коэффициент сопротивления) может быть вызвано разными причинами:
1) увеличением концентрации носителей заряда;
2) увеличением интенсивности обмена электронами между ионами с переменной валентностью;
3) фазовыми превращениями полупроводникового материала.
1. Увеличением концентрации носителей заряда характерно для термисторов, изготовленных из монокристаллов ковалентных полупроводников (кремния, германия, карбида кремния, соединений типа АIIIBV и др.). Такие полупроводники обладают отрицательным температурным коэффициентом сопротивления в диапазоне температур, соответствующих примесной электропроводности, когда не все примеси ионизированы, а также в диапазоне температур собственной электропроводности, когда концентрация носителей изменяется из-за ионизации собственных атомов полупроводника. И в том и в другом случае сопротивление полупроводника зависит в основном от изменения концентрации носителей заряда, так как температурные изменения подвижности при этом пренебрежимо малы.
В этих диапазонах температур зависимость сопротивления полупроводника от температуры соответствует уравнению
, (8.1)
где – коэффициент, зависящий от материала и размеров термистора; – коэффициент температурной чувствительности. При неполной ионизации примесей и отсутствии компенсации:
,
где – энергия ионизации примесей (доноров или акцепторов).
Для скомпенсированного полупроводника при неполной ионизации примесей
. (8.2)
При собственной электропроводности
, (8.3)
где – ширина запрещенной зоны полупроводника.
1. Основная часть термисторов, выпускаемых промышленностью, изготовлена из оксидных полупроводников – оксидов металлов переходной группы таблицы Д.И. Менделеева (от титана до цинка). Такие термисторы в форме стержней, трубок, дисков или пластинок получают методом керамической технологии, т.е. путем обжига заготовок при высокой температуре.
Электропроводность оксидных полупроводников с преобладающей ионной связью отличается от электропроводности ковалентных полупроводников. Для металлов переходной группы характерны наличие незаполненных электронных оболочек и переменная валентность. В результате, при образовании оксида в определенных условиях (наличие примесей, отклонение от стехиометрии) в одинаковых кристаллографических положениях оказываются ионы с разными зарядами.
Электропроводность таких материалов объясняется обменом электронами между соседними ионами. Энергия, необходимая для такого обмена, экспоненциально уменьшается с увеличением температуры. В результате изменения интенсивности обмена электронами между ионами температурная зависимость сопротивления термистора из оксидного полупроводника имеет такой же характер, как и у термисторов из ковалентных полупроводников (8.1), но коэффициент температурной чувствительности отражает изменение интенсивности обмена электронами между ионами, а не изменение концентрации носителей заряда.
2. В оксидах ванадия V2 O4 и V2
O3 при температуре фазовых превращений (68 и -110 °С) наблюдается уменьшение удельного сопротивления на несколько порядков. Это явление также может быть использовано для создания термисторов с большим отрицательным температурным коэффициентом сопротивления в диапазоне температур, соответствующих фазовому превращению.
Термисторы, варисторы, принцип работы, характеристики, параметры, применения.
УГО термистора
Термистор – обычно изготавливается из металла, сопротивление которого линейно изменяется в зависимости от температуры(медь, платина) или на основе полупроводников. Значение сопротивления терморезистора определяется температурой окружающей среды и собственным нагревом терморезистора, возникающим из-за протекания по нему электрического тока. Температура терморезистора не пропорциональна протекающему току, поэтому температура терморезистора, а, следовательно, его ВАХ даже при постоянной температуре окружающей среды не линейна.
Термисторы бывают двух типов: с положительным и отрицательным температурным коэффициентом. У терморезистора с положительным коэффициентом при повышении температуры сопротивление возрастает, а с отрицательным коэффициентом — уменьшается.
Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления (Температурный коэффициент сопротивления характеризует зависимость электрического сопротивления от температуры и измеряется в кельвинах в минус первой степени (K−1).), интервал рабочих температур, максимально допустимая мощность рассеяния (мощность, при которой термистор, находящийся в спокойном воздухе при температуре 20°C, разогревается при прохождении тока до максимально допустимой температуры).
ВАХ термистора
На начальном участке характеристики соблюдается линейная зависимость, так как при малых токах выделяющаяся мощность недостаточна для существенного изменения температуры термистора, сопротивление не меняется, поэтому соблюдается закон Ома. При увеличении тока нагрев становится заметным, сопротивление термистора начинает уменьшаться и крутизна характеристики снижается. Достигнув некоторого максимального значения, падение напряжения на термисторе при дальнейшем росте тока начинает уменьшаться.
Применение: Автомобильная электроника: для измерения температуры охлаждения воды или масла; для слежения температуры выхлопных газов, крышки цилиндра, тормозной системы; для контроля температуры в салоне автомобиля.
В кондиционерах: в распределителе тепла; для мониторинга температуры в комнате
В нагревателях для пола и газовых котлах.
УГО варистора
Варистор — это электронный компонент, который ограничивает напряжение в цепи питания электроприборов.
ВАХ варистора.
Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.
Основное влияние на сопротивление варистора оказывает приложенное напряжение и в значительно меньшей степени — температура. В технических условиях на варисторы обычно приводят:
1. Uном – номинальное напряжение – напряжение при превышении, которого на 20% не наблюдается значительного разогрева варистора.
2. Iном – ток, протекающий при Uном.
3. β – коэффициент нелинейности, равный отношению статического сопротивления к дифференциальному сопротивлению. .
Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.
Температурный коэффициент сопротивления варистора — отрицательная величина.
Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) Высоковольтный варистор используется в защитном штекерном модуле разрядника, предназначенном для предотвращения выхода из строя оборудования вследствие перенапряжений (Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.) и др.
Термисторная защита электродвигателей и реле термисторной защиты двигателя
Термисторная (позисторная) защита электродвигателей
Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя. Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC). Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).
Термочувствительные защитные устройства: термисторы, позисторы
В качестве датчиков температуры получили применение термисторы и позисторы (РТС – резисторы) — полупроводниковые резисторы, изменяющие свое сопротивление от температуры. Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК. При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы, наклеенные на три фазы, включаются параллельно (рисунок 1).
Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов
Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.
Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.
Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания =105, 115, 130, 145 и 160 . Эта температура называется классификационной. Позистор резко меняет сопротивление при температура за время не более 12 с. При сопротивление трёх последовательно включенных позисторов должно быть не более 1650 Ом, при температуре их сопротивление должно быть не менее 4000 Ом.
Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.
Рассмотрим схему позисторной защиты, показанную на рисунке 2.
К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.
При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.
При нагреве обмотки двигателя сопротивление позисторов увеличивается, и при определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1. При срабатывании триггера VТ2 закрывается, а VT3 — открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от напряжения сети, двигатель останавливается.
Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю
После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.
В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.
Достоинства и недостатки термисторной (позисторной) защиты
- Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.
- Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя принудительного охлаждения. Следующей областью применения термисторной защиты является температурный контроль в трансформаторах, жидкостях и подшипниках для их защиты от перегрева.
- Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.
- Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.
Виды термисторных реле различных производителей:
Реле термисторной защиты двигателя TER-7 ELCO (Чехия)
- контролирует температуру обмотки электродвигателя в температ. интервале, данном сопротивл. PTC термистора фиксированный настроенный уровень коммутации
- в качестве считывающего элемента применяетсчя термистор PTC встроенный в обмотку электродвигателя его производителем, возможно использование внешнего PTC сенсора
- функция ПАМЯТЬ — реле в случае ошибки блокируется до момента вмешательства персонала (наж. кнопки RESET)
RESET ошибочного состояния:
a) кнопкой на передней панели
b) внешним контактом (на расстоянии по двум проводам) - функция контроля короткого замыкани или отключения сенсора , состояние нарушения сенсора указывает мигающий красный светодиодный индикатор
- выходной контакт 2x переключ. 8 A / 250 V AC1
- состояние превышение температуры обмотки двигателя указывает светящийся красный светодиодный индикатор
- универсальное напряжение питания AC/ DC 24 — 240 V
- клеммы сенсора не изолированы гальванически, но их можно замкнуть с клеммой PE без поломки устройства, в случае питания от сети должен быть подключен нейтраль на клемму A2
Реле термисторной защиты электродвигателя РТ-М01-1-15 (МЕАНДР, Россия)
- контролирует температуру двигателей, оснащенные позисторами (термисторы с положительным температурным коэффициентом — РТС резисторы), встроенные в обмотку двигателя ( производителем).
- коммутируемый ток 5А/250В (пиковый 16А), контакты реле 1з+1р
- индикация рабочих состояний:
- (напряжение питания, срабатывание реле, перегрев двигателя, КЗ датчиков)
- напряжение питания АС 220, 100, 380 (по исполнениям)
Реле контроля температуры двигателя E3TF01 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)
- контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
- диапазон измерения общее сопр. холодн. <1,5kΩ клеммы T1-T2 или T1-T3
- напряжений питания 230V AC
- максимальный коммутируемый ток 250V, 5A AC (1 перекидной)
Реле контроля температуры двигателя G2TF02 (PTC), 2ПК (требуется модуль TR2) TELE Серия GAMMA (Австрия)
- контролируемая величина PTC (контр. температуры двигателя на повышение) от 6 PTC датчиков
- диапазон измерения общее сопр. холодн. <1,5kΩ клеммы T1-T2
- диапазон напряжений питания спомощью модуля питания TR2 или SNT2 * (устанавливается в реле)
- напряжений питания 230V AC
- максимальный коммутируемый ток 250V, 5A AC (2 перекидных)
Реле термисторной защиты двигателя CR-810 F&F ЕвроАвтоматика (Белоруссия)
- контроль температуры электродвигателей, генераторов, трансформаторов и защита их от перегрева
- датчики РТС устанавливаются в обмотках электродвигателя производителем и в комплект не входят (термисторы РТС соединенные последовательно от 1 до 6 штук)
- напряжение питания 230V AC и 24V AC/DC
- максимальный комутируемый ток 16А, 1 переключающий контакт
- контроль КЗ в цепи термисторных датчиков
- с ростом температуры электродвигателя растет сопротивление цепи термисторных датчиков, при достижении более 3000 Ом питание отключается (реле разрывает цепь питания катушки контактора), включение происходит автоматически при снижении температуры и соответсвенно сопротивления до 1800 Ом.
Реле контроля температуры двигателя MTR01, MTR02 BMR (Чехия)
- Реле контролирует температуру обмотки электрического двигателя. Принцип действия основан на измерении сопротивления термистора, встроенного в двигатель.
- Устройство также контролирует короткое замыкание или пропадание фазы. Реле имеет один выходной перекидной контакт на ток 8 А.
- Модификация MTR01 24V/ MTR02 24V предназначена для напряжения питания 24 В. Остальные параметры.
- MTR02 с гальванической изоляцией
- Сопротивление PTC в раб. режиме 50 Ω < PTC < 3,3 кΩ
- Сопротивление PTC в авар. режиме PTC > 3,3кΩ или PTC < 50Ω
- Отключение аварийного режима PTC < 1,8 кΩ + RESET
- Номинальный ток 8 A (15А — пиковый ток), 1 перекидной контакт
Реле контроля температуры двигателя BTR-12E BTR Electronic Systems, «METZ CONNECT» (Германия)
- реле термистор применяется для защиты моторов от термических перегрузок, возникающих при механических перегрузках в приводах или при использовании электродвигателей под перенапряжением. Для регистрации температуры применяется РТС = сопротивление с позитивным температурным коэффициентом, которые позиционируются в месте наибольшего нагрева.
- выпускается с памятью ошибки и без ЗУ (запоминающее устройство)
- напряжение питания 230V AC / 24V AC/DC
- предельно допустимый ток контактов 6А (1 или 2 переключающих контакта)
Реле термической защиты Grundfos MS 220 C Grundfos/Ziehl (Германия)
- Реле Grundfos MS 220C предназначено для преобразования термисторного сигнала в релейный и передачи его на пускатель в насосах с мощностью двигателя более 3.0 кВт.
- напряжение питания AC/DC 24 — 240V (и др. в зависимости от исполнения 110,400V)
- 1 CO, ток контактов 6А
Реле контроля температуры двигателя серии 71.91 и 71.92 Finder (Италия)
Термисторное реле определения температуры для промышленного применения.
Реле Finder термисторной защиты двигателя [71.91.8.230.0300]
- 1 нормально разомкнутый контакт, без памяти отказов
- Питание 24 В переменного/постоянного тока или 230 В переменного тока
- Защита от перегрузок в соответствии с EN 60204-7-3
- Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
- Индикация состояния с помощью светодиода
- Определение температуры с положительным температурным коэффициентом (PTC)
- Выявление короткого замыкания с помощью PTC
- Выявление обрыва провода с помощью PTC
Реле Finder термисторной защиты двигателя (с памятью) [71.92.8.230.0401]
- Термисторное реле с памятью отказов
- 2 перекидных контакта
- Питание 24 В переменного/постоянного тока или 230 В переменного тока
- Защита от перегрузок в соответствии с EN 60204-7-3
- Положительная предохранительная логическая схема размыкает контакт, если значения измерений выходят за пределы приемлемого диапазона
- Индикация состояния с помощью светодиода
- Определение температуры с положительным температурным коэффициентом (PTC)
- Память отказов выбирается переключателем
- Выявление короткого замыкания с помощью PTC
- Выявление обрыва провода с помощью PTC
Термистор — это… Что такое Термистор?
Датчик температуры на основе термистора Символ терморезистора, используемый в схемах Вольт-Амперная характеристика (ВАХ) для позистора. Зависимость сопротивления Термистора от температуры. 1:для R0Термистор — полупроводниковый резистор, электрическое сопротивление которого существенно зависит от температуры.
Для термистора характерны большой температурный коэффициент сопротивления (ТКС) (в десятки раз превышающий этот коэффициент у металлов), простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени.
Терморезистор изготавливают в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок преимущественно методами порошковой металлургии. Их размеры могут варьироваться в пределах от 1—10 мкм до 1—2 см.
Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления, интервал рабочих температур, максимально допустимая мощность рассеяния.
Термистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году и имеет патент США номер #2,021,491.
Различают терморезисторы с отрицательным (термисторы) и положительным (позисторы) ТКС.
Терморезисторы с отрицательным ТКС изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoO?, NiO, CuO), легированных Ge и Si, полупроводников типа AIII BV, стеклообразных полупроводников и других материалов.
Различают терморезисторы низкотемпературные (рассчитанные на работу при температуpax ниже 170 К), среднетемпературные (170—510 К) и высокотемпературные (выше 570 К). Кроме того, существуют терморезисторы, предназначенные для работы при 4,2 К и ниже и при 900—1300 К. Наиболее широко используются среднетемпературные терморезисторы с ТКС от — 2,4 до −8,4 %/К и номинальным сопротивлением 1—106 Ом.
Режим работы терморезисторов зависит от того, на каком участке статической вольт-амперной характеристики (ВАХ) выбрана рабочая точка. В свою очередь ВАХ зависит как от конструкции, размеров и основных параметров терморезистора, так и от температуры, теплопроводности окружающей среды, тепловой связи между терморезистором и средой. Терморезисторы с рабочей точкой на начальном (линейном) участке ВАХ используются для измерения и контроля температуры и компенсации температурных изменений параметров электрической цепей и электронных приборов. Терморезисторы с рабочей точкой на нисходящем участке ВАХ (с отрицательным сопротивлением) применяются в качестве пусковых реле, реле времени, измерителей мощности электро-магнитного излучения на СВЧ, стабилизаторов температуры и напряжения. Режим работы терморезистора, при котором рабочая точка находится также на ниспадающем участке ВАХ (при этом используется зависимость сопротивления терморезистора от температуры и теплопроводности окружающей среды), характерен для терморезисторов, применяемых в системах теплового контроля и пожарной сигнализации, регулирования уровня жидких и сыпучих сред; действие таких терморезисторов основано на возникновении релейного эффекта в цепи с терморезистором при изменении температуры окружающей среды или условий теплообмена терморезистора со средой.
Изготовляются также терморезисторы специальной конструкции — с косвенным подогревом. В таких терморезисторах имеется подогревная обмотка, изолированная от полупроводникового резистивного элемента (если при этом мощность, выделяющаяся в резистивном элементе, мала, то тепловой режим терморезистора определяется температурой подогревателя, то есть током в нём). Таким образом, появляется возможность изменять состояние терморезистора, не меняя ток через него. Такой терморезистор используется в качестве переменного резистора, управляемого электрически на расстоянии.
Из терморезисторов с положительным температурным коэффициентом наибольший интерес представляют терморезисторы, изготовленные из твёрдых растворов на основе BaTiO3. Такие терморезисторы обычно называют позисторами. Известны терморезисторы с небольшим положительным температурным коэффициентом (0,5—0,7 %/К), выполненные на основе кремния с электронной проводимостью; их сопротивление изменяется с температурой примерно по линейному закону. Такие терморезисторы используются, например, для температурной стабилизации электронных устройств на транзисторах.
Стоит отметить, что график изображённый на рисунке «Вольт-Амперная характеристика (ВАХ) для позистора.» некорректен, так как неправильно расположены оси — нужно поменять их местами. Для получения ВАХ термистора график необходимо повернуть влево на 90 градусов и инвертировать по вертикали.
Литература
- Шефтель И Т., Терморезисторы
- Мэклин Э. Д., Терморезисторы
- Шашков А. Г., Терморезисторы и их применение
- Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов — 4-е перераб. и доп. изд. — М.: Высшая школа, 1987. — С. 401-407. — 479 с. — 50 000 экз.
См. также
Категории:- Полупроводниковые приборы
- Электронные компоненты
- Датчики
Wikimedia Foundation. 2010.