Термодатчик из транзистора: Термодатчик на транзисторе — E-core – Датчик температуры | Все своими руками

Термодатчик на транзисторе — E-core

В этой статье я расскажу об использовании биполярного транзистора в качестве датчика температуры. Описание приводится в контексте использования его для измерения температуры радиатора (теплоотвода).

Главное преимущество датчика температуры на транзисторе в том, что он обеспечивает хороший тепловой контакт с радиатором и его относительно просто на нем закрепить и стоит биполярный транзистор не дорого.

Ниже показана схема включения транзистора и узел обработки сигнала на ОУ. VT1 это и есть транзистор-термодатчик, который крепится на радиатор.

Транзистор намеренно используется p-n-p структуры т.к. радиатор часто соединяется с общим проводом схемы, а коллектор транзистора в корпусе TO-220 соединен с теплоотводной пластиной и при креплении транзистора нет необходимости электрически изолировать его от радиатора, что дополнительно упрощает конструкцию.

Падение напряжения на p-n переходе изменяется при увеличении его температуры с крутизной примерно -2 мВ/градус (т.е. уменьшается с ростом температуры). Такое малое изменение напряжения не очень удобно обрабатывать АЦП, более того удобнее когда зависимость прямая т.е. при увеличении температуры сигнал температуры растет.

Приведенная схема смещает, инвертирует и усиливает сигнал с транзистора, обеспечивая увеличение выходного напряжения с ростом температуры, и работает следующим образом.

Из опорного напряжения, формируемого делителем R1R2, вычитается падение напряжения на транзисторе и результат вычитания усиливается. Опорное напряжения выбирается чуть выше падения напряжения на транзисторе при температуре 25 градусов, чем обеспечивается измерение напряжения ниже 25 градусов.

Коэффициент усиления схемы определяется соотношением R5/R4 + 1 и для данной схемы равен 11. Итоговая крутизна сигнала температуры получается 2*11=22мВ/градус. Таким образом для обеспечения измерения температуры от 0 градусов выходной сигнал при 25 градусах должен быть не менее 25*0,022=0,55В. Превышение напряжения смещения над падением на транзисторе при 25 градусах должно быть не менее 0,05В.

Падение напряжения на транзисторе при 25 градусах составляет 0,5-0,6В и зависит от конкретного типа транзистора и тока через него и наверняка подобрать опорное напряжение «с ходу» не получится, поэтому на этапе отладки требуется подбор резисторов R1R2 для конкретного типа транзистора и тока через него, от одного транзистора к другому это значение может меняться, но это уже может быть скорректировано программными методами.

Ток через транзистор определяется сопротивлением резистора R3, в данной схеме ток примерно равен 15мА. Рекомендуемое значение тока через транзистор 10-20мА.

Приведенная схема адаптирована под АЦП с опорным напряжением 3,3В, но может быть использована и для 5В опорного напряжения, для этого необходимо увеличить коэффициент усиления схемы, исходя из требуемого диапазона температур.

На элементах R6VD1 собрана схема ограничения выходного напряжения на случай нештатных ситуаций, например обрыва провода к транзистору. Если напряжение питания ОУ не превышает опорное напряжение АЦП, то их можно исключить.

В качестве DA1 может использовать любой ОУ, обеспечивающий работу при однополярном питании и входном напряжение от 0В. Например дешевый и распространенный LM358.

В качестве транзистора может использоваться любой не составной транзистор p-n-p структуры.

Датчик температуры | Все своими руками

Опубликовал admin | Дата 9 июня, 2014

     Зависимость падения напряжения на p-n переходе от температуры было замечено сразу после создания самого этого перехода. Это свойство полупроводников используется в электронных термометрах, датчиках температуры, термореле и т.д.

     Простейшим датчиком температуры является p-n переход кремниевого диода, температурный коэффициент напряжения, которого равен, примерно, 3 мВ/°C, а прямое падение напряжения находится в районе 0,7В. Работать с таким маленьким напряжением неудобно, поэтому в качестве термозависимого элемента лучше использовать p-n переходы транзистора, добавив к нему базовый делитель напряжения. Полученный двухполюсник обладает свойствами цепочки диодов, т.е. падение напряжения на нем можно устанавливать намного больше, чем 0,7В. Зависит оно от соотношения базовых резисторов R1 и R2 см. рис. 1.

     Обладая отрицательным температурным коэффициентом сопротивления, этот двухполюсник нашел применение в схеме питания варикапов. При повышении температуры, емкость варикапов начинает увеличиваться, но одновременно уменьшается падение напряжения на двухполюснике VT1, R1,R2, что ведет к увеличению напряжения на переменном резисторе и соответственно на варикапе, уменьшая его емкость. Таким образом, достигается температурная стабилизация резонансной частоты колебательного контура. На рисунке 2 показана схема двухполюсника, который можно использовать в качестве термодатчика в схемах электронных термореле и термометрах. Здесь есть одно неудобство, кристалл транзистора КТ315 размещен в пластмассовом корпусе, что повышает инерцию измерения температуры или срабатывания реле. И второе, это неудобство крепления его к объекту, температуру которого необходимо отслеживать. Например, для отслеживания температуры теплоотводов мощных ПП, лучше применить в качестве термодатчика транзистор КТ814. Конструкция этого транзистора позволяет крепить его непосредственно к радиатору, находящемуся под потенциалом земли, всего одним винтиком. Такой датчик используется в схеме терморегулятора для вентилятора, размещенной на сайте www. ixbt.com/spu/fan-thermal-control.shtml

     На рисунке 4 показана практическая схема для вентилятора охлаждения блока питания. Применение операционного усилителя средней мощности К157УД1 в качестве компаратора, позволило подключить пару вентиляторов от блока питания компьютера непосредственно на выход микросхемы, выходной ток которой, равен 0,3А. Температуру включения вентиляторов устанавливают резистором R5. Схема работает следующим образом. При нормальной температуре теплоотвода напряжение на выводе 9 микросхемы DA1 должно быть больше, чем на выводе 8. При этом на выходе DA1, выводе 6, будет потенциал близкий к напряжению питания схемы. Напряжение на вентиляторах при таких условиях будет практически равно «0». Вентиляторы выключены. При повышении температуры теплоотводов будет повышаться и температура транзистора VT1, что в свою очередь вызовет уменьшение напряжения на неинвертирующем входе 8 микросхемы DA1. Как только это напряжение будет меньше напряжения, установленного резистором R5, состояние компаратора изменится и на его выходе напряжение упадет примерно до потенциала земли. Вентиляторы включатся. Резистор R7 обеспечивает небольшой гистерезис схемы, что исключает неопределенное состояние выходного напряжения на выходе DA1 при равенстве входных напряжений. Плату терморегулятора лучше установить прямо на контролируемом радиаторе, чтобы его микросхема тоже обдувалась вентилятором. Транзистор VT1 соединяется с платой тремя проводами и устанавливается в непосредственной близости от мощных ПП.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:26 052


Термодатчики на транзисторах в схемах на МК

Физическая природа полупроводниковых материалов такова, что их параметры достаточно сильно зависят от температуры. В обычных усилительных схемах с этим явлением борются, а в измерителях температуры, наоборот, поощряют Например, у кремниевых транзисторов при постоянном токе коллектора с повышением температуры напряжение «база — эмиттер» U^^^ уменьшается с теоретическим коэффициентом 2.1 мВ/°С. Фактическое же изменение пропорционально отношению 1000|мВ|/Гх1 К], где Гх — температура среды по шкале Кельвина.

Пример расчёта. Пусть напряжение между базой и эмиттером стандартного кремниевого транзистора при температуре 7;)= 20°С составляет   ^^^

С повышением температуры его корпуса до Г, = 35°С это напряжение уменьшается на 49м В: i

Реальное напряжение может несколько отличаться от расчётного, что зависит от положения рабочей точки транзистора и его типа. В любом случае рекомендуется снижать и стабилизировать ток, протекающий через /?—/7-переход, чтобы устранить эффект саморазогрева кристалла.

 

Рис. 3.67. Схемы подключения транзисторных термодатчиков к МК:

а)  измерение температуры в диапазоне —30…+150°С. Термодатчиком выступает транзистор VTI, у которого напряжение (/[^э «дрейфует» с коэффициентом около 2 мВ/°С. Резисторами R4 и 7 выставляется диапазон температур и калибровочное напряжение +3 В на входе МК при комнатной температуре +25°С. Транзистор VTI имеет металлический корпус, торец которого можно запрессовать в термостойкую пластиковую трубку и использовать всю конструкцию как выносной щуп или зонд;

б)  термодатчик на однопереходном транзисторе VTI обеспечивает линейность измерения температуры в диапазоне 0…+ 100°С;

в) транзистор VTI специально используется малогабаритный поверхностно монтируемый (SMD). Это необходимо для уменьшения тепловой инерционности датчика. К примеру, SMD- транзистор входит в стабильный тепловой режим через одну минуту после скачка температуры на 10°С (обычному «большому» транзистору требуется в несколько раз больше времени). Резистор /^/балансирует дифференциальную схему, состоящую из транзисторов VTI, VT2\

На Рис. 3.67, а…г показаны схемы подключения транзисторных термодатчиков к МК.

г) транзистор VT1 имеет в своём корпусе отверстие, через которое может закрепляться винтом на поверхности измеряемого объекта. Коллектор транзистора электрически соединяется со своим корпусом, что надо учитывать при монтаже. Температурный коэффициент преобразования прямо пропорционален отношению резисторов R3/R2 (в данной схеме около 20 мВ/°С).

Простой датчик температуры с аналоговым выходом 0-10В

Датчик температуры может использоваться в различных условиях окружающей среды. Датчик предназначен для измерения температуры в градусах Цельсия и преобразовании его в напряжение. Датчик температуры подходит для работы на общих промышленных зонах и на открытой местности.
В датчике установлен термометр типа LM35, что обеспечивает надежность и точность при измерениях температуры. Благодаря герметизации датчика с измерительным элементом, обеспечивается высокая вибростойкость и влагостойкость.
Основные технические характеристики:
• Подходит для использования в газообразных средах, а также измерения температуры окружающей среды и температуры предметов и исследуемой поверхности
• Возможность крепления с помощью болтового соединение непосредственно к поверхности измеряемой температуры
• Защита от инверсной подачи питания
• Рабочая температура достигает +100 °C
• Диапазон измеряемых температур: -50…+80
• Напряжение питания: постоянный ток 12В
• Потребляемый ток: 10мА
• Напряжение выходного сигнала: 0-10В
• Выходной ток: 20мА
Конструкция датчика позволяет крепить его непосредственно к площади поверхности для измерения температуры ее поверхности или компенсации температурных изменений (для лучшего эффекта, на место контакта нанести небольшой слой теплопроводной пасты, например КПТ-8 или КПТ-19), возможно так же крепить таким способом датчик температуры на пластиковые, поливинилхлоридные и прочие поверхности изготовленные из материалов с низкой теплопроводностью.

Предыстория:

Обратился как-то ко мне знакомый, который работал инженером в фирме — интеграторе GPS/Глонасс оборудования. Один из их клиентов захотел измерять температуру окружающей среды за бортом очередного трактора. На этой технике уже стояли GPS — терминалы, отечественные, ADM600, какой-то пермской конторы. Спросил меня, какой лучше датчик применить, недорогой. У меня сразу возникла мысль, почему бы не применить DS18B20, на что коллега мне ответил: «у треккера нет 1wire», есть только 2 АЦП, один канал от 0-13, второй от 0 — 36, ну и плюс еще всякие входа дискретные и протокольные интерфейсы. Странно думаю, как так-то? В общем нужно было срочно решить его проблему, причем еще и как обычно — недорого. Придя домой сразу же открыл ящик стола. В кассетнице лежало с десяток DS18b20 и LM35. Откуда LM 35, я даже и не вспомнил. Никогда их не применял. Открыв ДШ по GPS треккеру и вправду не обнаружил у него шину Dallas а. Решено, делать датчик на том что есть — LM35. В ДШ написанно, что при базовом подключении, цена деления 10мВ на 1 градус С. И при этом нет возможности измерить отрицательную температуру.

Исходя из этого, требуется усилить сигнал и сделать смещение на датчике, что бы была возможность измерения отрицательных температур. Полазив в интернете, нашел схему смещения на двух диодах. Решил поставить транзистор.
В качестве усилителя применен низковольтный ОУ LM358:

Дальше решил промоделировать схему со смещением:

Как видно из рисунка, выходной сигнал измеряется (вольтметром) относительно общего провода.
Резистор R1 и транзистор Q1(включенный как диод) образуют схему смещения уровня вывода GND датчика температуры. При этом потенциал нижнего вывода резистора R4 оказывается отрицательным по отношению к GND LM35 и, датчик может работать как с положительными, так и с отрицательными температурами. Измерение выходного сигнала, как уже говорилось выше, осуществляется относительного общего провода питания. При нулевом значении температуры выходное напряжение составляет 0.6В (при использовании транзистора MMBT3906).
Снижение температуры ниже нуля вызывает уменьшение выходного напряжения (10 мВ на 1С на выходе LM35).
Подъем температуры выше нуля приводит к росту выходного напряжения.
Далее вопрос стал о конструктиве. Набросал 3D в Proteus, дабы визуально оценить размеры (решил плату усилителя совместить с головкой датчика в единую конструкцию, ибо линии на этом тракторе могут достигать длины и более 2х метров).

В DIPe сразу не понравилось, громоздко. Решил использовать планарные элементы. В качестве элемента для головки термодатчика использовал медный наконечник с отверстием под болт, решил обжать им LM35, предварительно промазав КПТ-8. Обжал при помощи специальной обжимки от Phoenix contact, брал у коллеги, поэтому не удалось сфотографировать. Далее аккуратно обработал простыми плоскогубцами.

Нарисовал плату в sLayot, получилась достаточно компактна:

Ну дальше сборка, решил сделать сразу 10 штук:


После сборки, обжал аккуратно наконечником корпус термодатчика и хорошо припаял с обратной стороны печатной платы… Конечно лучше было сделать прорези и пропаять с обеих сторон, но времени не было. Плату аккуратно обмакнул в Казанский герметик и поместил в термоусадочную трубку с клеем, провода от датчика поместил в пластиковый гофрорукав с авторынка, диаметром 6мм.



Питание датчика осуществляет отдельный параметрический стабилизатор на TL431 и МДП транзисторе и в данном случае не рассматривается.
Попробовал я откалибровать датчик. Калибровал при помощи спиртового градусника и своего самодельного термометра на DS18B20:

Калибровал так: холодильник, улица, фен. Хотя можно было применить чашку со льдом и комфорку плиты. Но так как термодатчик линеен, не стал сильно заморачиваться и сделал несколько замеров:

Сопоставляя данные с разных термометров сделал вывод: датчик получился достаточно точным.
Схема подключения датчика к прибору ADM600:


Передал датчики товарищу. Который через неделю после инсталяции термометров скинул мне отчет из програмного комплекса Fort Monitor, все работало =)

PS: По оси Y указана температура, а не напряжение. Так устроен программный комплекс…

Простая и надёжная схема терморегулятора для инкубатора

 ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором

«Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать  R3 можно по таблице ниже.

Терморезистор

R3

1 kОм

2,7 кОм

2 кОм

4,3 кОм

3,6 кОм

7,5 кОм

10 кОм

10 кОм

15 кОм

15 кОм

Следует учитывать: чем больше сопротивление терморезистора или больше сопротивление R1 — R5, тем меньше диапазон регулирования переменными резисторами.

Можно использовать терморезисторы как с отрицательным, так и с положительным ТКС. С отрицательным ТКС, как сейчас на схеме, а с положительным терморезистор следует установить в низ делителя (например, в разрыв между R3 и R4).

Схема терморегулятора построена на логической микросхеме, а между уровнями логической 0 и 1 есть неопределенное состояние (см. рис), поэтому в данной схеме есть определенный гистерезис (запаздывание между включением и отключением).

Гистерезис очень сильно зависит от типа применяемого терморезистора.

Если Вам ненужно быстрое реагирование схемы на температуру, используйте терморезистор в металлическом корпусе. Типа MMT-4. Гистерезис в данном случае 2,5 — 3 гр.

Если нужна быстрая реакция схемы на температуру, то используйте терморезисторы в неметаллическом корпусе. Гистерезис 0,1 — 0,5 гр. Лампочки включаются и отключаются в несколько раз чаще.

Таблица напряжений по постоянному току микросхемы К561ЛА7

(измеряется цифровым мультиметром в рабочей схеме)

№ вывода

Нагреватель выкл / включен

1, 2

4,3 / 5,5

3

0,2 / 8,9

4

3,8 / 8,9

5, 6

4,1 / 0

7

0

8

7 / 8,9

9

0,2 / 8,9

10

~

12, 13

0

14

9 / 7,5

Фото собранной платы

Примечание: маркировка некоторых деталей согласно схемы изменилась.

Фото печатной платы

Благодаря использованию резистора (R13, а не конденсатора) для понижения напряжения, стабилизации и фильтрации питающего микросхему напряжения, а также других «фишек» данная схема терморегулятора используется в инкубаторе более 10 лет и не разу не подвела!

А. Зотов. Волгоградская обл.

P.S. Если Вы решили сделать вышеизложенный терморегулятор, но у вас нет платы или некоторых эл. компонентов, то Вы можете приобрести у нас НАБОР ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ ТЕРМОРЕГУЛЯТОРА ДЛЯ ИНКУБАТОРА.

Фото готовой платы, собранной из набора

Вы можете купить готовый цифровой модуль терморегулятора со встроенным цифровым термометром в нашем магазине.

 Наш «Магазин Мастера«



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Ремонт фена своими руками
  • Так как устройство фенов примерно у всех одинаковое. Мы на примере фена DELONI рассмотрим его устройство и ремонт.

    Как-то включаю фен, а он как зажужжит — как бешеный 🙂
    Придётся разобрать и посмотреть, что случилось. В противном случае он так долго не протянет.

    Подробнее…

  • ESR-tester своими руками
  • Прибор для проверки эквивалентного последовательного сопротивления (ЭПС) электролитических конденсаторов

    При ремонте аппаратуры часто появляется необходимость в проверке электролитических конденсаторов. Они наиболее частые виновники поломок.

    Состояние конденсаторов часто видно визуально: они вздутые, подтёкшие. Но иногда казалось бы на вид хороший конденсатор при проверке оказывается неисправным.

    Эту задачу поможет решить прибор для проверки ESR или эквивалентного последовательного сопротивления (ЭПС) .

    Подробнее…

  • Светодиодный ночник своими руками
  • Самодельный ночник на сверхъярких светодиодах

    Раньше мы писали о доработке ночника «Луна». У него есть один недостаток — он питается от батарей и на долгое время включать его нельзя. Сегодня пойдёт речь: как сделать светодиодный ночник своими руками с питанием от сети?  Его можно сделать из доступных материалов всего за один час. А также рассмотрим вариант изготовления светодиодной лампы.

    Подробнее…


Популярность: 146 115 просм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*