Термоголовки принцип работы: принцип работы и инструкция по правильной установке

Содержание

Термоголовка для радиатора отопления принцип работы

Термоголовка для радиатора отопления: принцип работы

Принцип работы термоголовки для радиатора отопления позволяет сделать обогрев помещения автономным.

Устройство избавляет от необходимости вручную контролировать режим работы отопительного прибора, уменьшает затраты энергоресурсов и поддерживает комфортную температуру в помещении.

Принцип работы термоголовки для радиатора отопления

Задача термостата — контроль нагрева батареи при изменениях температуры воздуха в помещении. 

Принцип работы термоголовки:

  1. Нагретый воздух действует на состав, начинается расширение сильфона.
  2. За счет гофрированной структуры сама емкость тоже увеличивается в объеме.
  3. Расширение приводит в движение шток, который постепенно ограничивает проход теплоносителя в радиатор.
  4. Пропускная способность уменьшается, температура радиатора отопления падает.
  5. Обогрев ослабляется, воздух остывает.
  6. Охлаждение заставляет сильфон сжиматься, возвращая шток в исходное положение.
  7. Подача теплоносителя возобновляется с прежней силой.

Типы термоголовок радиаторов

Термостаты для батареи классифицируют по двум факторам.

Первый — теплочувствительный состав в сильфоне. Заполнение бывает жидкостным и газонаполненным. Последние за счет меньшей инерционности быстрее в работе.

Второй принцип разделения основан на настройке и контроле – ручном, механическом или электронном.

Ручные термоголовки

Характеризуются простой конструкцией и доступностью. Представляют собой модификацию обычного крана. На регуляторе изображена шкала с делениями, соответствующими температуре. Позволяет вместо абстрактного значения, как это происходит со стандартным краном, изменить температуру радиатора отопления на точное.

У приборов этого типа есть несколько недостатков. Приходится регулировать обогрев вручную, опираясь на собственные ощущения. Изменить температуру во время сна и вне помещения невозможно. Также при активной эксплуатации движущиеся части клапана быстрее выходят из строя и могут потребовать замены всей конструкции.

Совет! После окончания отопительного сезона устройство снимают, чтобы избежать прикипания подвижных элементов.

Механические

Обеспечивают контроль температуры помещения в автономном режиме. Момент начала работы термоголовки осуществляется выбором градусов на шкале. Каждое деление позволяет штоку перекрывать клапан теплоносителя лишь до определенного уровня.

По сравнению с ручными термоголовками, механические предоставляют возможность экономить теплоэнергию круглосуточно. Разница в стоимости быстро окупается, совместимость с разными типами радиаторов отопления высокая.

Электронные

Обладают расширенным набором функций.

Принцип остается тем же, но процесс перекрывания клапана контролируется микропроцессором.

Есть возможность тонкой настройки:

  • программирование по дням недели;
  • регулировка по часам — прохладнее в течение рабочего дня, нагрев перед возвращением;
  • наглядная индикация работы устройства.

Конструкция регулятора

Конструкция регулятора отопления на батарею включает следующие элементы:

  • клапан или вентиль;
  • термостатический механизм.

Устройство регулирующего прибора

Термостат или термоклапан представляет собой стандартный вентиль в корпусе с регулирующим механизмом.

Конус считается запорным элементом, который при перемещении меняет количество теплоносителя.

Передвижению конуса способствует термоголовка, состоящая из цилиндра с тепловым компонентом.

Цилиндр называется сильфон, а в качестве тепловых  составляющих применяется специальная жидкость или газ.

При подогреве данный компонент расширяется в объеме и подтягивает цилиндр, который перемещает конусную деталь.

Конус перекрывает движение потока теплоносителя и состав остывает.

При этом сильфон становится меньше.

Затем конус поднимается, а жидкость перемещается в батарею и способствует нагреванию термоголовки оборудования.

Такая техника позволяет поддерживать нужную температуру.

Строение термостатической головки для радиаторов. Стрелками указаны составные части прибора.

При понижении температуры ниже заданного значения, наполнитель сильфона уменьшается в объёме и происходит процесс, обратный вышеописанному. Циркуляция теплоносителя усиливается и температура в помещении повышается до желаемого значения.

Преимущества использования терморегулятора

Современные термостаты имеют множество преимуществ. Одним из них является предельная простота использования. Такие приборы просты в установке и дальнейшем обращении, разобраться совершенно несложно. Приборы современного образца способствуют созданию максимально благоприятной и комфортной обстановки в помещениях. Они позволяют существенно экономить на отоплении и расходовать ресурсы максимально рационально.

Принцип функционирования прибора основывается на изменении клапанного сечения.

Термоклапан соединяется с головкой штоком и накидной гайкой. Шток перемещается под воздействием нагрузки от газа или воды, которые в процессе нагревания расширяются. Внутри головки увеличивается давление, шток постепенно спускается вниз, полностью либо частично закрывает просвет клапана.

Особенности настройки терморегулятора для труб отопления зависят от системы управления:

  • автоматический прибор с сильфоном отличается способностью штока возвращаться в исходное состояние при изменении характеристик среды;
  • электронный тип регулятора оснащается термостатом. Датчик уровня температуры встраивается в него или монтируется на радиатор;
  • механические устройства, в конструкцию которых входит вентиль и кран, выпускаются без сильфона, имеют ручной режим работы – пользователь должен повернуть рукоятку вентиля.

В целях экономии на батареях устанавливают терморегуляторы, с их помощью расходы на поддержание тепла в помещении сокращаются на 25%. Однако для большей эффективности необходимо правильно выбрать устройство для определенной отопительной системы и выполнить его монтаж. Кроме того стоит подробно изучить инструкцию, как правильно установить термоголовку на радиатор.

Дистанционное управление

Некоторые модели термоголовок поддерживают функцию дистанционного управления. В большинстве случаев эта опция лишь повышает удобство использования терморегулятора, однако при затруднении доступа к корпусу устройства, дистанционное управление становится насущной необходимостью.

Размещение, монтаж и настройка

Выбор места для размещения самого устройства не зависит от его разновидности и комплектации — механические и электронные терморегулятора устанавливаются на трубу прямой подачи теплоносителя к радиатору. При этом основное условие эффективной работы термостатической головки — постоянная циркуляция воздуха вокруг устройства.

Важно! Установка термоголовки в вертикальном положении недопустима. Монтаж в горизонтальном положении (параллельно плоскости пола) позволяет исключить воздействия тёплого воздуха и значительно повысить точность работы устройства.

Выносной датчик

Большинство термоголовок оснащены встроенными температурными датчиками, однако в некоторых случаях эксплуатация подобных моделей малоэффективна.

Использование выносного датчика, закрепляемого на отдалении от батарей, оконных проёмов и иных очагов температурных перепадов, требуется в случае, если:

  • отсутствует возможность обеспечения постоянного притока воздуха к корпусу устройства: радиатор установлен в стенной нише, закрыт шторой или фальш-стеной, расстояние от верхней грани радиатора до подоконника составляет менее 100 мм;
  • конвекционные потоки оказывают влияние на точность показаний встроенного датчика;
  • на корпус устройства попадают прямые солнечные лучи;
  • нет возможности устранить сквозняки, также пагубно влияющие на точность показаний встроенного датчика;
  • горизонтальный монтаж термоголовки невозможен.

В большинстве случаев использование выносных датчиков необязательно, эксперты сходятся во мнении, что оптимальные показатели работы термостатических головок достигаются лишь при использовании подобных периферийных устройств.

Монтаж

Залог правильного подключения — чёткое следование инструкциям и рекомендациям производителя устанавливаемой термостатической головки, приведённым в руководстве по эксплуатации.

Установка терморегулятора на радиатор отопления производится в следующем порядке:

  1. Отключение подачи теплоносителя, сливание жидкости из радиатора.
  2. Обрезка труб на необходимую длину, демонтаж старой запорной арматуры.
  3. Установка хвостовика клапана в радиатор.
  4. Сборка и установка обвязки.
  5. Подключение обвязки к контуру, установка терморегулятора на переходник установленного клапана.

Внимание! При установке положение регулятора термоголовки должно быть на максимальном значении. В противном случае устройство будет работать неправильно.

Настройка

Настройка установленного устройства производится в зависимости от его типа и характеристик. Для механических терморегуляторов достаточно повернуть рукоятку до совмещения одной из указанных на ней цифр с контрольной насечкой на корпусе, после чего, при условии правильно выполненного монтажа, температура в комнате изменится до заданного значения. Настройка электронной термостатической головки зависит от особенностей конкретной модели и списка поддерживаемых функций.

Полезное видео

Посмотрите видео, в котором рассказывается об особенностях термоголовок для отопительных радиаторов, объясняется, для чего нужны эти устройства.

//www.youtube-nocookie.com/embed/leSJC0GJCU0?rel=0

Возможность самостоятельной установки

Выбор подходящей модели термостатической головки и её правильная установка не отличаются высокой сложностью и под силу домашнему мастеру, обладающему соответствующими теоретическими знаниями и практическими навыками.

Термоголовка для радиатора отопления

Ранее в отопительных системах количество поступающего теплоносителя не регулировалось. Если температура в помещении становилась слишком высокой, открывались форточки или окна для проветривания. С приходом новых технологий, и изобретением различных автоматических приборов и устройств, ситуация в корне изменилась. Комфортную комнатную температуру можно получить, благодаря специальным термоголовкам для радиаторов отопления, при этом улучшая энергоэффективность помещений, и существенно уменьшая затраты на их обогрев.

Что это такое

Ее предназначение состоит в регулировании прохождения теплоносителя через радиатор, производя открывание/закрывание термостатического клапана, который совместно с ней работает.

Современный рынок предлагает два основных вида, которые принципиально отличаются друг от друга по принципу действия:

  • жидкостные – регулирование осуществляется за счет расширения жидкости или газоконденсатной смеси;
  • электронные – шток приводится в действие механическим путем, от элементов питания.

Электронные термоголовки стоят дороже, однако по эффективности своего действия, предпочтительнее жидкостных головок.

Процесс работы термоголовки

Термоголовка, подсоединенная к специальному радиаторному термостатическому клапану, реагирует на температуру окружающей среды. Как только температура в помещении повышается, происходит расширение сильфона жидкостной термоголовки, в результате чего, шток клапана своим перемещением, уменьшает подачу теплоносителя через радиатор. Снижение температуры в помещении приводит к обратному действию, при котором поток носителя становится больше. Подобные процессы происходят и при установке электронной термоголовки. Только в этом случае клапан управляется встроенным или внешним термостатом, дистанционным контролером.

Особенности монтажа

При установке термоголовки на радиатор отопления следует учитывать основное требование: она должна свободно «обтекаться» воздухом. Нежелательна ее установка:

  • за шторами;
  • под подоконником;
  • на сквозняке;
  • там где будут попадать солнечные лучи.

Если не учитывать эти требования, замеры температуры не будут соответствовать истинным значениям всего помещения. В результате работа будет неэффективной. Если все же термоголовка установлена в одном из таких мест или доступ к ней ограничен, можно оснастить ее дополнительным выносным датчиком и регулятором.

Преимущества электронной головки:

  1. Скорость реагирования на изменение температуры в помещении. Ежеминутное измерение температуры.
  2. Использование встроенных программ.
  3. Способность экономии энергоносителя до 23% затрат.

Схема терморегулятора

 

ВНИМАНИЕ! Если в доме проживают маленькие дети, в этом случае лучшим приобретением будет устройство антивандального типа со специальным кожухом, который сделает доступ к регулированию температуры, для них невозможным.

Рекомендации и советы

Термоголовки на радиаторах отопления лучше размещать вне зоны видимости и выполнять регулирование тех радиаторов, чья общая мощность составляет 50% и выше от всех, находящихся в одном помещении. К примеру, если в комнате 2 отопителя, термостатом нужно оснащать тот радиатор, мощность которого больше.

При использовании чугунных радиаторов применение термостатических клапанов неэффективно, так как работа таких батарей инерционна: у них очень длительное нагревание.

Выбрать под свою действующую систему терморегулятор не сложно, главное определить место установки и приобрести программируемое устройство, так как они самые экономичные, и позволяют для разного времени суток настраивать различную температуру. Они также удобны в тех случаях, когда хозяева покидают свое жилье на несколько дней и температурный режим в помещении может быть совершенно другим.

Терморегулятор на батареи отопления

Иногда возникает необходимость подстроить температуру в каждом конкретном помещении. Сделать это можно установив терморегулятор для радиатора отопления. Это небольшое устройство, которое регулирует теплоотдачу батареи отопления. Использоваться может со всеми типами радиаторов, кроме чугунных. Один важный момент — прибор может понизить исходную температуру, но если не хватает мощности отопления, повысить он ее не может. 

 

Терморегулятор для радиатора отопления состоит из двух частей — специального вентиля (клапана) и термостатической головки (регулятора)

Термоклапан — строение, назначение, виды

Клапан в терморегуляторе по строению очень похож на обычный вентиль. Имеется седло и запорный конус, который открывает/закрывает просвет для протекания теплоносителя. Температура радиатора отопления регулируется именно таким образом: количеством проходящего через радиатор теплоносителя.

Термостатический клапан в разрезе

На однотрубную и двухтрубную разводку клапана ставят разные. Гидравлическое сопротивление вентиля на однотрубную систему намного ниже (как минимум, в два раза) — только так можно ее сбалансировать. Перепутать вентили нельзя — греть не будет.  Для систем с естественной циркуляцией подходят вентили для однотрубных систем. При их установке гидравлическое сопротивление, кончено, возрастает, но работать система сможет.

На каждом клапане есть стрелка, указывающая движение теплоносителя. При монтаже его устанавливают так, чтобы направление потока совпадало со стрелкой.

Принцип работы термостатического клапана

Чтобы понять принцип работы термоголовки, предлагается изучить схему прибора, изображенного в разрезе:

 

Внутри корпуса элемента расположен сильфон, заполненный термочувствительной средой. Она бывает двух видов:

  • жидкостная;
  • газовая.

Жидкостные сильфоны проще в изготовлении, но проигрывают газовым по быстродействию, поэтому последние получили очень широкое распространение. Итак, при повышении температуры воздуха вещество в замкнутом пространстве расширяется, сильфон растягивается и нажимает на шток клапана. Тот, в свою очередь, перемещает вниз специальный конус, уменьшающий проходное сечение клапана. В результате расход теплоносителя уменьшается. При охлаждении окружающего воздуха все происходит в обратном порядке, количество протекающей воды растет до максимума, это и есть принцип работы терморегулятора.

Рекомендации по выбору

В зависимости от типа системы отопления и условий монтажа прибора для управления потоком теплоносителя могут применяться комплекты клапан – термоголовка в различных сочетаниях. В однотрубных системах обогрева рекомендуется устанавливать клапаны с повышенной пропускной способностью и малым гидравлическим сопротивлением (маркировка изделия производства DANFOSS – RA-G, RA-KE, RA-KEW).

Та же рекомендация касается и двухтрубных самотечных систем, где теплоноситель циркулирует естественным образом, без принудительного побуждения. Если же схема обогрева – двухтрубная с циркуляционным насосом, то следует выбрать клапан с возможностью регулировки пропускной способности (маркировка DANFOSS – RA-N, RA-K, RA-KW). Эта регулировка производится достаточно просто и специальный инструмент для нее не нужен.

Типы термоголовок

  1. С внутренним термоэлементом.
  2. С выносным температурным датчиком.
  3. С внешним регулятором.
  4. Электронные (программируемые).
  5. Антивандальные.

Обычный терморегулятор для радиаторов отопления с внутренним датчиком принимается к установке, если есть возможность расположить его ось горизонтально, чтобы воздух помещения свободно омывал корпус прибора, как показано на рисунке:

Внимание! Не допускается установка терморегулятора на батарею в вертикальном положении, тепловой поток, поднимающийся от подающего трубопровода и корпуса клапана, станет оказывать влияние на сильфон, в результате чего устройство будет работать некорректно.

Если горизонтальный монтаж головки невозможен, то лучше приобрести к ней выносной датчик температуры в комплекте с капиллярной трубкой длиной 2 м. Именно на таком расстоянии от радиатора можно расположить данное устройство, прикрепив его к стене:

Помимо вертикального монтажа для покупки выносного датчика бывают и другие объективные причины:

  • радиаторы отопления с регулятором температуры находятся за плотными шторами;
  • в непосредственной близости от термоголовки проходят трубы с горячей водой либо присутствует другой источник тепла;
  • батарея стоит под широким подоконником;
  • внутренний термоэлемент попадает в зону сквозняка.

В комнатах с высокими требованиями к интерьеру батареи зачастую прячут под декоративными экранами из различных материалов. В таких случаях попавший под кожух терморегулятор регистрирует температуру скапливающегося в верхней зоне горячего воздуха и может целиком перекрыть теплоноситель. Мало того, полностью закрыт доступ к управлению головкой. В этой ситуации выбор следует сделать в пользу выносного регулятора, совмещенного с датчиком. Варианты его размещения показаны на рисунке:

Электронные термостаты с дисплеем также бывают двух видов: со встроенным и съемным блоком управления. Последний отличается тем, чтоб электронный блок отсоединяется от термоголовки, после чего она продолжает функционировать в обычном режиме. Назначение подобных устройств — регулировка температуры в помещении по времени суток в соответствии с программой. Это позволяет снижать отопительную мощность в рабочее время, когда дома никого нет и в прочих подобных случаях, что приводит к дополнительной экономии энергоресурсов.

 

Для чего нужен терморегулятор

Задача термостатического клапана – регулировать количество поступающего в радиатор теплоносителя в зависимости от температуры воздуха в помещении, автоматически ее поддерживая на том уровне, что установил пользователь. Главное, чтобы со стороны теплогенератора поступало достаточное количество нагретой воды, ведь терморегулятор для радиатора может только уменьшать ее расход, но не увеличивать.

О назначении радиаторных термоклапанов доступно рассказывается в следующем видео:

//www.youtube.com/embed/gRazj3gAtfg?feature=oembed

Устройство  термостата

Любой автоматический радиаторный клапан состоит из 2 частей:

  1. Термостатический вентиль с исполнительным механизмом перекрывания потока теплоносителя.
  2. Термоголовка с управляющим элементом, реагирующим на изменение температуры воздуха.

Вентиль, изготавливаемый из латуни, имеет традиционный механизм с рабочим конусом, входящим в седло и таким способом уменьшающим его проходное сечение. Отличие от обычного ручного крана состоит в том, что конус прикреплен к нажимному штоку с пружиной, выходящему наружу. Нажатие на конец штока осуществляет второй элемент – термоголовка. Чем сильнее нажатие, тем меньше проходное сечение. Ниже на схеме показано устройство регулятора батареи отопления в сборе:

Внутри термостатической головки находится маленький герметичный контейнер, заполненный термочувствительной средой — жидкостью или газом. При нагревании эта среда расширяется, контейнер увеличивается и сильнее нажимает на шток, перекрывая поток теплоносителя. При охлаждении процесс идет в обратном направлении, в чем и заключается принцип работы термоголовки. Рукоятка регулировки с нанесенной шкалой механически ограничивает максимальное открывание клапана.

Важно. Установленный на батарею терморегулятор влияет только на расход теплоносителя, меняя его в ту или иную сторону. Термостат не является регулятором температуры воды, то есть, выполняет количественное регулирование, но не качественное.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Термоголовка для теплого водяного пола: принцип работы термоголовки Rtl

Способы регулировки температуры теплых полов, RTL-регулировка и другие методы

Сделать схему теплого пола проще и дешевле помогут регуляторы обратного потока – RTL-краны. Самые известные фирмы, выпускающие оборудование для отопления, предлагают потребителям свои термостатические RTL-краны, — ограничители потока для теплого пола. В чем особенности такой регулировки температуры, — рассмотрим далее. Также, — как обычно регулируется температура теплого пола и какая она нужна….

Какая температура должна быть

Наибольшей комфортной температурой теплого пола считается 28 градусов. Комфортная температура для длительного применения настраивается индивидуально по предпочтениям. Но обычно она ниже, — 22- 26 градусов, чтобы покрытие полов «стало незаметным».

В отдельных помещениях, где не присутствуют постоянно, обычно неплохо, если температура будет несколько больше, – до 32 градусов. Это прихожая (веранда), туалет, ванная.

Чтобы поддержать температуру на заданном уровне применяются два разных способа.

Способы поддержания температуры теплого пола

Первый способ основан на стабильной высокой скорости движения теплоносителя.
Чтобы температура теплого пола была стабильной в него нужно подавать определенное количество тепловой энергии с помощью теплоносителя. Теплоноситель подготавливается с заданной температурой и в значительном объеме проходит по контуру.

Объем должен быть таким (скорость движения должна быть такой), чтобы на выходе из контура температура жидкости не уменьшилась больше чем на 10 градусов. Тогда в пределах контура разница температур будет незначительной и малозаметной. Например, в контур подается 45 градусов, на исходящей будет 35 градусов. А температура поверхности может быть 28 градусов.

Второй способ заключается в том, чтобы подавать жидкость большой температуры, но прерывисто, порциями. Порция горячей жидкости довольно быстро (за несколько минут) заполняет контур, после чего ее движение останавливается.

Жидкость остывает и отдает энергию стяжке. Теплоемкая стяжка постепенно поглощает и рассеивает энергию, не перегреваясь в месте нахождения трубопровода. Как только теплоноситель остывает до заданного значения, в контур снова подается порция горячей воды.

Например, в контур может подаваться жидкость 75 град, а ее замена будет производиться после остывания до 30 градусов. Вследствие распределения тепла в массивной стяжке на поверхности пола будет все время поддерживаться около 28 градусов.

Схема регулировки температуры смесительным узлом

Чтобы регулировать температуру по первому способу, поддерживая значительную скорость движения жидкости, нужно установить смесительный узел, в котором вода подготавливается до заданной температуры.

Теплоноситель с котла поступает 65 – 80 градусов. Чтобы уменьшить температуру до требуемых 40 -50 градусов, устанавливают узел смещения, который часть обратки с теплого пола с температурой 30 — 35 градусов подает на вход в контура. В результате на входе термостатической головкой, регулирующей соотношение входящих потоков, поддерживается заданная температура, например, 45 градусов.

Такую схему не сложно собрать самостоятельно, что будет дешевле. Основа – трехходовой клапан, шток которого регулируется термоголовкой. Управляющий элемент термоголовки целесообразней установить на другой ветви. Место установки насоса и трехходового клапана (подача/обратка) значения не имеет. Но насос обязательно должен устанавливаться в контуре коллектора теплого пола (за трехходовым клапаном по подаче), иначе трехходовой клапан работать не будет.

Настраивая термоголовку на определенную температуру обратки, мы можем задавать температуру теплых полов в широком диапазоне.Но для получения более холодных контуров остается только уменьшать скорость движения в них теплоносителя с помощью регулировочных кранов на коллекторе.

Схема регулировки температуры теплых полов ограничителями потока

Второй способ порционной подачи горячей жидкости в контуры теплого пола осуществляется с помощью термостатических кранов RTL (регуляторов потока). Смесительный узел не применяется – в контур подается теплоноситель высокой температуры, которая нужна для радиаторной сети.

На обратке каждого контура устанавливается кран RTL с термоголовкой RTL, который открывается при остывании жидкости до заданной температуры. Как только температура проходящей жидкости повышается больше заданного значения (контур наполнился горячей водой), кран почти полностью перекрывает ее движения до ее остывания.

Эти краны устанавливаются только на обратку, чтобы оперативно реагировать на изменение температуры в контурах. Фактически краны RTL регулируют поток, – количество в единицу времени (литр/минуту). Они работают в зависимости от теплопотерь каждой комнаты (контура, участка стяжки ограниченного температурными швами), в зависимости от того насколько быстро остывает стяжка.

Особенность конструкции кранов RTL и унибоксов RTL

В кране RTL имеется латунный или медный сердечник, который плотно соприкасается с таким же сердечником устанавливаемой термоголовки RTL, поэтому температура весьма быстро передается на ее рабочее тело.

Термоголовка RTL реагирует только на температуру жидкости. Если она превышает заданный регулировкой уровень, кран перекрывает поток.

Термоголовка RTL с виду весьма похожа на обычные термоголовки, которые устанавливаются на радиаторы, и которые измеряют температуру воздуха. Поэтому зачастую возникает недоумение – как головка на коллекторе «по воздуху» регулирует теплый пол в спальне….

Унибокс RTL представляет из себя кран и термоголовку объединенную в одном корпусе, который отдельно можно вмонтировать в стену так, что сверху будет одна крышка с термоголовкой, или без нее. Их предназначение – регулировка одного контура теплого пола, например, на этаже имеется теплый пол только в санузле. Применение унибоксов экономически выгодно, так как нет необходимости устанавливать смесительный узел только для одного контура.

Но конструкция может включать в себя не только RTL-головку, но и воздушную термоголовку, чтобы заодно контролировать и температуру воздуха в маленьком отдаленном помещении, где теплый пол может быть единственным отопительным прибором.

Где выгодно применять RTL-регулировку потока в отопительных системах

Конструкция RTL-коллектора весьма компактна. Отсутствуют насос и смесительный узел, а сам коллектор обратки может быть собран из тройников, на входах которых установлены краны RTL с головками. Поэтому эта система целесообразна или незаменима там, где нет места на монтаж объемных конструкций. Например, такое может быть в квартире.

Также система с регулировкой обратного потока весьма выгодна в случае если контуров мало или контур вовсе один. Устанавливать в таком случае целый смесительный узел с насосом просто не выгодно. Применяются унибоксы, о чем сказано выше.

Как применяется RTL-регулировка, в чем ограничения

Контуры теплого пола подключаются к главной подающей магистрали просто параллельно, как ветвь радиаторов или один радиатор. Подача в контур теплого пола осуществляется ответвлением от подающей магистрали. А на обратке из контура устанавливается кран RTL на коллекторе или отдельно стоящий (унибокс), который затем подключается к общей обратке.

Количество контуров с регулировкой обратного потока может ограничивать производительность насоса в котле (в системе).

Следующее ограничение – теплоемкость стяжки. Данная система предназначена для работы с массивной бетонной стяжкой в качестве отопительного прибора, которая может рассеивать высокую температуру от порции воды, не перегреваясь фрагментами поверхностью.
Как сделать стяжку с отопительными контурами

Общее ограничение для применения регулировки обратного потока – длина контуров. Длина контура влияет как на соотношение «временая заполнения/время остывания», так и на общее гидравлическое сопротивление данного ответвления от общей сети. Опыт показывает, что при контурах с трубой 16мм система регулировки RTL отлично работает при длине контуров до 50 метров. Если контура были сделаны длиннее – то нужно устанавливать смесительный узел и пользоваться первым способом.

В спорных случаях может выручить применение 20-й трубы у которой сопротивление будет меньше.
Таким образом для RTL-системы регулировки обратно потока теплого пола стяжку нужно фрагментировать заранее температурными швами, на небольшую длину контуров 35 – 45 м.

Как выбрать термоголовку для теплого водяного пола?

Деятельность целой системы водяного пола основывается в миксерном узле, который отвечает за регулировку системы теплоносителя. Это обуславливается тем, что с отопительного оснащения влага подается с довольно значительным уровнем нагрева (вплоть до 90 градусов), а в поверхности пола данный коэффициент должен быть небольшим (не больше 40 градусов). За поддержку нормальной температуры теплоносителя несет ответственность термоголовка, которая находится на заслонке.

В смесителе совершается смешивание жидкости, которая протекает со значительной температурой. В итоге дает возможность посылать в водяные контуры с необходимой температурой.

Трехходовой гидроклапан

Данный гидроклапан обладает тремя проходами. Из них два служат для поступления водяных потоков, третий проводит котел в конструкцию водяного контура. Чтобы не допустить коррозии метала, блок-корпус производят из нержавеющего металла. Во время работы тепловой пол отлично реагирует на окружающую среду, изменяя положения буксов и управляя степенью разогрева жидкости на выходе. Термоголовка оснащена измерителем, который передает сигналы приводу (закрыть или открыть клапан).

Она в обязательном порядке должна стоять в горизонтальном положении.

Особенности трехходового клапана:

  • он несложен в установке;
  • в нем возможна механическая и автоматическая настройка;
  • он отличается долговечностью;
  • ему присуща средняя цена;
  • в нем присутствует химическая и гидрозащита.

Двухходовой гидроклапан

Двухходовая разновидность является снабжающим клапаном. На него ставят специальную термостатическую головку, которая удерживает контроль над температурой теплоносителя. В итоге термоголовка водяного пола перекрывает и раскрывает гидроклапан, регулируя степень подачи теплового носителя от котла.

Особенности данного клапана:

  • безопасность и устойчивость температуры пола;
  • постоянное перемешивание прохладной жидкостью;
  • отсутствие сторонней подпитки.

Советы по выбору

Подбор модели терморегулятора для водяного пола зависит от нескольких обстоятельств: объема здания, подключения котла, обшивки пола, климата окружающей среды, доступности добавочных или главных отопительных систем.

Критерии покупки:

  • Цена. Самыми выгодными разновидностями являются изделия механического типа. Они лучше в работоспособности, их практически невозможно вывести из строя по неаккуратности. Подойдут такие терморегуляторы тем, у кого есть дети.
  • Многофункциональность. Электронные изделия отлично контролируют тепло в комнатах.
  • Программируемость. Данный критерий позволяет обеспечить в каждой комнате дома максимально комфортные условия.

Механический терморегулятор: принцип работы

Если воздушное пространство в комнате нагревается до требуемого уровня, рабочая сфера в сильфоне под влиянием тепла расширяется, отчего заставляет гидроцилиндр выпрямляться. Шток, объединенный с сильфоном, устремляется вперед, оказывая давление в гидроклапан, вплотную придавливая его к пропускному отверстию. При этом подача теплоносителя в батарее (отопления) останавливается.

Уже после того, как оставшийся в батарее отопления носитель охладился, смесь (либо газ) в термоэлементе сдавливается, вызывая снижение его стенок, что приводит к открытию клапана. Нагретый теплоноситель поступает в систему, затем ход действий начинается сначала.

Электронные терморегуляторы

Существует незначительный числовой дисплей и ряд клавиш. На дисплее отображаются текущие характеристики системы, либо выставляемые. Клавиши (зачастую со стрелками «вверх» и «вниз») предназначаются с целью изменения температуры. Программируемые регуляторы температуры дают возможность сохранять стабильную температуру пола, можно автоматически менять ее в конктерные дни недели, либо время суток.

Имеются модификации, которые наравне со стационарным блоком управления на стене имеют портативный пульт управления. Определенные модели дают возможность распоряжаться работой посредством персонального компьютера, либо планшета, что довольно удобно. Данные приборы могут осуществлять контроль нагреванием пола.

Водный утепленный пол — лучший ресурс тепла, с его помощью в атмосферу жилища вносится удобство и комфорт.

О том, как обеспечить точную регулеровку температуры теплого пола своими руками, вы можете узнать далее.


Виды термоголовок для регулировки теплого пола, их конструкция и варианты установки

Чтобы в отапливаемом помещении постоянно поддерживалась комфортная температура, в схему отопления включают термоголовки. Этот элемент выполняет функцию непрерывного мониторинга температуры теплоносителя в системе и регулирует его поток.

Термоголовка является частью функционального узла в паре с термоклапаном. Термоклапан управляется термостатом, который реагирует на изменения температуры теплоносителя или температуры окружающего воздуха. В схеме подключения он может выполнять отсекающую или смешивающую функцию.

Термоголовка

Термоголовки незаменимы для теплого пола, так как при подключении к нагревательным котлам температура воды на подаче будет слишком высокой для пола.

Устройство и принцип работы термоголовки

Конструктивно термоголовка представляет собой термодинамический механизм, в котором используется способность веществ расширяться при нагревании. В ее корпусе расположена емкость с реагирующим на нагрев веществом, под емкостью установлен толкатель штока клапана. Принцип работы термоголовки такой:

  • В корпусе термостата расположена емкость (сильфон), заполненная жидким или твердым веществом. Стенки сильфона гофрированные, поэтому он способен растягиваться.
  • При нагревании вещество внутри сильфона расширяется, и он растягивается, оказывая давление на шток клапана. Система сбалансирована при помощи пружины.
  • При остывании сильфон возвращается в прежнее состояние и перестает давить на шток.

Схема внутреннего устройства

Термоголовки могут продаваться отдельно, но обычно они идут в комплекте с вентилем.

Важно! Лучше приобретать готовые комплекты, так как не все краны и головки подходят по шагу резьбы и по посадочному месту.

В зависимости от типа вентиля, такие комплекты могут называться угловыми, прямыми термоголовками. Выбор подходящего типа полностью зависит от конфигурации системы.

По типу наполняющего сильфон вещества термостатические головки бывают жидкостные, парафиновые и газовые.

Термостатическая головка с внешним датчиком

Жидкостные устройства инерционные, они срабатывают не так быстро, как газовые, так как требуют большего времени на нагрев и остывание. Но они более точные. Газовые приборы работают с высокой амплитудой погрешности, они более чувствительны к внешним температурным помехам (сквознякам). На термостатические головки часто наносятся мнемосхемы, обозначающие температурные зоны. Градуированная шкала для таких устройств неэффективна из-за погрешностей.

По способу управления термоголовки бывают ручные (механические) и электронные. Механические термостатические головки оборудованы поворотной ручкой с радиальной шкалой. Значение одного деления шкалы – 2-5 градусов (в зависимости от модели). Управление осуществляется поворотом ручки головки и выставлением ее на нужное деление. При этом увеличивается расстояние между деталями механизма передачи давления от сильфона на шток.

Электронная термоголовка

В электронных устройствах управление температурными параметрами осуществляется при помощи дисплея, а воздействие на шток может осуществляться электроприводом. Эти устройства дороже, но они позволяют с высокой точностью устанавливать температурный режим или программировать суточные изменения.

По способу контакта термостата с поверхностью трубы термоголовки бывают накладными и с погружным или воздушным датчиком. Контактный термостат нагревается в месте установки. По конструкции термоголовки с выносным температурным датчиком точно такие же, как и накладные, описанные выше, только сильфон термостата соединен капиллярной трубкой с внешним выносным герметично запаянным баллончиком. Он заполнен тем же газом, что и сильфон. Расширение сильфона происходит при нагревании дистанционно удаленного баллончика. В системе теплых полов применяют именно такие приборы.

Управление режимом обогрева пола

Термоголовки являются недорогим и эффективным решением для контроля над температурой теплоносителя в контуре пола. Из котла выходит теплоноситель с постоянной температурой 70-90 градусов. Получить комфортную температуру пола при помощи термостатических головок можно такими способами:

  • Осуществлять периодическую кратковременную подачу горячего теплоносителя в контур пола. Теплоноситель заполняет контур, и подача прекращается до тех пор, пока он не остынет до установленного предела.
  • Смонтировать систему, в которой подача теплоносителя будет постоянной, но с подмешиванием к подаче остывшей воды из обратки.

Система с кратковременной подачей монтируется в помещениях с небольшой площадью. Обычно это ванные или участки пола, покрытие керамикой. В систему на подаче подключается двухходовой клапан, оборудованный термоголовкой и выносным датчиком пола. После заполнения контура пол прогревается, датчик срабатывает, и клапан запирает поток теплоносителя. После остывания стяжки происходит очередное открывание клапана и заполнение системы горячей водой. Такая схема является экономичной альтернативой смесительному блоку при монтаже коротких систем подогрева. Таким способом лучше всего подключаться к обратке радиаторного отопления, так как поступление в контур пола практически кипятка не приветствуется из-за риска порчи всей конструкции.

У специалистов есть недоверие к способу порционной подпитки контура горячей водой. Логика работы схемы простая, но на практике не все так гладко. Главный аргумент – неравномерный прогрев трубы. На входе температура будет 80 0 , а на выходе, где сработал датчик, – 30 0 . Понятно, что такой пол не будет равномерно прогреваться. Поэтому тут необходима специальная система укладки труб, чтобы участки, находящиеся ближе к входу, укладывались рядом с трубами со стороны подачи. Это еще одно подтверждение, что такая схема не годится для больших помещений.

Клапаны с термоголовкой серии RTL, не имеющие выносного датчика, специально разработаны для тёплого пола. Они устанавливаются на обратную трубу и поддерживают постоянную температуру теплоносителя, независимо от температуры пола. В них есть возможность регулировать верхний порог температуры (обычно не выше 40 0 ). При установке таких моделей необходимо придерживаться общих правил монтажа. Головку РТЛ желательно устанавливать в горизонтальное положение. При этом нельзя устанавливать верхний порог температуры ниже, чем температура окружающего воздуха в помещении. Эта система выполняет точечные «впрыскивания», за счет чего сохраняется определенное постоянство движения теплоносителя, и нет перегрева контура.

Схема подключение с трехходовым клапаном

При втором способе необходимо установить в систему на подаче трехходовой клапан с термоголовкой и датчиком пола. От обратной трубы через тройник делается подводка к третьему выходу клапана.

Важно! При этом необходимо правильно подключить клапан, чтобы выход на подачу всегда оставался открытым.

Термоголовка устанавливается на клапан через специальную запирающую буксу. При нагревании датчика шток клапана смещается, при этом внутри корпуса открывается просвет для подмешивания остывшей воды из обратки и сужается просвет подачи. Так в систему будет постоянно поступать теплоноситель установленной температуры. За счет того, что поток воды будет непрерывным, поверхность пола будет прогреваться до комфортных 28 градусов. При этом можно не опасаться, что от слишком высокой температуры теплоносителя могут испортиться трубы или растрескаться стяжка. Без такой схемы не обойтись, если теплый пол подключен к одному смесителю с контуром радиаторов, питающимся от котла.

Кроме того, схема с подмешиванием холодной воды подходит для обогрева больших помещений и будет поддерживать постоянную температуру.

Видео по монтажу электронной термоголовки RTL от контура радиаторов на балконе:

Термоголовки позволяют смонтировать недорогие и небольшие системы теплых полов, при этом можно обойтись без дорогой коллекторной группы.

Функциональная роль термоголовки в системе управления теплым полом

Как же приятно зимой ходить по теплому полу и не бояться замерзнуть – особенно важен такой тип отопления в доме, где растут дети. Теплый пол – это удобная альтернатива классическому или электрическому отоплению в доме. Еще совсем недавно представить нечто подобное было невозможно, но техника быстро дошла и до этого, ведь сегодня подобные системы доступны каждому человеку.

Роль термоголовки

Теплый пол – это самостоятельно установленная система отопления, которая обеспечивает теплым воздухом жилое помещение. Устройство бесперебойной работы подразумевает серьезные требования и к установке оборудования, и к эксплуатации. За ответственность бесперебойного обогрева водяного теплого пола отвечает термоголовка. Она же и является стабильным индикатором температуры, которую необходимо держать под контролем.

Принцип работы термоголовки

Правильное смешивание горячей и холодной воды в идеале должно соответствовать показаниям датчика.

Существуют стандарты, которые включают в себя степень нагрева внутри системы до 90 градусов, в то время как сам пол не должен быть выше показателя 40 градусов. Оптимальная рекомендуемая температура – 22 градуса. Исправная работа термоголовки является залогом бесперебойной работы всей системы.

Преимущества и недостатки

Такой обогрев имеет ряд неоспоримых преимуществ, среди которых на первом месте стоит дешевая эксплуатация. Теплый пол обогревает всю комнату по сравнению с навесными электрическими батареями, при эксплуатации которых нагретый воздух поднимается, а пол, по сути, остается холодным.

Подобный отопительный прибор не нарушает баланс влажности воздуха в помещении, что является также неоспоримым плюсом.

Теплый пол не обладает какими-то критическими недостатками, но некоторые нюансы стоит все-таки учесть. Трудоемкость монтажа предъявляет серьезные требования к подготовке площади. Серьезным неудобством может послужить протечка трубопровода во время эксплуатации, ведь в случае ремонта придется вскрывать напольное покрытие. Такой пол нельзя установить в труднодоступных местах (на лестнице или в небольших помещениях), что требует дополнительного отопительного оборудования.

Особенности системы

За стабильное нагревание температуры пола отвечает термоголовка, которая устанавливается на клапане.

Обычная система включает в себя трубы, термоизоляцию, термоголовку с датчиком, элементы крепления, рантовую ленту, аксессуары для минимизации швов, коллекторы с фитингами и иногда дополнительный пакет насосной группы. Функционирование теплого пола осуществляется в смесительном узле. При поступлении в систему обогрева вода смешивается, чем достигается определенный уровень температуры.

Функция термического клапана

Термоголовка и термоклапан являются неотъемлемым элементом механизма радиаторного отопления. При подключении системы на клапан приходят показания температуры, которые можно регулировать. Сегодня распространены двухходовые и трехходовые клапаны. Термоголовка и термический клапан – это «сердце» теплого пола.

Монтаж

Установка теплого пола – дело хлопотное и, как может показаться сначала, затратное. Однако впоследствии выгода и польза очевидна. Как показала практика, при эксплуатации такая система оказывается дешевле и практичнее других видов, но при этом монтаж обойдется дороже, чем для других систем. Все затраты окупятся, и в итоге отопительный сезон поможет сэкономить до 20%. Доверить монтаж такого пола лучше квалифицированным специалистам, что может гарантировать безопасность.

Советы по выбору

Лучше всего приобретать готовый комплект, в который уже входят все краны и другие необходимые комплектующие. Для разных объемов площади есть свои системы укладки, поэтому метод установки оборудования для маленькой квартиры не подойдет для большого дома.

При правильной установке такой пол не должен быть виден под паркетом. Стоит учесть, что чем больше функций программирования теплого пола, тем он будет дороже. Например, для разных комнат можно выбрать, соответственно, разные температуры.

При выборе той или иной схемы обогрева всегда необходимо учитывать объем обогреваемого помещения.

В целях экономии под шкафами, диванами и другими видами мебели пространство не утепляют.

Нужно тщательно выбирать материал теплоизолятора, от которого во многом зависит долговечность системы – пеноплекс и пенопласт являются самыми распространенными вариантами.

Правила установки

При несоблюдении правил установки механизма возможна некорректная работа или полный выход из строя системы. Как заявляют производители, при правильной установке и эксплуатации теплый пол может прослужить до 50 лет его владельцу, поэтому к такому приобретению важно подходить основательно.

Отзывы

Многочисленные отзывы говорят о том, что водяная система отопления является популярной в силу своей экономичности и доступности. Среди факторов и критериев выбора люди подчеркивают безопасность по сравнению с электрическими системами.

Среди распространенных производителей можно отметить бренды WOLF, ACV, VAILLANT, CTC. Трубы и другие комплектующие на рынке предлагают такие компании, как OVENTROP, WIRSBO, UNIVERSA, AQUATHERM и PURMO.

О том, какая функциональная роль термоголовки в системе управления теплым полом, смотрите в следующем видео.


Функциональная роль термоголовки в системе теплого пола

Обустройство эффективного теплого водяного пола предъявляет серьезные требования к обеспечению его бесперебойной работы в соответствии с нормативными показателями. Одной из деталей, содействующих выполнению этой задачи, является термический клапан.

Термоголовка с погружным зондом

Особенности, функционал

Функционирование всей конструкции водяного пола базируется в смесительном узле, который исполняет важную роль регулятора температуры теплоносителя. Это обусловлено тем фактом, что от отопительного оборудования вода подается с достаточно высокой степенью нагрева – до 90°С, а на поверхности пола этот показатель не должен быть выше 40°С.

Функционирование системы водяного теплого пола

За сохранение стабильного значения температуры теплоносителя несет ответственность термоголовка, которая устанавливается на клапане. В смесителе происходит перемешивание жидкостных потоков, идущих с высоким нагревом с подачи и охлажденных из обратки или водопровода, что позволяет направлять в водяные контуры теплоноситель с нужной температурой.

Трехходовой клапан

По конструкционному решению трехходовой клапан имеет три отверстия, два из которых служат для поступления смешиваемых водяных потоков, а третий отводит теплоноситель в систему водяного контура. Схема обвязки предусматривает на обратке разветвление, позволяющее излишки охлажденного теплоносителя отправлять в водонагревательное устройство.

Строение трехходового термостатического смесительного клапана

Корпус трехходового клапана изготавливается из материалов, устойчивых к коррозии, например, из бронзы. К основной детали этого устройства относится термоголовка, которая устанавливается на шток через специальную буксу.

Она во время функционирования теплого пола реагирует на окружающую температуру, изменяя расположение буксы и регулируя в соответствии с выставленными значениями степень нагрева воды на выходе.

Для считывания температуры термоголовка оснащена датчиком, передающим сигналы приводу, который в зависимости от полученных значений закрывает или открывает клапан. Монтируется он так, чтобы термоголовка занимала горизонтальное положение. При длине трубопровода свыше 40 метров для прогонки воды по контурам устанавливается циркуляционный насос.

Двухходовой клапан

Схема обвязки удобного в эксплуатации теплого пола с трехходовым клапаном привлекательна его универсальностью. Но следует учитывать, что для небольших обогреваемых помещений можно использовать более дешевый двухходовой клапан, в конструкции которого также имеется термоголовка, оснащенная датчиком. Это устройство подает охлажденный теплоноситель постоянно, а горячая жидкость поступает по мере необходимости.

Смесительный узел для тёплых полов на двухходовом клапане

Схема узла с двухходовым клапаном

После смешивания жидкость с установленной температурой, контролируемой датчиком, подается на коллектор. На обратном контуре дополнительно ставятся два обратных клапана, не позволяющие потоку двигаться в возвратном направлении.

Ограничитель возвратной температуры

Регулятор Unibox Rtl Oventrop, ограничивающий степень нагрева обратного потока, применяется на незначительной площади теплого пола 2 . Диапазон нормируемой температуры составляет 20-50°С и зависит от показателя, устанавливаемого посредством термоголовки, благодаря чему степень допустимого нагрева поддерживается автоматически.

Регулятор для водяного теплого пола Unibox Rtl Oventrop

Подобная схема предполагает проводить установку Unibox Rtl Oventrop так, чтобы теплоноситель при циркуляции прошел весь контур теплого пола и только потом – через Rtl-регулятор.

Принцип его работы отличается от функционирования смесительного узла, где для достижения необходимой температуры происходит перемешивание жидкостных потоков с разной степенью нагрева, регулируемое клапаном.

Подобная обвязка предполагает подачу горячего теплоносителя порциями, благодаря чему перегрева не возникает. Также способствует сглаживанию температуры инерционная стяжка.

Конструктивные размеры клапанов Rtl

При оборудовании системы водяного обогревательного контура клапаном Rtl следует учитывать, что выставляемая на ограничителе жидкостного потока, идущего обратным потоком, температура не должна быть ниже значений воздуха в помещении.

Если это требование не соблюдается, то возможно возникновение нестабильного некорректного функционирования Rtl регулятора.

Конструктивно он состоит из корпуса, ограничителя предельного хода штока, а также жидкостного датчика, благодаря которому осуществляется передача данных о температуре проходящего потока для поддержания заданного значения нагрева в автоматическом режиме.

Схема регулирования водяного теплого пола

Открывается Rtl клапан только в случае, если максимальное значение не было достигнуто. Также используется подобный регулятор при оборудовании теплого водяного контура комбинированного типа, когда теплоноситель поступает параллельно в радиаторы и в систему.

Разнообразие вариантов подключения водяного обогревательного контура позволяет рационально решить, какая схема будет подходящей для конкретных условий. В загородных домах при установке локального котла с регулируемой температурой выходящего водного потока есть возможность прямого подключения без дополнительных узлов, призванных понижать степень нагрева теплоносителя.

Видео: Простой способ регулировки температуры теплого пола


Как работает термоголовка для тёплого водяного пола?

Внутри отапливаемой комнаты должна быть постоянно комфортная для человека температура воздуха. С этой целью в проект обогрева помещения включается термоголовка для теплого пола водяного.

Элемент в процессе функционирования непрерывно отслеживает градус воды или антифриза в системе, проводит корректировку интенсивности циркуляции.

Термоголовка и термоклапан – неотъемлемые части конструктивного узла. Без клапана системе не обойтись, поскольку он управляет работой термостата и его чувствительностью к колебаниям тепла в воздухе снаружи или в воде внутри контура. Функции узла с термоагрегатами – отсекающие или смешивающие.

Термоголовка для теплого пола водяного крайне необходима, поскольку теплые полы – низкотемпературные системы, а попадание в них слишком горячей воды испортит контур и вызовет сбой работы.

Читайте в статье:

Как выбрать термоголовку?

В системе нагрева напольного покрытия есть миксерный узел, важнейший элемент, отвечающий за изменение параметров греющего контура. Это связано с тем, что влага с отопительного оборудования поступает в трубопровод слишком горячей, порой до 90 градусов тепла, а внутри стяжки может быть только максимум 40 градусов тепла.

Чтобы не перегреть систему, на заслонке обустраивается термоголовка, поддерживающая допустимые параметры теплоносителя. Смеситель отвечает за сведение температур разных потоков, в итоге в водяной контур поступает антифриз или вода нужной и допустимой температуры.

Термоклапан системы отопления

Термоголовка устанавливается строго горизонтально и имеет в составе специфический измеритель, передающий в электропривод сигналы о закрытии или открытии клапана. Гидроклапан имеет три хода для теплоносителя, из которых два используется для подачи воды в смеситель, а третий отвечает за подачу общего потока в трубопровод.

Блок изготавливается из нержавейки, поскольку работать устройству приходится в постоянно влажной среде и есть риск образования коррозии. В рабочем режим полы чутко отвечают на изменения тепла в помещении, автоматически регулируя подогрев циркулирующей жидкости внутри.

Как работает термоголовка?

Терморегулятор состоит из механизма с термодинамическими параметрами, основанными на элементарных физических качествах вещества – расширении при высоких температурах. В корпусе термоголовки есть специальная емкость с веществом, отвечающим на нагрев, а под ней – толкатель для клапанного штока.

Термоголовка для теплого пола работает следующим образом:

  1. Внутри термостата находится сильфон с твердым или жидким веществом. Стенки его сделаны гофрированными, что дает емкости способность к растяжению;
  2. Когда повышается градус, сильфон расширяется, стенки растягиваются и давят на клапанный шток. Баланс системы поддерживается пружиной;
  3. Когда сильфон остывает, его размеры восстанавливаются и перестают оказывать давление на шток.

Термоголовка для теплого пола продается отдельно или с вентилем в комплекте. Покупка комплекта оптимальна, потому что в таком случае резьба и посадочные места кранов и головки идеально совпадают.

Комплектация производится разными типами вентилей, поэтому бывают прямыми или угловыми термоголовками. Выбрать нужный вариант можно по конфигурации отопительной системы.

Виды термоголовок

По веществу в сильфоне термоголовки бывают газовые, жидкостные или на парафиновой основе. Жидкостные – инерционные, работающие медленнее, долго нагревающиеся и остывающие, но самые точные.

Газовые имеют большую погрешность и уязвимы для сквозняков. Внутри головки есть мнемосхема, на которой отмечены зоны с температурами.

Термоголовка может управляться механически или электронно. Ручные, с механическим управлением, имеют радиальную шкалу с отметками по 2…5 градусов. Поворот ручки увеличит расстояние между элементами и повысит давление на шток.

Электронные устройства управляются дисплеем, а на шток давит электропривод. Такое оборудование дороже, но отличается высокой точностью.

Термостат контактирует с поверхностью несколькими способами, поэтому термоголовка может быть накладной, с воздушным датчиком или погружного типа.

Терморегулятор нагревается на месте фиксации, а накладные и воздушные соединяются с датчиком запаянной трубкой капиллярного типа. Сильфон расширяется от нагрева баллончика, расположенного дистанционно – такие агрегаты используются в теплых полах.

Изменение рабочих режимов теплого пола

Терморегулятор – эффективное решение для отслеживания температуры воды в греющем контуре. Этот способ недорог и доступен практически каждому владельцу. Котел нагревает воду до 90 градусов, а в полы должна поступать вода с температурой в два раза ниже.

Нужного градуса можно достигнуть благодаря термостатической головке:

  • Подача горячей воды кратковременно – вода заполняет трубопровод, подача заканчивается до момента ее остывания до приемлемой температуры;
  • Постоянная подача воды с подмешиванием прохладного теплоносителя из возвратной трубы.

Периодическая кратковременная подача

При кратковременной подаче воды система работает на небольшом пространстве – ванная, керамический пол в туалете, душевая и другие места. В месте подачи работает клапан с двумя ходами, датчиком пола выносного типа и термоголовкой.

Как только контур заполняется теплоносителем, срабатывает датчик, поток перекрывается клапаном. Через некоторое время стяжка остынет, клапан вновь откроется и систему заполнит горячая вода. Эта схема экономична и может заменить блок смесителя.

Для теплых полов разработаны специальные термоголовки из RTL-серии, без выносного датчика. Их устанавливают на обратку для поддержания заданной температуры воды без зависимости от прогрева полов. Устанавливая эту модель терморегулятора, автоматика меняет пороговые значения тепла (не более 40 градусов тепла).

Особенность монтажа – установка в исключительно горизонтальном положении. Специалисты из г. Москва не рекомендуют ставить значения воды в полах ниже, чем градус тепла в комнате.

Периодические кратковременные впрыски воды в контур позволяют сохранить стабильное движение по контуру теплоносителя без перегрева системы.

Постоянная подача теплоносителя

Постоянная подача воды требует монтажа трехходового клапана в систему, дополненного датчиком пола и термоголовкой. С использованием тройника делают подводку от обратки к третьему ходу смесительного агрегата. Выход на прямую подачу воды должен быть всегда открыт, поэтому клапан должен быть установлен профессионально и правильно.

Специалисты рекомендуют ставить термоголовку на трехходовой клапан с использованием буксы запирающего типа. Когда датчик нагревается, смещается шток клапана и внутри образуется просвет. В этот просвет поступает прохладная вода из возвратной линии.

Такая последовательность работ позволяет теплоносителю стабильно поступать в контур, при этом температура остается в допустимых пределах. Из-за непрерывности потока напольное покрытие быстро нагревается до 28 градусов тепла и остается комфортным для владельца, а контур не перегревается.

Трубы и стяжка прослужат дольше из-за отсутствия чрезмерно высоких температур. Подмес холодного теплоносителя важен для обогрева больших помещений, где нужна комфортная температура.

ТермоСтатическая Головка с Выносным Проточным Сенсором

Термостатические головки для тёплого пола

Изменение температуры жидкости в датчике приводит к изменению её объёма. Жидкость, находящаяся в термоэлементе перемещается через капиллярную трубку и изменяет длину сильфона. Повышение температуры жидкости приводит к увеличению длины сильфона, снижение соответственно к уменьшению. Сильфон, размещённый в корпусе термоголовки, воздействует на шток клапана и управляет потоком теплоносителя через клапан, на котором установлен корпус термоголовки. Чем меньше промежуточных преград между контролируемой средой и термочувствительной жидкостью, которой заполнен термоэлемент, тем выше точность и скорость отрабатывания термостатической головки.
Рассмотрим применение термостатических головок с выносными датчиками разных типов для управления системами отопления «тёплый пол».

1. Новинка – ТСГ ВПС (ТермоСтатическая Головка с Выносным Проточным Сенсором). Термоголовка ТСГ ВПС создана специально для автоматического управления системами отопления «Тёплый пол». Логика управления базируется на непрерывном контроле изменений температуры теплоносителя в контурах водяного тёплого пола. Изменения температуры теплоносителя на выходе из контура пола характеризуют степень достаточности тепла подаваемого в пол. Если температура теплоносителя, возвращающегося из контура, стала ниже значения, установленного на термоголовке, то это признак недостаточности количества подаваемого тепла и ТСГ ВПС автоматически увеличит подачу теплоносителя в контур или увеличит температуру теплоносителя, подаваемого в систему ТП.

Корпус ТСГ ВПС может устанавливаться как на регулирующий клапан подающей или обратный линии насосно-смесительного узла, так и на регулирующий клапан подающего коллектора теплого пола. Сенсор (датчик) температуры теплоносителя устанавливается на входе или выходе контура «Тёплого пола».
Для монтажа датчик снабжён с одной стороны накидной гайкой с резьбой 3/4″ с другой стороны наружной резьбой 3/4″, по геометрии соединения выполнены под стандарт «Евроконус». В датчик встроена медная трубка, через которую движется теплоноситель. Использование меди обеспечивает одновременно высокую скорость срабатывании термоголовки и точность контроля температуры теплоносителя водяного тёплого пола.
Применение термоголовок с выносным проточным датчиком позволяет создавать:
ТермоАдаптивные насосно-смесительные узлы, управляющие температурой подаваемого теплоносителя в зависимости от реальной потребности в тепле (например: при изменении погодных условий).
Блоки Подключения контуров водяного тёплого пола, без дополнительного насоса, к обратной линии радиаторного отопления или к линии ГВС.
Термоуправляемые Коллекторные Группы, обеспечивающие автоматическое управление контурами водяного тёплого пола.
RTL-клапаны с высокими характеристиками: точность и скорость отрабатывания.

2. Термостатические головки с выносным контактным датчиком контроля температуры поверхности нашли широкое применение в составе насосно-смесительных узлов для водяных теплых полов. Датчик устанавливается в гильзу и контролирует приготовление теплоносителя с температурой, задаваемой по шкале температуры на корпусе головки.

Гильза позволяет применять в насосно-смесительных узлах термостатические головки с датчиками разных диаметров и заменять термоголовки (в случае поломки) без разборки резьбовых соединений.
Учитывая высокую надёжность термоголовок, преимущество создаваемое гильзой превращается в серьёзный недостаток ( Датчик контактирует с гильзой, а не с самим теплоносителем). При такой компоновке скорость реакции термоголовки и точность контроля изменений температуры теплоносителя резко снижается. Контакт теплопередающих поверхностей улучшается при заполнении гильзы жидкостью, однако горизонтальное расположение гильзы в смесительных узлах часто это исключает.
Термостатические головки с выносным контактным датчиком контроля температуры поверхности применяются и для управления по температуре теплоносителя обратной линии. Термостатические головки устанавливают на клапан возвратного коллектора, а датчик-сенсор, через алюминиевый адаптер, крепят к трубопроводу соответствующего контура перед коллектором. Такое использование термоголовки позволяет обеспечить автоматическую балансировку контура, а также скорректировать расход теплоносителя через контур при изменении тепловых потерь помещения, обогреваемого данным контуром.

3. Термостатические головки с погружным датчиком контроля температуры теплоносителя отличаются от головок с контактным датчиком по температуре поверхности, наличием резьбового элемента для установки сенсора непосредственно в теплоноситель.

Исключение промежуточных теплопередающих сред, между датчиком и теплоносителем, значительно увеличивает скорость реагирования термоголовки на изменение температуры контролируемой среды. Более совершенными являются термостатические головки со спиральными датчиками, имеющими более развитую теплопередающую поверхность. При тех же габаритных размерах поверхность теплообмена спиральных сенсоров больше чем цилиндрических в 2-4 раза. Погружной сенсор устанавливается в смесительный узел без гильзы и контролирует температуру теплоносителя, поступающего в подающий коллектор, с увеличенной точностью и скоростью. Применение эффективных элементов существенно влияет на работу всей системы.

4. Термостатическая головка с выносным датчиком контроля температуры воздуха может применяться для регулирования температуры помещения. Рассмотрим реализацию такой функции в системах с насосно-смесительным узлом, скомпонованным на 2-х ходовых регулирующих клапанах.

Источники:
http://dekoriko.ru/pol/vodnoj/termogolovka/
http://laminatepol.ru/17571-termogolovok-dlya-teplogo-pola.html
http://stroy-podskazka.ru/pol/teplyj/termogolovka/
http://kaminyn.ru/tyoplyiy-pol/vodnyiy/termogolovka-dlya-vodnyih-polov.html
http://seti.guru/termogolovka-dlya-teplogo-pola-vodyanogo
http://xn--b1ab1bfdb.xn--p1ai/articles/NewSection_12/

Что такое автоматический радиаторный терморегулятор?

Отопительный прибор (например, радиатор) системы водяного отопления должен подавать в помещение тепло в строгом соответствии с текущей потребностью. Зимой требуемый уровень тепла выше, весной – ниже, поэтому температура теплоносителя в системе отопления должна меняться.

Регулирование температуры должна осуществлять автоматика индивидуального генератора тепла (котла), который является источником тепловой энергии в доме.

Однако не все котлы оснащаются подобными устройствами: часто автоматика лишь поддерживает температуру воды на постоянном уровне, либо отсутствует вовсе. В результате в помещениях становится то жарко, то холодно. Даже если регулирование на котле все-таки есть, нередко бывает сложно добиться баланса: теневая сторона дома холоднее, солнечная – теплее, поэтому приходится открывать форточки и выпускать уже оплаченное потребителем тепло наружу. Как лучше поступить в данной ситуации?

На радиаторах можно установить вентили или шаровые краны. С их помощью легко уменьшается подача горячей воды в приборы отопления. Сложно представить, чтобы у радиатора постоянно будет дежурить человек и закрывать кран, когда выйдет солнце, затопят камин или придут гости, а потом вновь открывать его, когда станет холоднее.

Такую работу берет на себя автоматический радиаторный терморегулятор. Устройство не только помогает поддерживать постоянную  комфортную температуру в помещении без участия  человека, но и экономит тепло и деньги на его оплату: счета становятся на 20% ниже. Для отопления используется «бесплатное» солнечное тепло, теплопоступления от людей, электроприборов и т.д. Кроме того, воздух вокруг вашего дома станет чище за счет сокращения выбросов дымовых газов от сжигания лишнего топлива.

Строительные нормы не случайно предписывают установку регулирующих устройств перед отопительными приборами, а в жилых зданиях – именно автоматических радиаторных терморегуляторов.

Устройство и принцип работы радиаторного терморегулятора

Радиаторный терморегулятор состоит из двух основных частей: термостатической головки (термоголовки) и регулирующего клапана.

Регулирующий клапан устанавливается на входе теплоносителя в радиатор. Под воздействием термоголовки он изменяет количество горячей воды, проходящей через прибор.

Термоголовка – главный элемент автоматического регулирования. С помощью соединительной гайки она закрепляется на регулирующем клапане и, реагируя на отклонения температуры воздуха в помещении от заданного значения, перемещает затвор регулирующего клапана.

Внутри термоголовки находится гофрированная, заполненная термочувствительной жидкостью емкость (сильфон), иногда в сочетании с ее парами. Через настроечную пружину сильфон связан с нажимным штоком, а тот в свою очередь – со штоком и затвором регулирующего клапана.

 

Когда температура воздуха в помещении становится выше заданного значения, жидкость в сильфоне расширяется, он сжимается и перемещает шток и затвор клапана в сторону уменьшения протока воды. Радиатор остывает, температура в помещении снижается. При падении температуры на улице происходит обратный процесс: жидкость уменьшается в объеме, сильфон растягивается, высвобождая шток клапана, который под воздействием возвратной пружины поднимается. Проток воды через радиатор увеличивается и, вслед за этим, температура в помещении восстанавливается.

Изменяя силу сжатия настроечной пружины простым поворотом рукоятки термоголовки, можно установить любую желаемую температуру. Терморегулятор будет поддерживать ее без вашего участия. Для этого на корпусе термоголовки нанесена шкала, цифры которой соответствуют температуре настройки.

 

Как видно, диапазон настройки температуры широк и, в зависимости от типа термоголовки, составляет от 2 до 29оС. Однако следует помнить, что если радиатор изначально рассчитан на поддержание 22 оС, то терморегулятор в любом случае не сможет обеспечить более высокую температуру. Для этого радиатор должен иметь определенный запас.

При необходимости диапазон настройки может быть ограничен с обеих сторон – для этого в комплекте поставляются специальные штифты.

Термоголовки бывают трех разновидностей: со встроенным температурным датчиком, с выносным датчиком и головка дистанционного управления.

  • Первый тип применяется, когда радиатор располагается открыто под окном, и воздух помещения свободно омывает термочувствительный элемент термоголовки.
  • Если радиатор завешен глухими шторами или заставлен мебелью, температура вокруг обычной термоголовки будет выше, чем в помещении – регулятор может работать некорректно. В этом случае используется термоголовка с выносным датчиком, который должен располагаться на свободной стене примерно на высоте 1,5 м от пола, а сама головка – на клапане терморегулятора.
  • Термоголовка дистанционного управления представляет собой обычную головку, размещаемую на стене по тому же принципу, что и выносной датчик. Она связана с клапаном терморегулятора через капиллярную трубку гидропривода. Такая термоголовка применяется для удаленного управления температурой в помещении, когда доступа к радиатору и клапану терморегулятора нет вовсе.

Регулирующий клапан – исполнительное устройство терморегулятора, которое устанавливается на входе теплоносителя в радиатор и изменяет количество горячей воды, проходящей через отопительный прибор.

Клапан терморегулятора нормально открытый нажимного действия (закрывается  под воздействием термоголовки, открывается за счет возвратной пружины).

Правильный выбор радиатора и терморегулятора поможет поддерживать в вашем доме комфортную температуру и сделает жизнь удобней и проще. 


Термостатические головки Herz

Далее сами головки:


Описание   Изображение

Термоголовка Herz Стандарт, артикул 726006 — простейшая головка, дешевая и без изысков. Головка артикул 723006 — дороже и снабжена функцией механического запирания. Головка 726200 — имеет увеличенный ход штока и служит для установки в однотрубных системах.   
     
Термоголовка Herz Дизайн, артикул 926006 — дизайнерская головка созданная совместно с компанией Porsche Design. Артикул 923006 — головка аналогична предыдущей , но имеет на шкале температур значение «0».  
     
Термоголовка Herz Мини, артикул 920030 — самая маленькая головка в мире, имеет тепловой «0». Артикул 920060 то же, что и предыдущая но без «0». Артикулы 920068 и 920038, 920036- головка Мини с резьбой «Н» 30х1,5. Артикул 920100 — головка с диапазоном регулирования 25-60 градусов по температуре теплоносителя.


 
Термоголовка Herz Мини GS, артикул 920003 — головка мини с продольными отверстиями для воздуха. Артикул 920006 — та же головка только без позиции «0».  

     
Термоголовка Herz Мини Turbo, артикул 920013 — головка мини с завихряющимися продольными отверстиями для воздуха. Артикул 920016 — та же головка только без позиции «0».  

     
Термоголовка Herz Герцкулес, артикул 986010 — сверхпрочная термоголовка для общественных помещений, защита от ударов, кражи, вандализма.  

 

Термостатические головки с удаленным управлением применяются в двух случаях:

1. прибор отопления закрыт плотными шторами, панелью или, находится в недоступном для повседневного регулирования месте,

2. если реализуется схема с теплым полом или бойлером.

 

Изображение Описание

  Термоголовка Herz Дизайн с дистанционным управлением, артикул 933005. Управляющий элемент крепится на клапане, а датчик температуры и маховик вынесен при помощи капиллярной трубки на расстояние 2м. Артикул 933010 — длина трубки 5м, 933018 — длина трубки 8м.
     

  Термоголовка Herz Дизайн с выносным датчиком, артикул 943008. Управляющий элемент и маховик крепятся на клапане, а датчик температуры вынесен при помощи капиллярной трубки на расстояние 2м. Артикул 943018 — длина трубки 8м.
     

  Термоголовка Herz Стандарт с выносным датчиком, артикул 743008. Управляющий элемент и маховик крепятся на клапане, а датчик температуры вынесен при помощи капиллярной трубки на расстояние 2м. Артикул 746006 — длина трубки 2м, шкала на маховике без «0». Артикул 746018 длина капиллярной трубки 8м.
   

 

  Термоголовка Herz Стандарт с накладным датчиком, артикул 742006. Управляющий элемент и маховик крепятся на клапане, а накладной датчик температуры вынесен при помощи капиллярной трубки на расстояние 2м. Благодаря диапазону настройки температуры 20-50 градусов С, применяется для организации схем теплого пола. Артикул 742100 — диапазон настройки 40-70 градусов С,  возможно применение как в схемах теплого пола, так и при обвязке бойлера.

 Электрические приводы с управлением от контроллера применяют для автоматизации процессов регулирования температуры в помещении. К одному контроллеру можно подключить 8-10 приводов (число зависит от типа контроллера). Как правило, электрические приводы имеют встроенную спираль, при получении сигнала она нагревается и расширяется — тем самым приводя в движение клапан.


Описание   Изображение

     Термопривод Herz с резьбой М28х1,5 и напряжением 230В:  771110 —  нормально закрытый,  771111 — нормально открытый. Термоприводы с резьбой 30х1,5 и напряжением 230В: 771120 — нормально закрытый или 771121 — нормально открытый  
     
Термопривод Herz DDC с плавным регулированием, артикул 799000, напряжение 230В, резьба М28х1,5. Артикул 798000 — в отличие от предыдущего имеет напряжение 24В.   

   
Электронная термоголовка Herz HR40 артикул 824000 — программируемая головка, поддерживает 4 разных уровня температуры в стуки. Работает от батареек 2хАА, резьба М28х1.5.  

Термоголовка для водяного теплого пола водяного: принцип работы RTL-регулировки

Как же приятно зимой ходить по теплому полу и не бояться замерзнуть – особенно важен такой тип отопления в доме, где растут дети. Теплый пол – это удобная альтернатива классическому или электрическому отоплению в доме. Еще совсем недавно представить нечто подобное было невозможно, но техника быстро дошла и до этого, ведь сегодня подобные системы доступны каждому человеку.

Роль термоголовки

Теплый пол – это самостоятельно установленная система отопления, которая обеспечивает теплым воздухом жилое помещение. Устройство бесперебойной работы подразумевает серьезные требования и к установке оборудования, и к эксплуатации. За ответственность бесперебойного обогрева водяного теплого пола отвечает термоголовка. Она же и является стабильным индикатором температуры, которую необходимо держать под контролем.

Принцип работы термоголовки

Правильное смешивание горячей и холодной воды в идеале должно соответствовать показаниям датчика.

Существуют стандарты, которые включают в себя степень нагрева внутри системы до 90 градусов, в то время как сам пол не должен быть выше показателя 40 градусов. Оптимальная рекомендуемая температура – 22 градуса. Исправная работа термоголовки является залогом бесперебойной работы всей системы.

Преимущества и недостатки

Такой обогрев имеет ряд неоспоримых преимуществ, среди которых на первом месте стоит дешевая эксплуатация. Теплый пол обогревает всю комнату по сравнению с навесными электрическими батареями, при эксплуатации которых нагретый воздух поднимается, а пол, по сути, остается холодным.

Подобный отопительный прибор не нарушает баланс влажности воздуха в помещении, что является также неоспоримым плюсом.

Теплый пол не обладает какими-то критическими недостатками, но некоторые нюансы стоит все-таки учесть. Трудоемкость монтажа предъявляет серьезные требования к подготовке площади. Серьезным неудобством может послужить протечка трубопровода во время эксплуатации, ведь в случае ремонта придется вскрывать напольное покрытие. Такой пол нельзя установить в труднодоступных местах (на лестнице или в небольших помещениях), что требует дополнительного отопительного оборудования.

Особенности системы

За стабильное нагревание температуры пола отвечает термоголовка, которая устанавливается на клапане.

Обычная система включает в себя трубы, термоизоляцию, термоголовку с датчиком, элементы крепления, рантовую ленту, аксессуары для минимизации швов, коллекторы с фитингами и иногда дополнительный пакет насосной группы. Функционирование теплого пола осуществляется в смесительном узле. При поступлении в систему обогрева вода смешивается, чем достигается определенный уровень температуры.

Функция термического клапана

Термоголовка и термоклапан являются неотъемлемым элементом механизма радиаторного отопления. При подключении системы на клапан приходят показания температуры, которые можно регулировать. Сегодня распространены двухходовые и трехходовые клапаны. Термоголовка и термический клапан – это «сердце» теплого пола.

Монтаж

Установка теплого пола – дело хлопотное и, как может показаться сначала, затратное. Однако впоследствии выгода и польза очевидна. Как показала практика, при эксплуатации такая система оказывается дешевле и практичнее других видов, но при этом монтаж обойдется дороже, чем для других систем. Все затраты окупятся, и в итоге отопительный сезон поможет сэкономить до 20%. Доверить монтаж такого пола лучше квалифицированным специалистам, что может гарантировать безопасность.

Советы по выбору

Лучше всего приобретать готовый комплект, в который уже входят все краны и другие необходимые комплектующие. Для разных объемов площади есть свои системы укладки, поэтому метод установки оборудования для маленькой квартиры не подойдет для большого дома.

При правильной установке такой пол не должен быть виден под паркетом. Стоит учесть, что чем больше функций программирования теплого пола, тем он будет дороже. Например, для разных комнат можно выбрать, соответственно, разные температуры.

При выборе той или иной схемы обогрева всегда необходимо учитывать объем обогреваемого помещения.

В целях экономии под шкафами, диванами и другими видами мебели пространство не утепляют.

Нужно тщательно выбирать материал теплоизолятора, от которого во многом зависит долговечность системы – пеноплекс и пенопласт являются самыми распространенными вариантами.

Правила установки

При несоблюдении правил установки механизма возможна некорректная работа или полный выход из строя системы. Как заявляют производители, при правильной установке и эксплуатации теплый пол может прослужить до 50 лет его владельцу, поэтому к такому приобретению важно подходить основательно.

Отзывы

Многочисленные отзывы говорят о том, что водяная система отопления является популярной в силу своей экономичности и доступности. Среди факторов и критериев выбора люди подчеркивают безопасность по сравнению с электрическими системами.

Среди распространенных производителей можно отметить бренды WOLF, ACV, VAILLANT, CTC. Трубы и другие комплектующие на рынке предлагают такие компании, как OVENTROP, WIRSBO, UNIVERSA, AQUATHERM и PURMO.

О том, какая функциональная роль термоголовки в системе управления теплым полом, смотрите в следующем видео.

Принцип работы термоголовки для теплого пола


Термоголовка для тёплого водяного пола

Внутри отапливаемой комнаты должна быть постоянно комфортная для человека температура воздуха. С этой целью в проект обогрева помещения включается термоголовка для теплого пола водяного.

Элемент в процессе функционирования непрерывно отслеживает градус воды или антифриза в системе, проводит корректировку интенсивности циркуляции.

Термоголовка и термоклапан – неотъемлемые части конструктивного узла. Без клапана системе не обойтись, поскольку он управляет работой термостата и его чувствительностью к колебаниям тепла в воздухе снаружи или в воде внутри контура. Функции узла с термоагрегатами – отсекающие или смешивающие.

Термоголовка для теплого пола водяного крайне необходима, поскольку теплые полы – низкотемпературные системы, а попадание в них слишком горячей воды испортит контур и вызовет сбой работы.

Читайте в статье:

Как выбрать термоголовку?

В системе нагрева напольного покрытия есть миксерный узел, важнейший элемент, отвечающий за изменение параметров греющего контура. Это связано с тем, что влага с отопительного оборудования поступает в трубопровод слишком горячей, порой до 90 градусов тепла, а внутри стяжки может быть только максимум 40 градусов тепла.

Чтобы не перегреть систему, на заслонке обустраивается термоголовка, поддерживающая допустимые параметры теплоносителя. Смеситель отвечает за сведение температур разных потоков, в итоге в водяной контур поступает антифриз или вода нужной и допустимой температуры.

Термоклапан системы отопления

Термоголовка устанавливается строго горизонтально и имеет в составе специфический измеритель, передающий в электропривод сигналы о закрытии или открытии клапана. Гидроклапан имеет три хода для теплоносителя, из которых два используется для подачи воды в смеситель, а третий отвечает за подачу общего потока в трубопровод.

Блок изготавливается из нержавейки, поскольку работать устройству приходится в постоянно влажной среде и есть риск образования коррозии. В рабочем режим полы чутко отвечают на изменения тепла в помещении, автоматически регулируя подогрев циркулирующей жидкости внутри.

Как работает термоголовка?

Терморегулятор состоит из механизма с термодинамическими параметрами, основанными на элементарных физических качествах вещества – расширении при высоких температурах. В корпусе термоголовки есть специальная емкость с веществом, отвечающим на нагрев, а под ней – толкатель для клапанного штока.

Термоголовка для теплого пола работает следующим образом:

  1. Внутри термостата находится сильфон с твердым или жидким веществом. Стенки его сделаны гофрированными, что дает емкости способность к растяжению;
  2. Когда повышается градус, сильфон расширяется, стенки растягиваются и давят на клапанный шток. Баланс системы поддерживается пружиной;
  3. Когда сильфон остывает, его размеры восстанавливаются и перестают оказывать давление на шток.

Термоголовка для теплого пола продается отдельно или с вентилем в комплекте. Покупка комплекта оптимальна, потому что в таком случае резьба и посадочные места кранов и головки идеально совпадают.

Комплектация производится разными типами вентилей, поэтому бывают прямыми или угловыми термоголовками. Выбрать нужный вариант можно по конфигурации отопительной системы.

Виды термоголовок

По веществу в сильфоне термоголовки бывают газовые, жидкостные или на парафиновой основе. Жидкостные – инерционные, работающие медленнее, долго нагревающиеся и остывающие, но самые точные.

Газовые имеют большую погрешность и уязвимы для сквозняков. Внутри головки есть мнемосхема, на которой отмечены зоны с температурами.

Термоголовка может управляться механически или электронно. Ручные, с механическим управлением, имеют радиальную шкалу с отметками по 2…5 градусов. Поворот ручки увеличит расстояние между элементами и повысит давление на шток.

Электронные устройства управляются дисплеем, а на шток давит электропривод. Такое оборудование дороже, но отличается высокой точностью.

Термостат контактирует с поверхностью несколькими способами, поэтому термоголовка может быть накладной, с воздушным датчиком или погружного типа.

Терморегулятор нагревается на месте фиксации, а накладные и воздушные соединяются с датчиком запаянной трубкой капиллярного типа. Сильфон расширяется от нагрева баллончика, расположенного дистанционно – такие агрегаты используются в теплых полах.

Изменение рабочих режимов теплого пола

Терморегулятор – эффективное решение для отслеживания температуры воды в греющем контуре. Этот способ недорог и доступен практически каждому владельцу. Котел нагревает воду до 90 градусов, а в полы должна поступать вода с температурой в два раза ниже.

Нужного градуса можно достигнуть благодаря термостатической головке:

  • Подача горячей воды кратковременно – вода заполняет трубопровод, подача заканчивается до момента ее остывания до приемлемой температуры;
  • Постоянная подача воды с подмешиванием прохладного теплоносителя из возвратной трубы.
Периодическая кратковременная подача

При кратковременной подаче воды система работает на небольшом пространстве – ванная, керамический пол в туалете, душевая и другие места. В месте подачи работает клапан с двумя ходами, датчиком пола выносного типа и термоголовкой.

Как только контур заполняется теплоносителем, срабатывает датчик, поток перекрывается клапаном. Через некоторое время стяжка остынет, клапан вновь откроется и систему заполнит горячая вода. Эта схема экономична и может заменить блок смесителя.

Для теплых полов разработаны специальные термоголовки из RTL-серии, без выносного датчика. Их устанавливают на обратку для поддержания заданной температуры воды без зависимости от прогрева полов. Устанавливая эту модель терморегулятора, автоматика меняет пороговые значения тепла (не более 40 градусов тепла).

Особенность монтажа – установка в исключительно горизонтальном положении. Специалисты из г. Москва не рекомендуют ставить значения воды в полах ниже, чем градус тепла в комнате.

Периодические кратковременные впрыски воды в контур позволяют сохранить стабильное движение по контуру теплоносителя без перегрева системы.

Постоянная подача теплоносителя

Постоянная подача воды требует монтажа трехходового клапана в систему, дополненного датчиком пола и термоголовкой. С использованием тройника делают подводку от обратки к третьему ходу смесительного агрегата. Выход на прямую подачу воды должен быть всегда открыт, поэтому клапан должен быть установлен профессионально и правильно.

Специалисты рекомендуют ставить термоголовку на трехходовой клапан с использованием буксы запирающего типа. Когда датчик нагревается, смещается шток клапана и внутри образуется просвет. В этот просвет поступает прохладная вода из возвратной линии.

Такая последовательность работ позволяет теплоносителю стабильно поступать в контур, при этом температура остается в допустимых пределах. Из-за непрерывности потока напольное покрытие быстро нагревается до 28 градусов тепла и остается комфортным для владельца, а контур не перегревается.

Трубы и стяжка прослужат дольше из-за отсутствия чрезмерно высоких температур. Подмес холодного теплоносителя важен для обогрева больших помещений, где нужна комфортная температура.

Теплый пол — TheGreenAge

Что такое теплый пол?

Напольное отопление (также известное как лучистое отопление) используется уже много тысяч лет. Римские бритты использовали гипокауст, который представлял собой подвесные полы, под которыми разводили костры, которые затем нагревали пол и, в свою очередь, нагревали ванны или комнаты. Сеть небольших труб использовалась для отвода горячего воздуха из центральной печи и обогрева здания. Это создавало конвекцию теплого воздуха, которая нагревала основное жилое пространство.

С тех пор дела пошли немного дальше, но лучистое отопление — отличный экономичный способ обогрева многих помещений в доме. В настоящее время существует два предпочтительных метода теплого пола для дома: электрические системы теплого пола или горячая вода, протекающая по трубам непосредственно под поверхностью пола, известные как гидравлические системы.

Прочтите, чтобы узнать о различных типах системы теплого пола.

Виды системы теплых полов

В современных системах теплого пола для обогрева пола используются либо элементы электрического сопротивления («электрические системы»), либо текучая среда, протекающая по трубам («гидронные системы» — см. Тепловые насосы, использующие грунтовые теплоносители).Любой из этих типов может быть установлен как основная система отопления всего здания или как локальный подогрев пола для обеспечения теплового комфорта в отдельной комнате.

Электрические системы теплого пола

Электрические системы теплого пола работают с использованием элементов электрического сопротивления. Когда система включена, она нагревается, нагревая деревянный, кафельный пол или ковровое покрытие над ней. Пол тогда действует как большой радиатор; поэтому полы с подогревом иногда называют лучистым отоплением.

Этот тип теплого пола очень прост в установке, а также он очень тонкий (по сравнению с системами Hydronic), поэтому вы не потеряете высоту своих комнат, если модернизируете эту технологию в своем доме. Кроме того, элементы электрического сопротивления, составляющие систему, работают со 100% -ным КПД, поэтому все электричество, проходящее через них, превращается в тепло. Электрическая система, которую вы устанавливаете, будет зависеть от размера комнаты и типа напольного покрытия, но варианты включают в себя нагревательные маты (развернутые для покрытия больших площадей), системы электрических кабелей или незакрепленную проводку, достаточно гибкую, чтобы заполнить более неудобные места.

Большинство систем электрического теплого пола легко установить, если вы достаточно компетентны в своем деле. Однако все электрические системы отопления, установленные в доме, должны быть утверждены компетентным электриком в соответствии со строительными нормами 2005 года.

Системы водяного теплого пола
Системы водяного теплого пола

полагаются на горячую воду, нагретую в котельной системе (или с помощью теплового насоса с источником тепла или с помощью теплового насоса с источником воздуха), чтобы обеспечить теплом пол и соответствующее помещение.Горячая вода течет по трубам, расположенным ниже уровня пола, которые нагревают пол. Поскольку тепло отводится через большую площадь (все пространство пола), оно не обязательно должно быть таким горячим, как вода, протекающая через радиаторы, поскольку оно более равномерно распределяется по комнате.

В отличие от электрических систем теплого пола, гидравлические системы приведут к потере высоты помещения, если они будут модернизированы (поскольку есть трубы, по которым проходит жидкость, которые имеют более толстый профиль, чем провода).Это идеальная технология, которую можно использовать одновременно с заменой существующего пола (пожалуйста, также установите изоляцию пола, когда вы это делаете). Кроме того, в отличие от электрических систем, мы предлагаем вам пригласить сертифицированного инженера по теплому полу для установки этого типа системы.

Одним из основных преимуществ водяных систем теплого пола является то, что их также можно использовать для охлаждения помещения летом. В отличие от электрических систем, если вы перекачиваете очень холодную воду по трубам, она охладит пол и будет работать в обратном порядке, охлаждая комнату.

.

Полы с подогревом — Полы с подогревом — Dimplex

Правильная стяжка для обогрева

Утеплительная стяжка применяется в виде плавающей цементной стяжки. Он сохраняет тепло и равномерно распределяет его по воздуху в помещении. Стяжка с подогревом должна соответствовать стандарту DIN 18560. При укладке стяжки убедитесь, что она должным образом сжата, а конструкция герметична. Его толщина зависит от расхода тепла, периода зарядки, типа напольного покрытия и массы здания.Средняя толщина накопительных нагревателей составляет от 8 до 10 см, а прямых нагревателей — 6 см.

Определение потребляемой мощности по площади

Требуемая потребляемая мощность в зависимости от площади поверхности зависит от температуры в помещении, температуры помещения под ним, коэффициента теплопередачи (k U ) и суммы периодов отключения обслуживания (t F + t ZF ) . Максимальная потребляемая мощность по площади составляет 180 Вт / м 2 для основного нагрева накопительного обогрева, а минимальная потребляемая мощность по площади поверхности составляет 100 Вт / м 2 .Предоставляем расчеты (толщину стяжки и необходимую потребляемую мощность) вместе с проектной документацией.

Убедитесь, что следующие

Высота этажа здания увеличена минимум на 4 см за счет более высокой конструкции этажа (более толстая стяжка отопления). Коврики с подогревом нельзя устанавливать под светильниками, вся опорная поверхность которых соприкасается с полом (например, встроенные шкафы и кухонные гарнитуры). Эти объекты также должны быть проиллюстрированы в документах, которые мы получаем от вас.Затем эти условия можно должным образом учесть при планировании проекта. Монтажные провода необходимы для обогревательных матов, датчиков остаточного тепла, погодных датчиков и (возможно) комнатных термостатов с датчиками температуры.

.

СИСТЕМА НАПОЛЬНОГО ОТОПЛЕНИЯ И ОХЛАЖДЕНИЯ

Интегрированные солнечные лучистые системы

Интегрированные солнечные лучистые системы Уильям Шейди Президент PE Темы Лучистое отопление Качество воздуха в помещении Радиационное охлаждение Проект Фотографии Вопросы и ответы Цель для наших клиентов Здоровый комфорт Почему Radiant

Дополнительная информация
КОНРАД.Гибридный фанкойл серии

Серия гибридных фанкойлов KONRAD Konrad — это инновационный радиатор, который охлаждает и согревает. Действительно, летом он остывает, а зимой греет; но делает это с несравненной тишиной. Спасибо

Дополнительная информация
Как заставить ваш дом дышать

ВОЗОБНОВЛЯЕМЫЕ ВЕНТИЛЯЦИОННЫЕ УСТАНОВКИ Ничто не потеряно Получено много свежего свежего воздуха Инновационные вентиляционные устройства, обеспечивающие здоровый воздух в помещении и значительно снижающие счета за электроэнергию 04 2015 STIEBEL ELTRON заполнен

Дополнительная информация
Природная геотермальная энергия.

Земляной тепловой насос ROTEX Природная геотермальная энергия. ROTEX HPU заземляет грунтовый тепловой насос, который нагревается за счет бесплатной геотермальной энергии. Компактный, экологически чистый и уникально эффективный.

Дополнительная информация
КПД конденсационного котла

Эффективность конденсационного котла Дата: 17 июля 2012 г. ДАННЫЙ РЕДАКТОР ДОН Л Е О НА РОДИ ЛЕ О Н А Р Д И И НС. HV AC T RAI N I N G&C ON SU LT IN G Концепции 1 Текущее состояние развития конструкции котлов 2

Дополнительная информация
Приводы ГЕРЦ-Тепловые

Приводы HERZ-Thermal Технические данные 7708-7990, выпуск 1011 Размеры в мм 1 7710 00 1 7710 01 1 7711 18 1 7710 80 1 7710 81 1 7711 80 1 7711 81 1 7990 00 1 7980 00 1 7708 11 1 7708 10 1 7708 23 1 7709 01

Дополнительная информация
Отопление и вентиляция

Балтийский экологический форум Латвия Antonijas iela 3-8 LV-1010 Рига, Латвия www.bef.lv Baltic Environmental Froum Deutschland e. V. Osterstraße 58 20259 Гамбург, Германия www. bef-de.org Отопление и вентиляция

Дополнительная информация
Энергоэффективность в зданиях

Дополнительное руководство по энергоэффективности в зданиях к SANS 10400-XA и SANS 204 V. 3.0 Зарегистрировано в: The Drawing Studio Изображение: digitalart / FreeDigitalPhotos.net Дата отчета: 26 августа 2014 г. Название практики:

Дополнительная информация
Модуль 2.2. Механизмы теплопередачи

Модуль 2.2 Механизмы теплопередачи Результаты обучения После успешного завершения этого модуля слушатели смогут: — Описывать 1-й и 2-й законы термодинамики. — Опишите механизмы теплопередачи.

Дополнительная информация
Процессы HVAC. Лекция 7

Процессы HVAC Лекция 7 Цели лекции Общее понимание систем HVAC: Типовые процессы HVAC Вентиляционные установки, фанкойлы, вытяжные вентиляторы Типовые водопроводные системы Перекачивающие насосы, отстойник

Дополнительная информация
Расчет панельного отопления / охлаждения

Расчет панельного отопления / охлаждения 3.2.200 Страница Заказчик Строительный объект MultiDRAW Улица Улица Почтовый индекс / город Почтовый индекс / город Тел. Страна Deutschland EMail Planner MULTIBETON GmbH Специалист по отоплению

Дополнительная информация
Все электрические школы

Все школы электротехники с GS в Квебеке. Предварительные результаты. Семинар Василе МИНЕА по канадским тепловым насосам и холодильной деятельности. Монреаль, 10 мая 2004 г.. Дополнительная информация

Часто задаваемые вопросы

Что такое термостатический радиаторный клапан? TRV измеряют температуру окружающего воздуха и регулируют поток воды через радиатор, на котором они установлены.Они не контролируют котел. Они должны

Дополнительная информация
1. Гео по вертикали 2. Гео по горизонтали

1 2 1. Geo Vertical 2. Geo Horizontal 1 2 3 1. Geo Vertical 2. Geo Vertical с вешалкой для полотенец 3. Geo Vertical с крышкой Geo Vertical 47 Geo Vertical Размеры Диапазон соединений GEVW_Geo Vertical

Дополнительная информация
УДСА — тепловентилятор УДСБД

ПРИМЕНЕНИЕ Отопление >> ЗАВОДЫ >> СКЛАДЫ >> ЗАЛЫ >> ВЫСТАВКИ >> ТЕПЛИЦЫ >> ТОРГОВЛЯ >>… UDSA — UDSBD автономный обогреватель www.reznor.eu Газовый обогреватель V3 Воздухонагреватель Reznor V3 является одним из

Дополнительная информация
Солнечные водонагреватели

Солнечные водонагреватели Три входа воды высокого вакуума Винт из нержавеющей стали Гелевое уплотнение и изоляция Выход воды Пылезащитные уплотнения Модели без давления Подробные сведения ASWH-1b (окрашенная в цвет 304) ASWH-1c (нержавеющая

) Дополнительная информация
Естественное сочетание

Естественное сочетание Гибридная система с тепловым насосом DAikin Altherma Будущее уже сейчас Новая гибридная система Решение с тепловым насосом для рынка замены газовых котлов Гибридная система Daikin Altherma сочетает в себе технологию теплового насоса

Дополнительная информация
DSRQ — DSRSQ — DSRSQ-THERM

DSRQ — DSRSQ — DSRSQ-THERM Элемент спецификации: Диффузор с изменяемой геометрией на панели 597×597 мм, разработанный для помещений с высокими потолками, где требуются большие расстояния и высокий коэффициент индукции.Собрано

Дополнительная информация
руководство по сантехнике

Направляющие для труб радиатора и уплотнения для сантехнических изделий. Значительное усовершенствование привода для уменьшения утечки воздуха и потерь тепла. Подобные установки слишком распространены. Детализация плохая

Дополнительная информация .Типы конденсаторов

и принцип работы

Испаритель хладагента с теплотой от конденсатора в системе охлаждения тепла, добавляемого в процессе сжатия в компрессоре, производится от системы. Таким образом, жидкий хладагент под давлением все же пришел, и возникла ситуация, когда будет повторно расширяться тепло от испарителя.

Принципы работы конденсатора

объясняются следующим образом. Поверхностная конденсация пара и газа, в зависимости от характеристик поверхности «Каплеобразование или пленкообразование» происходит по стилю.В случае образования капли при конденсации (в случае капельной конденсации) может быть обеспечен гораздо более высокий (более чем в 4-8 раз больше, чем образование пленки) коэффициент теплопередачи. Это также является предпочтительным, потому что они ограничены экономическими факторами и характеристиками производственной практики конденсатора хладагента, однако, как в кино с конденсацией и образованием конденсата, в меньшей степени, капли соединяются вместе. Можно считать, что в конденсаторе происходит 3 стадии теплообмена. Эти;

— получение гнева,
— хладагент конденсат,
— чрезмерное охлаждение.

Конденсатор, в зависимости от конструкции, использует площадь конденсатора переохлаждения 0-10%. для получения гнева нужно выделить 5% обрабатываемой площади конденсатора.

Три различных теплообмена с коэффициентом теплопередачи в конденсаторе промежуточной температуры в зависимости от формы будут разными. Однако, несмотря на превышение средней температуры в диапазоне приемных фаз гнева должен присутствовать более низкий коэффициент теплопередачи, а наоборот, во время переохлаждения диапазон температур будет больше и меньше коэффициент теплопередачи.Во время конденсации между двумя значениями будет подуровень. против экспериментов с увеличением коэффициента теплопередачи с использованием разницы температур уменьшения (или наоборот) он дает примерно такой же результат умножения, и можно использовать среднее значение этих значений. Применяется простота, позволяющая учесть в расчете конденсатор с коэффициентом теплопередачи только одного среднего диапазона температур.

Оребренные конденсаторы радиаторного типа

Проволока конденсаторная

Конструкция и типы конденсатора

Обычно существует три различных типа конденсатора:

Конденсаторы с водяным охлаждением
Конденсаторы с воздушным охлаждением
Испарительный конденсатор (воздух-вода)

На практике, а не то, что используется в настоящее время, будет определяться экономическим анализом.производственные и эксплуатационные расходы будут проанализированы в этом исследовании вместе. С другой стороны, температура конденсации водяного и испарительного конденсаторов будет на нижнем уровне холодильного цикла и, таким образом, наверняка будет более высокая термодинамическая эффективность, поэтому анализ, который необходимо провести, должен быть принят во внимание.

Конденсатор с водяным охлаждением

Особенно чистая вода является обильной, недорогой и может быть обнаружена при низких температурах, если в учреждениях и конденсаторных учреждениях можно найти наиболее экономичный тип с точки зрения эксплуатационных расходов.Отличные капаситедеки охлаждения sistemlerinde как обычно только выбор рассматриваю. Но в последние годы высокий коэффициент теплопередачи обеспечивает конденсат с воздушным охлаждением, составляющий 100 т / фут. Их до тех пор, пока мощность не будет использована. теплопроводность материала трубы при проектировании и реализации конденсата с водяным охлаждением, коэффициент загрязнения используемой воды, потеря давления в оребренных трубах, используемых, когда хладагент эффективности водяного контура крыла при рассмотрении таких вопросов, как чрезмерное охлаждение уровней.Медные трубы, используемые в конденсате (галогенный хладагент), обычно меньше толщины стенки трубы. Медь теплопередачи меньше влияние kondüksüyo конденсатора все коэффициент теплопередачи был высоким и вне этого коэффициента скорее (сторона хладагента) и внутри (сторона воды) будет зависеть от значений коэффициента пленки. В то время как у мяса меньше теплопроводность (железная труба), когда трубы используются в конденсаторах, передача тепла в трубах кондиктиф всего тепла будет слишком поздно.

Коэффициент загрязнения поверхности теплопередачи воды, используемой на стороне воды, чтобы учитывать влияние остатков, которые составляют цель уменьшения движений теплопередачи.

Факторы, влияющие на коэффициенты загрязнения:
— Использование воды с точки зрения содержания посторонних веществ в условиях
— Температура конденсации
— Конденсатор, используемый для поддержания чистоты труб, степень профилактического обслуживания

В частности, коэффициент загрязнения при температуре конденсации 50 ° C должен быть немного выше, чем требуется для применения.Температура конденсации на 38 ° C ниже этого значения может быть немного ниже нормальной. Низкое загрязнение воды и ускорение скорости перехода до 1 м / сек не должны допускаться на более низкой скорости. Он остается периодическим поверхностным temizlenmediği hızlanacaktır, который все больше ценит происшествие с загрязнением, поскольку требуются конденсаторы и коэффициенты теплопроводности, чтобы идти azalacak sıcaklığında sağlanabilecektir CAPACITYa, но с более высоким содержанием конденсата. Это приведет к заражению. Сопротивление воды со стороны повышенного загрязнения увеличится, а уменьшение расхода воды, в результате чего конденсат, несомненно, повысит температуру.

Конденсатор с воздушным охлаждением

В частности, на 1 л.с. вверх kapasitedeki denecek, исключение из тех диапазонов, которые доступны, просто предпочитают этот тип конденсатора nedenmi; состоящий из простых, низких затрат на установку и эксплуатацию, его можно рассматривать как простоту обслуживания и ремонта. Также есть символы, которые подходят для применения (например, бытовые или коммерческие кондиционеры оконного типа). Большинство приложений соединены интегральным способом для очистки шкива двигателя вентилятора циркуляции воздуха tipkompresör и не нуждаются в отдельном приводном двигателе.также в конденсаторе с воздушным охлаждением теплопередача происходит в три этапа.

— Получение гнева Refrijerandan
— Конденсация
— Чрезмерное охлаждение

Это примерно 85% конденсатора обслуживания будет обслуживать конденсатор конденсатного поля. Это может быть область около 5% и 10% переохлаждения (переохлаждения). Обычно используется в конденсаторе с воздушным охлаждением. Склад хладагента, чтобы получить новый конденсирующийся хладагент из конденсатора для хранения, и теперь перешел в процедурный случай.Его цель — использовать полезное пространство конденсатора для хранения жидкости. Воздушные конденсаторы для галокарбонорефрижера, которые обычно используют медные / алюминиевые ребра, а иногда и медные / медные ребра и медные или стальные трубы / стальные крылья, производятся в резерве. Также возможно изготовление труб / крыльев из алюминиевого сплава. используемые диаметры труб — от ¼ «до ¾». Различается от 160 до 1200 квадратных метров, что заставляет его считать крылья, но наиболее доступные ограничения частоты — от 315 до 710 калмактадыр.Например, площадь теплопередачи воздушного конденсатора в среднем составляет 2,5 м / сек. Скорость прохождения воздуха на тонну / охлажденное (3024 ккал / ч) колебалась от 9 до 14 м². Очень мало, за исключением, конечно, воздуха в конденсаторе воздушного потока, необходимого для среднего стакана ккал / ч от 0:34 до 0,68 м3 / ч между değişmekte, необходима мощность вентилятора в стакане от 1000 ккал / ч до 0,03 0,06 л.с. Скорость вентилятора от 900 до 1400 об / д должна быть посередине. Вентиляторы конденсатора радиального типа обычно используются там, где требуется бесшумный осевой тип.Температура конденсации хладагента должна соответствовать температуре воздуха на входе 10-20 ° C.

Общее состояние трубы, расстояние между ребрами, глубина (колонна труб). Полученные поля, такие как особенности конструкции, требования к воздушному потоку, сопротивление воздуха и, следовательно, размер вентилятора, мощность вентилятора и будут влиять на стоимость объема группы линий. Сегодня конденсаторный дизайн в виде горячего хладагента подается в несколько независимых контуров верхнего коллектора, yoğuştuk, обеспечивая спуск под действием силы тяжести и чрезмерное охлаждение снова, принимая форму коллектора.

Конденсаторы с воздушным охлаждением, группы по форме заказа;

— Компрессор сгруппирован с
— Следовало организовать таким образом, чтобы он располагался на большом расстоянии от компрессора. (Раздельный конденсатор)

Он разделен на два класса. Прохождение воздуха из конденсатора может быть организовано в вертикальном и горизонтальном направлениях. С другой стороны, нагнетатель воздуха может вводить воздух для стимуляции абсорбирующего или репеллентного эффекта. В системе охлаждения создается ожидаемое по существу давление конденсации, а температура может поддерживаться в определенных пределах Abilmesiyle.Это тесно связано с режимом работы конденсатора. предотвращение чрезмерной температуры конденсации и давления в конденсаторе — это условие, обычно связанное с тем, чтобы рассматривать его как воздух с достаточной площадью охлаждения. Поэтому, особенно в холодную погоду и при достаточной температуре, рабочее состояние проточного контура связано с наличием воздуха. В случае очень низких температур и давлений конденсации проблема зависит от того, достаточно ли вытекает хладагент.

Например, термостатический расширительный клапан для снижения достаточного падения давления в емкости, поскольку часто принимаются профилактические меры при очень низком давлении конденсации, можно собрать их обе группы.

— Проверить сторону хладагента
— Для контроля воздуха tarafını

Испарительный конденсатор

Охлаждающий эффект воздуха и воды с удовольствием, основанный на принципе обслуживания испарительных конденсаторов и трудностей обслуживания, быстро загрязняются, он используется все менее уязвим к частым неисправностям. Испарительный конденсатор состоит из трех частей:

— Охлаждающий змеевик
— Система циркуляции и орошения воды
— Система циркуляции воздуха

Охлаждающие змеевики проходящего потока Хладагент уходит в конденсатор бензобака, как в конденсаторах с воздушным охлаждением.Воздух проходит через внешнюю поверхность змеевика, часть испарения распыленной воды в обратном направлении приводит к тому, что охлаждающий эффект все равно возникает (как и в градирне). Таким образом, температура конденсации конденсатора и, следовательно, давление снижается до более низкого уровня. Наружная поверхность змеевика, чтобы соответствовать эффекту образования пленки с низким коэффициентом теплопередачи, снабжена ребрами для усиления поля. Однако в современных испарительных конденсаторах внешняя поверхность трубы обеспечивает высокий коэффициент теплопередачи для достижения хорошего результата по влажности, и используются бескрылые прямые трубы.непрерывно ли с помощью насоса в воде из камеры сбора воды на нижнем уровне конденсатора к группе сопел, напечатанной в верхней части охлаждающего змеевика и распыляемой из сопел. Эта вода испаряется примерно на 3-5% (примерно от 6 до 7,5 л / ч на тонну / для охлажденной) переносится в воздух, в резервуар для воды вода непрерывно поступает через поплавковый клапан. Тем не менее, это добавление воды в конденсатор, и выходная мощность обычно постоянно увеличивается до максимального уровня.Температура воды, взятой из температуры хладагента, начинает падать, температура, полученная за счет теплоты испарения воды, показала тенденцию к увеличению. В результате температура воды повышается на входе в охлаждающий змеевик (температура воздуха по влажному термометру повышается именно в этой секции) и впоследствии начинает падать вместо того, чтобы приближаться к температуре входящего воздуха. Собирая температуру воды в бассейне, достигается стабильная работа.

Испарительные конденсаторы обычно устанавливаются на крыше и снаружи здания, но входящие и выходящие воздухозаборники в зданиях могут также иметь каналы из оцинкованного листа.При зимней эксплуатации устройства вне здания необходимо принять меры против замерзания. При применении в зданиях следует учитывать объем холодного влажного воздуха, проходящего через канал, который будет взят в случае конденсации в канале, и необходимо принять меры по удалению воды. Приложение позволяет экономить энергию при использовании в качестве встроенного вытяжного вентилятора и вытяжной системы. Поскольку конденсатор с воздушным охлаждением с испарительными конденсаторами хорошо работает в холодную погоду, необходимо предотвратить образование конденсации, давление слишком низкое.

Предполагаемый применил это устройство;

— Запуск и остановка двигателя вентилятора,
— Настройка заслонки и использование серводвигателя, воздушный поток для репликации уменьшения воздушного потока
— Это может уменьшить скорость вращения двигателя вентилятора, можно рассматривать как воспроизведение.

Плотность тепловых характеристик, единственное значение температуры испарения воздуха по сухому или старому термометру или разница энтальпии входа-выхода воздуха не могут быть представлены на основе. Потому что температура матрицы распыляемой воды и выдувного воздуха на входе показывает очень разные значения на выходе.

.

ПРАВИЛА ИСПОЛЬЗОВАНИЯ ТЕРМОГОЛОВОК | УК Русь

НАЗНАЧЕНИЕ РЕГУЛЯТОРА БАТАРЕИ ОТОПЛЕНИЯ
Для чего нужен регулятор батареи отопления (термостатическая головка)?
Он необходим для того, чтобы в автоматическом режиме мы могли поддерживать ту температуру, которую мы хотим задать для данной комнаты, помещения.
Регулятор батареи отопления состоит из корпуса, как у обычного радиаторного крана, каковой ставится на вход и выход радиатора. Вместо стандартного вентиля имеется накидная быстросъемная гайка, с помощью которой к корпусу крепится термостатическая головка.
На термостатической головке есть градуировка, которая показывает температурный режим, поддерживаемый термоголовкой.

КАК РАБОТАЕТ РЕГУЛЯТОР БАТАРЕИ ОТОПЛЕНИЯ?
Внутри корпуса имеется шток с уплотнительной резиновой прокладкой. Этот шток может подниматься–опускаться, тем самым открывая-закрывая проход. Когда теплоноситель проходит через корпус, то с помощью штока можно уменьшать или увеличивать количество теплоносителя, проходящего через термоголовку, и этим регулировать температуру в нагревательных приборах.
За счёт чего происходит движение штока вверх-вниз?
В термоголовке есть так называемый сильфон. Это своего рода ёмкость с жидкостью либо с газом. Кроме того, в этой ёмкости имеется «гармошка». При увеличении температуру газ (или жидкость – в зависимости от конструкции термоголовки) начинает расширяться, давить на «гармошку», которая в свою очередь давит на пружину. А пружина выталкивает шток. Который в свою очередь давит на шток вентиля.
Когда температура упала, газ сжимается, и за счёт возвратной пружины шток поднимается, в результате чего проход для теплоносителя в корпусе вентиля приоткрывается. Вот и весь основной принцип работы термоголовки.
Например, при 15 градусах в комнате газ в термоголовке охлаждённый и шток поднят на всю величину, отчего теплоноситель проходит через корпус вентиля беспрепятственно. При увеличении температуры газ в термоголовке расширяется и шток начинает приопускаться. При температуре, выставленной на термостатической головке, шток окончательно перекрывает проход в вентиле, и теплоноситель не проходит в радиатор.
Из вышеизложенного следует, что нагревание и остывание отопительного прибора происходит, благодаря термостатической головке, которая регулирует температуру в помещении. Для более качественной работы, термоголовку нельзя закрывать шторами, прятать под подоконник или зашивать в ниши. Она должна иметь свободное сообщение с воздухом комнаты, где установлен отопительный прибор.

Что такое печатающая головка и как она работает?

У всех струйных принтеров, представленных на рынке, есть одна общая черта: печатающая головка. Все струйные принтеры малого и большого формата оснащены печатающими головками, которые наносят чернила на все типы носителей. Современные печатающие головки содержат камеры, в которые поступают чернила, и крошечные сопла, которые распыляют чернила. До того, как появились печатающие головки, отпечатки делались на печатных машинах, которые имели прямой контакт с носителем. Процесс часто был грязным и дорогостоящим, а прессы были очень большими.Современные печатающие головки не касаются печатных носителей, уменьшая беспорядок и снижая стоимость печати. Струйные печатающие головки распыляют чернила на бумагу или другой носитель контролируемым образом для получения желаемого изображения.

Но как именно работают печатающие головки? Все ли печатающие головки созданы равными?

Хотя все они выполняют одну и ту же базовую работу, не все печатающие головки одинаковы. Разные производители используют печатающие головки с разной технологией. В настоящее время существует два основных типа печатающих головок, в каждой из которых используется свой метод распыления чернил.Это два типа: Piezo и Thermal . Хотя обе печатающие головки устанавливаются по запросу, способы подачи чернил в печатающую головку и из нее различаются.

Пьезо-струйные печатающие головки в настоящее время используются в струйных принтерах Epson, включая их малоформатные и широкоформатные принтеры. Пьезо-печатающие головки не используют тепло для вытеснения чернил из сопла. Вместо этого печатающие головки Piezo имеют слой — обычно тонкую пленку — который подвергается воздействию электрического заряда, который заставляет пленку вибрировать.Вибрация заставляет верхнюю часть пленки изгибаться и изгибаться, создавая давление и выталкивая чернила из сопла на бумагу. Возможность быстро вибрировать и сгибать пленку позволяет более точно контролировать, насколько быстро чернила выталкиваются из сопла.

Пьезо-печатающие головки совместимы с широким спектром красок, поскольку они не используют тепло в процессе печати. Совместимые чернила включают чернила на водной основе, масляные, экосольвентные и сольвентные. Типичная печатающая головка Piezo имеет 720 сопел для каждого цвета, что может потребовать нескольких проходов и может снизить скорость печати.Пьезо-печатающие головки могут управлять размером капли чернил, что может повысить разрешение печати в некоторых приложениях при использовании капель меньшего размера. Пьезо-печатающие головки имеют более длительный срок службы и рассчитаны на срок службы принтера (обычно около 3-5 лет). Если пьезо-печатающую головку необходимо заменить, она будет дороже и требует наличия авторизованного специалиста по обслуживанию.

Термальные струйные печатающие головки , которые в настоящее время используются в струйных принтерах Canon и HP, используют для печати тепловые и водные чернила.Вместо использования мембраны для создания давления и вытеснения чернил на бумагу, тепло используется для кипячения чернил и создания воздушного пузыря из паров чернил. Затем воздушный пузырек взрывается, когда он проходит через сопло печатающей головки. Как только чернила вытеснены, камера быстро охлаждается, и процесс повторяется.

Термопечатающие головки совместимы с аква- или водоэмульсионными чернилами. Типичная термопечатающая головка, используемая в плоттерах Canon, имеет 2560 сопел на цвет, а для матового черного цвета — 5120 сопел, потому что требуются два матовых черных картриджа.Печатающие термоголовки могут изнашиваться быстрее в зависимости от того, сколько печатается и на каком носителе. Принтеры, в которых используются термопечатающие головки, разработаны для простой замены печатающих головок и могут быть выполнены пользователем без обращения в сервисный центр. Замена печатающих термоголовок обходится дешевле.

В зависимости от того, что вы собираетесь печатать, может быть хорошей идеей взглянуть на печатающую головку, используемую в рассматриваемом плоттере. Пьезо-печатающие головки используются в плоттерах, которые печатают вывески и баннеры, поскольку они могут использовать чернила на основе растворителей, экосольвентов и масла.Эти чернила более долговечны для вещей, которые будут находиться на улице. Если вы печатаете техническую документацию, презентации или плакаты, которые будут внутри, то подойдут плоттеры с любой печатающей головкой.

Large Document Solutions включает в себя плоттеры Canon, Epson и HP различных размеров для любых приложений. Вы можете проверить выбор на странице плоттеров на нашем сайте.

Как работают печатающие головки HP?


Печатающая головка HP — это, по сути, самое сердце вашей системы печати.это часть, ответственная за попадание капель чернил на страницу для создания текста и изображений. В последнее время технический прогресс в области печатающих головок претерпел значительные изменения, включая увеличение количества сопел для обеспечения более точной печати, например:

Designjet 510 — печатающая головка HP 11 — 600 сопел на дюйм
Designjet T520 — печатающая головка HP 711 — 1200 сопел на дюйм

Как выглядит внутри одной из печатающих головок HP

Печатающие головки HP используют тепловую технологию

Самой ранней формой коммерческой струйной печати была непрерывная струйная печать (которая, как следует из названия, отклоняет капли чернил от непрерывного потока чернил для формирования изображений на странице).В отличие от этого, HP Designjets — это струйные принтеры «капля по требованию», и печатающие головки выпускают капли чернил по мере необходимости для формирования изображения. В отличие от технологии пьезоэлектрической струйной печати (которая выталкивает чернила с помощью механической силы), печатающие головки HP Designjet используют тепловую технологию для выталкивания чернил вместе с интегральной схемой, которая направляет сигналы к сотням сопел для чернил, обеспечивая точность и предсказуемый результат.

Тепловая технология HP — что общего у кофе и термической технологии!


Интересно, что концепция технологии струйной термопечати впервые началась с кофейника.Инженер в 1970-х годах наблюдал за тем, как варится его кофе, и заметил, что у его перкулятора нет движущихся частей — только нагревательный элемент внизу, который заставлял воду подниматься и проходить через кофейную гущу. Он задавался вопросом, можно ли использовать тот же принцип тепловой энергии для выброса чернил. В 1979 году HP доказала, что это возможно.

Как работает печатающая головка

Нагревательный элемент (состоящий из крошечных резисторов) быстро нагревает тонкий слой жидких чернил.Нагретые чернила вызывают образование пузыря, выталкивая чернила через сопло. Тепло также вытесняет воздух из молекул чернил.

Затем чернила выбрасываются со скоростью до 20 метров в секунду. Этот взрыв перегретого пара длится всего 2 миллионных доли секунды и повторяется тысячи раз каждую секунду для каждого из сотен микроскопических сопел печатающей головки. Поскольку чернила быстро вытесняются из каждого сопла камеры, это, в свою очередь, создает всасывание, позволяя втягивать чернила обратно в сопло камеры.

В зависимости от модели принтера используется от 4000 до 15000 чернильных сопел для подачи капель чернил на поверхность бумаги,

с выпуском до полумиллиона капель чернил в секунду во время типичного задания на печать.

Печатающая головка скользит примерно на 400 сантиметров над поверхностью бумаги, и по мере прохождения бумаги через принтер плата управления принтера организует последовательность нанесения чернил таким образом, чтобы миллионы отдельных капель точно и аккуратно падали в нужное место по порядку. формировать текст и изображения на бумаге.

Чернила выпускаются в последовательности CMYK (сначала голубой, затем пурпурный, затем желтый, а затем «ключевой» черный цвет). Точность падения имеет решающее значение, и плата управления использует сложные алгоритмы маскирования печати для смешивания нескольких цветов на странице.

Два других полезных блога, посвященных аналогичной теме:

Как 4-цветному принтеру HP CMYK удается создавать разные цвета

Что означает оптимизированное dpi?

Пьезоэлектрические печатающие головки Vs.Печатающие термоголовки

Как для профессионалов, так и для потребителей технологии струйной печати сделали изготовление полноцветных высококачественных фотографий, документов и репродукций произведений искусства более простым, чистым и доступным.

Сегодня существует два основных типа технологий струйных печатающих головок: пьезо (принтеры Epson) и термальные (принтеры Canon и HP). В этом блоге мы рассмотрим основное различие между ними, а также некоторые преимущества и недостатки обоих.

Как работает печатающая головка Epson Micro Piezo?

В печатающей головке Epson Micro Piezo микроскопические пьезоэлектрические элементы (например, кристаллы и керамика) встроены за соплами для печати. Когда к ним прикладывается электрический заряд, эти элементы изгибаются назад, нанося точное количество чернил на основу (см. Диаграмму 1). Поскольку электрические заряды можно включать и выключать, как выключатель, существует обширный контроль над скоростью выброса чернил через сопло, а также создание идеально сферических точек с различными размерами капель.

Как работает термопечатающая головка Canon?

Технология струйной термопечати

использует тепло (я этого не ожидал!) В отличие от электричества, чтобы направить чернила от печатающей головки к субстрату. Принципиально похожий на то, как пузырьки воды при кипячении, технология струйной термопечати работает путем электризации микроскопических резисторов за соплом печати, создавая интенсивное тепло, которое испаряет чернила, создавая пузырь, который расширяется так быстро, что чернила буквально взрываются на бумаге.После выброса чернил камера затем быстро охлаждается, чтобы позволить большему количеству чернил заполнить камеру, и процесс повторяется.

Интересный факт: Чернила в термопечатающей головке на наносекунду близки к миллиону градусов по Цельсию — горячее, чем поверхность солнца!

Сравнение

Пьезо Тепловой
Pro’s Точные и регулируемые размеры капель Может использовать широкий спектр чернил из-за низкой температуры (растворитель, УФ, пигмент, краситель) Размер капель до 1.5 пиколитров Работают дольше из-за более низкой температуры Менее дорогие печатающие головки Больше печатающих головок на принтер
Con’s Более дорогие головы Меньше печатающих головок на принтер Только 2 разных размера капель Капли большего размера Ограниченные варианты чернил из-за сильного нагрева Требуется более частая замена из-за сильного нагрева

Каждая печатающая головка имеет свои преимущества и недостатки. Если исходить исключительно из сравнения качества печати, то Epson побеждает.Поскольку печатающей головкой Micro Piezo можно управлять более точно и она может изменять размер капель, она обеспечивает более четкую печать без зернистости с более плавными переходами между тонами. Печатающая головка Micro Piezo идеально подходит для репродукции фотографий и изобразительного искусства.

Щелкните здесь, чтобы просмотреть PDF-документ о новой головной технологии Epson

Нажмите здесь, чтобы увидеть нашу подборку принтеров

Ознакомьтесь со всеми нашими продуктами

Термопринтер

— обзор

Инструменты для измерения

Медицинский инструмент — это медицинский прибор, который выполняет измерения, часто для диагностики заболеваний.Физиологическая величина, свойство или состояние, которое измеряет система, — это измеряемая величина . Энергия или информация от измеряемой величины преобразуется в другую форму преобразователем . Если выходной сигнал преобразователя представляет собой электрический сигнал, тогда преобразователь является датчиком (Webster, 1998). Во многих учебниках есть разные определения датчиков и преобразователей. На протяжении всей книги мы рассматриваем датчик как устройство, которое преобразует входящие биологические, химические, электрические, магнитные, механические, оптические или другие стимулы в выходной электрический сигнал.

Электронный прибор требует источника питания, такого как стандартная линия 60 Гц / 120 В, щелочные или другие батареи. В электронном приборе изоляция пациента расположена на линии до или после датчика, чтобы предотвратить поражение пациента электрическим током. Изолированный выходной сигнал датчика может быть дополнительно усилен. В цифровом электронном приборе усиленный выходной сигнал датчика затем подвергается сбору данных. Сбор данных состоит из аналоговой предварительной фильтрации, аналого-цифрового преобразования (АЦП), цифровой фильтрации и дополнительной понижающей дискретизации.Выходные данные сбора данных в цифровом электронном приборе или выходной сигнал усиленного датчика в аналоговом электронном приборе могут получать дополнительную обработку от модуля процессора. Здесь процессорный модуль представляет собой микроконтроллер, микропроцессор или цифровой сигнальный процессор с необходимой памятью и периферийными устройствами. Клинический пользователь может ввести данные, такие как рост или вес, которые помогают в дополнительной обработке. Затем отображается результат обработки в электронном приборе или вывод преобразователя в простом приборе.Типичные дисплеи включают жидкокристаллический дисплей (ЖКД) и термопринтер. Дополнительный приемопередатчик может передавать данные на другое медицинское устройство или принимать данные от другого устройства для обработки и отображения. Протокол связи может включать Интернет, телеметрию или другие средства (рис. 1.1).

Рисунок 1.1. Три типа медицинских инструментов. (Просто. (B) Аналоговый. (C) Цифровой.

Проиллюстрируем эти концепции на нескольких примерах. Два простых медицинских устройства — это набор для внутривенного (в / в) введения и стеклянный термометр Галинстан (рис.1.2). Стандартный набор для внутривенного введения для гравитационного кормления позволяет проводить медикаментозную терапию. Он содержит иглу, капельницу, поливинилхлоридную (ПВХ) трубку и роликовый зажим. Когда игла проникает в контейнер для внутривенных вливаний, подвешенный к стойке для внутривенных вливаний, можно использовать силу тяжести для подачи прописанного лекарственного раствора из контейнера через набор для введения в катетер пациенту. Врач использует роликовый зажим для регулировки наблюдаемой скорости потока через капельницу. Термометр Галинстан позволяет диагностировать лихорадку.Галинстан — это сплав галлий-индий-олово. Мы используем Галинстан, а не ртутный термометр, потому что больницы уже более десяти лет заменяют ртутные термометры менее вредными альтернативами.

Рисунок 1.2. Два простых медицинских прибора. (A) Набор для внутривенного введения Carefusion, модель 42000. (B) Термометр Geratherm classic Galinstan.

(A) Предоставлено © Becton, Dickinson and Company. (B) Предоставлено Geratherm, Гешвенда, Германия

Из этих двух медицинских приборов только термометр Галинстан является простым медицинским инструментом.Измеряемая величина — это температура пациента. Преобразователь — это галинстан, содержащийся в стеклянной трубке, которая расширяется с температурой. Маркировка шкалы температуры на стеклянной трубке позволяет отображать температуру пациента.

Другой заменитель ртутного термометра — электронный термометр, который может быть аналоговым или цифровым. Оригинальный аналоговый электронный термометр был изобретен корпорацией IVAC в 1970 году (Георги, 1972), и для отображения температуры требовалось 30 секунд. После введения в рот пациента температура зонда повысилась от температуры окружающей среды до установившейся температуры за 5 мин.Внутри зонда датчик температуры, называемый термистором, находящийся в контакте с другими цепями, подает серию импульсов на счетчик. В течение 30 секунд счетчик будет считать до прогнозируемой установившейся температуры. Аналоговый термометр питался от щелочных батареек; поэтому высокое напряжение не было задействовано. Кроме того, пластиковая крышка зонда изолировала пациента от зонда термометра.

Совсем недавно Welch Allyn (ранее Diatek) предварительно нагревает зонд своего цифрового электронного термометра SureTemp, чтобы сократить время, необходимое для достижения установившейся температуры после вставки зонда (рис.1.3). После того, как значения термистора оцифрованы, они используются для оценки установившейся температуры полости рта в пределах 4–6 с (Gregory & Stevenson, 1997). Этот цифровой термометр питается от трех щелочных батареек AA 1,5 В; Итак, опять же, высокое напряжение здесь не задействовано. Пластиковая крышка датчика изолирует пациента от датчика термометра (SureTemp Plus, 2003).

Рисунок 1.3. Цифровой электронный термометр Welch Allyn SureTemp Plus 690.

Предоставлено Welch Allyn, Skaneateles, New York.

Полное руководство по технологиям печатающих головок

Саймон Экклс узнает больше о струйных печатающих головках и взглянет на следующее поколение, которое будет волновать индустрию печати.

Капля по запросу, непрерывная струйная печать, пьезоэлектрическая, термическая, твердотельная, двоичная, шкала серого. Все это термины, которыми бойко пользуются при описании струйных принтеров, и особенно их типов печатающих головок.

Если вы знаете, что они означают, эти термины позволяют довольно хорошо предсказать, для чего предназначен принтер и как он будет работать. Если вы этого не сделаете, никто не остановится и не объяснит их.

Итак, на этом мы остановимся и объясним их. Некоторые термины описывают основную конструкцию печатающих головок, другие описывают, что они делают или как работают.Некоторые из них могут дублироваться для более точного объяснения, например, пьезоэлектрическая головка с оттенками серого, другие являются взаимоисключающими — у вас не может быть двоичной головки с оттенками серого.

Итак, это — избавительное руководство FESPA по струйным печатающим головкам . Все-таки начиная с того, что такое печатающая головка?

Компонент струйного принтера, который пропускает капли чернил на носитель. Это очень высокоточная установка, и ее производство требует значительного количества интеллектуальной собственности (ноу-хау) и больших инвестиций в производство чистых помещений.В современных печатающих головках часто используются производственные технологии (например, тонкопленочные кремниевые МЭМС), которые имеют много общего с производством микрочипов.

Внутри типичной печатающей головки находятся управляющая электроника, приспособления для подачи чернил и, по крайней мере, одна, а обычно сотни камер для чернил, ведущих к соплам, которые представляют собой отверстия в пластине сопел.

Входные каналы для чернил имеют диаметр всего несколько десятков микрон, а диаметр сопел обычно составляет 20-50 микрон. Человеческий волос составляет около 80 микрон в поперечнике.

Большинство печатающих головок, используемых в вывесках и других графических приложениях, будут иметь сотни сопел, которые управляются индивидуально для создания и выброса капель (см. Также «Падение по требованию»). Создание миллионов капель за один проход и обеспечение того, чтобы они попали в носитель в нужном месте, требует очень продвинутой электроники.

Некоторые струйные принтеры имеют единственное сопло и выбрасывают непрерывный поток капель, которые отклоняются в сторону или от носителя в виде электростатических пластин или воздушных струй.Они, как правило, используются в системах кодирования и маркировки, а не в графике. См. Непрерывная струйная печать.

Изготовители печатающих головок

Покомпонентное изображение печатающей головки, показывающее ее компоненты, в данном случае пьезо тип Xaar 1001.

Несмотря на то, что во всем мире существуют сотни производителей принтеров, все они получают свои печатающие головки от относительно небольшого числа специализированных производителей, а затем интегрируют их в сами принтеры с помощью комбинации креплений, электроники, устройств подачи чернил, микропрограмм и программного обеспечения драйверов.

Лишь немногие производители широкоформатных принтеров имеют собственные фабрики печатающих головок, включая Canon, Epson / Seiko-Epson, Fujifilm (хотя и ее дочернюю компанию Fujifilm Dimatix), HP и Xerox.

Все остальные покупают в головах или управляют совместными предприятиями с производителями принтеров. Большинство упомянутых выше производителей будут поставлять головки другим производителям на основе OEM (хотя иногда они оставляют последние модели для себя). Другие производители голов включают Konica Minolta, Kyocera, Panasonic, Ricoh, Toshiba TEC и Xaar.

Drop-on-demand (DoD)

Это общий термин для типа печатающей головки, которая обычно используется в современных струйных принтерах, используемых для высококачественной графики, включая все широкоформатные принтеры, которые вы увидите на выставках FESPA и на этом веб-сайте.

Drop-on-demand означает, что струйные сопла генерируют и выбрасывают капли чернил, когда и где они необходимы, чтобы оставить след на носителе. Этот термин в основном был придуман для контраста с более ранними головками с непрерывным потоком (см. «Непрерывный поток» ниже).

Головки

Drop-on-Demand подразделяются на тепловые и пьезоэлектрические — см. Ниже.

Непрерывная струйная печать

Принцип непрерывной струйной печати, показывающий отклонение струи. Источник: Xaar.

Струйная печатающая головка, излучающая непрерывный поток капель во время работы принтера. Обычно на каждую головку приходится только одно сопло, но для создания более широкой полосы печати можно использовать ряд головок.

Поток отклоняется к среде или от нее либо заряженными металлическими пластинами с электростатическим полем, либо (в случае Kodak) точно рассчитанными порывами воздуха.Нежелательные чернила собираются в сборном желобе и могут быть отфильтрованы и возвращены в резервуар для хранения.

Сегодня эти головки обычно используются в системах кодирования и маркировки, а не в сложных графических принтерах.

Исключением является семейство печатающих головок Kodak Prosper, в которых используется высокоразвитая технология непрерывной струйной печати под названием Stream, обеспечивающая очень высокое качество изображения. В настоящее время Prosper и Stream не используются ни в каких специализированных принтерах для вывесок и дисплеев.

Термопечатающие головки

Надпись: Принцип струйной термопечати.Источник: Xaar.

Это был первый тип печатающих головок drop-on-demand, которые использовались в первых настольных струйных принтерах в начале 1980-х годов. Термопечатающие головки эффективны и могут обеспечивать очень высокое качество изображения и скорость, которые конкурируют с пьезоэлектрическими головками, но в отличие от пьезоэлектрических головок они работают только с чернилами на водной основе, поэтому обычно используются только внутри помещений.

Латексные чернила

HP являются исключением: они работают с термоголовками HP. Причина в том, что у них есть термоактивированный полимер в водной суспензии, который подходит для использования на открытом воздухе.

Тепловая технология была изобретена независимо и одновременно в 1970-х годах технологами печатающих головок в Японии и Hewlett-Packard в США, которые решили объединить свои патенты, а не бороться друг с другом.

Принцип заключается в том, что элемент внутри чернильной камеры в печатающей головке быстро нагревается до такой степени, что жидкие чернила испаряются и образуют пузырь газа, который расширяется и выталкивает каплю чернил из отверстия (сопла) при один конец камеры.

Затем нагревательный элемент отключается, поэтому газовый пузырек охлаждается, конденсируется и сжимается.Поверхностное натяжение на сопле останавливает втягивание воздуха назад, поэтому больше жидких чернил втягивается в камеру из подающих трубок. Canon, соавтор изобретателей термоголовок, придумал термин Bubble Jet из-за того, как они работают.

Пока нет термоголовок с истинной шкалой серого, поэтому все они бинарные, то есть капли всегда одного размера. Однако HP разработала парные сопла разных размеров, которые в некоторой степени способствуют созданию эффекта оттенков серого.

Термические напряжения быстро изнашивают головки, поэтому головки сконструированы как расходные материалы, поэтому их можно легко и дешево заменить через несколько десятков или сотен часов работы.

Пьезоэлектрические печатающие головки

Принцип изгибного режима пьезоэлектрической струйной печати. Источник: Xaar

Часто называют просто пьезоголовками. Эти головки типа drop-on-demand начали появляться в первых широкоформатных принтерах в 1990-х годах и произвели революцию в отрасли. Впервые это означало, что сольвентные и УФ-отверждаемые чернила, изначально использовавшиеся для трафаретной печати, теперь могут печататься в цифровом виде.

Пьезоголовки все основаны на принципе, что определенный тип кристалла (часто цирконат титанат свинца в струйных принтерах, обозначаемый как PZT) расширяется или сжимается, когда электрический ток проходит через него и снова выключается.Это расширение / сжатие используется как основа насоса в чернильной камере.

В зависимости от конфигурации кристаллов (называемой в режимах «изгиба» или «сдвига») двустороннее расширение либо втягивает чернила, а затем вытесняет их из камеры через сопло (Epson использует это), либо оно создает волны акустического давления, которые имеют такой же эффект, но с меньшей энергией (Xaar использует это).

Электрический ток можно включать и выключать очень быстро, а расширение / сжатие кристалла также происходит почти мгновенно, поэтому существует гораздо больше возможностей для контроля образования точек, чем с помощью термоголовок.

Среди прочего это означает, что некоторые пьезоголовки могут генерировать капли разного размера из одной и той же камеры и сопла, создавая разную плотность чернил на носителе. Они называются градациями серого (см. Ниже).

Пьезоэлектрический эффект довольно хорошо работает с любой жидкостью, поэтому пьезоэлектрические печатающие головки могут быть созданы для работы с чернилами на основе растворителей, УФ-отвержденными чернилами (в том числе некоторыми, используемыми для 3D-печати) и водными чернилами. Они также могут использоваться для сложных жидкостей, таких как электропроводящие чернила, непрозрачные белые и металлические чернила с крупными частицами, чернила для 3D-печати и чернила с фазовым переходом, которые являются жидкостью, когда достигают чернильной камеры.

Пьезо-печатающие головки

служат намного дольше, чем термоголовки, поскольку в них меньше термического напряжения, а пьезокристаллы могут расширяться / сжиматься в миллионы раз. Пьезоголовка обычно рассчитана на весь срок службы машины, если нет фатальной блокировки или внешнего повреждения. Однако их изготовление и покупка обходятся значительно дороже, чем термоголовки, поэтому пользователям нужно прилагать больше усилий для их обслуживания.

Двоичный или в оттенках серого?

Эта печатающая головка Epson Micro piezo PrecisonCore TFT имеет собственное разрешение и генерирует капли переменного размера, начиная с 1.От 5 до 23 пиколитров.

Эти термины указывают, выпускает ли печатающая головка все капли одного и того же размера или их можно каким-либо образом изменять, чтобы можно было контролировать плотность чернил, попадающих на носитель, с помощью более светлых оттенков. В сочетании с техникой полутонового изображения оттенки серого могут значительно расширить тональный диапазон струйной печати, позволяя использовать относительно скромные шаги сопла или меньшее количество проходов.

Печатающие головки

Piezo изначально всегда были двоичными, то есть они генерировали только капли чернил одинакового размера.Вы можете получить хороший диапазон тонов от бинарной головки, используя технику полутонов, но тона светлых участков могут выглядеть немного зернистыми, если вы не используете ультратонкие насадки (и / или не добавляете дополнительные, более светлые цветные чернила).

Типичный размер бинарных капель составляет от 30 до 100 пиколитров. Можно добиться более мелких капель для получения более тонких результатов, но это означает, что требуется больше проходов для увеличения плотности сплошных областей на отпечатке, поэтому печать идет медленнее.

Головки

Greyscale могут изменять плотность точек, напечатанных по отдельности, поэтому капля может отображать любой цвет от 30% или 50% до 100%.Преимущество состоит в том, что более низкие разрешения и меньшее количество проходов головок позволяют достичь того же «эффективного разрешения», что и двоичные головки с гораздо более высокими собственными разрешениями.

Например, считается, что разрешение 360 dpi с полутонами серого дает тот же эффект, что и двоичный файл с разрешением 1000 dpi, что настолько хорошо, насколько вам обычно нужно для фотографий и смешанных изображений даже для просмотра крупным планом.

Пьезоголовки

изменяют размер точек несколькими различными способами, обычно в зависимости от конкретного производителя и от того, какие патенты он имеет или хочет избежать нарушения.В зависимости от конкретных методов может быть доступно от трех до трех размеров капель.

Наименьший размер самых тонких печатающих головок (часто используемых для фотографии) — менее 2 пиколитров). Для принтеров вывесок размеры от 10 до 20 пиколитров более распространены для мельчайших капель, поскольку скорость и охват имеют большее значение, чем качество просмотра вблизи.

Тепловая шкала серого

Истинно переменный размер капель пока возможен только с пьезоголовками. Однако HP разработала форму шкалы серого для своих термоголовок PageWide, которая называется High Definition Nozzle Architecture.Пока это используется только на огромных струйных рулонных печатных машинах серии T для коммерческой печати, а не на широкоформатных однопроходных моделях PageWide XL, которые до сих пор в основном используются для CAD-систем и планирования.

Хотя капли из каждого сопла всегда имеют одинаковый размер, в печатающей головке большое и маленькое сопла сопрягаются очень близко друг к другу и рассматриваются как один элемент формирования изображения. Затем он берет две пары сопел и управляет ими как единым элементом изображения для целей шкалы серого.

При использовании различных комбинаций двух маленьких и двух больших форсунок можно получить пять уровней серого (на самом деле это белый плюс четыре уровня).Шаг сопел HDNA составляет 2400 точек на дюйм, поэтому пары сопел имеют собственное разрешение 1200 точек на дюйм, а наборы оттенков серого — 600 точек на дюйм.

Дальнейшее регулирование плотности возможно за счет использования чернил разных цветов в больших и малых соплах (например, голубого и светло-голубого). Наборы сопел также могут управляться отдельно для более высоких скоростей или разрешений с меньшим количеством уровней серого.

Собственное разрешение

Эта печатающая головка Memjet Waterfall имеет ширину 222,8 мм и предназначена для однопроходной печати.Он имеет 70 400 сопел в два ряда, что дает исходное разрешение 1600 dpi.

Это описание шага сопла, означающего фактическое количество капель чернил, которое печатающая головка может произвести на заданной области. В промышленности обычно указывается в точках на дюйм, а не в метрических единицах. Таким образом, если печатающая головка имеет ширину 1,5 дюйма (38 мм) и имеет 540 сопел по ширине, то исходное разрешение составляет 360 точек на дюйм.

Многие широкоформатные струйные принтеры создают изображения в серии перекрывающихся проходов, поэтому на носителе может быть намного больше капель на дюйм, чем может дать только собственное разрешение.Чем выше значение dpi, тем окончательный отпечаток может больше походить на фотографию с непрерывным тоном.

Головки

Greyscale позволяют создавать точки с разной плотностью точек, обеспечивая больший тональный диапазон по сравнению с бинарной головкой с таким же шагом сопел. что, в свою очередь, дает лучшую имитацию непрерывного тона.

Поэтому производители принтеров с оттенками серого часто говорят об «эквивалентных» разрешениях, имея в виду, например, что головка шкалы серого с разрешением 360 точек на дюйм может дать воспринимаемый качественный эквивалент двоичной головки с разрешением 1000 точек на дюйм.

Существуют также печатающие головки с очень высоким исходным разрешением, например, головки Epson Micro Piezo PrecisionCore TFT (используемые на принтерах SureColor) с исходным разрешением 600 точек на дюйм и пятью размерами капли от 1,5 до 23 пиколитров.

HP PageWide HDNA, упомянутая выше, имеет шаг сопел 2400 dpi за счет чередования больших и малых сопел, но поскольку они управляются парами, то исходное разрешение можно рассматривать как 1200 dpi.

Представители отрасли, желающие узнать больше о комплектах HP и Epson и преимуществах, которые они могут предложить своему бизнесу, могут поговорить с экспертами компаний на FESPA 2017, , которая проходит с 8 по 12 мая в Гамбургской ярмарке в Германии.

HP и Epson будут двумя из более чем 700 брендов, которые будут представлены на мероприятии, которое, как ожидается, привлечет рекордное количество посетителей.

Чтобы узнать больше о FESPA 2017 , посетите: http://www.fespa2017.com . Посетители могут получить бесплатный вход на выставку, зарегистрировавшись онлайн, указав ссылочный код: FESG702.

Как работают струйные принтеры

Джефф Тайсон
Как это работает.com

Независимо от того, откуда вы читаете эту статью, у вас, скорее всего, есть принтер рядом. И очень велика вероятность, что это струйный принтер . С момента своего появления во второй половине 1980-х годов струйные принтеры выросла в популярности и производительности, при этом значительно упав в цене.

Струйный принтер — это любой принтер, который наносит очень маленькие капли чернил на бумагу, чтобы создать изображение.Если вы когда-нибудь посмотрите на листок бумаги, вышел из струйного принтера, вы знаете, что:

  • Точки очень маленькие (обычно от 50 до 60 мкм в диаметр), настолько малы, что они меньше диаметра человеческого волоса (70 мкм)!
  • Точки расположены очень точно, с разрешением до 1440×720 точек на дюйм (dpi).
  • Точки могут иметь разные цвета, объединенные вместе для создания изображения фотографического качества.

Ударная и безударная
Доступно несколько основных технологий печати. Эти технологии могут можно разбить на две основные категории, по несколько типов в каждой:

  • Удар — Эти принтеры имеют механизм, который касается бумаги в для создания имиджа. Существуют две основные технологии воздействия:
    • Точечно-матричные принтеры используют серию маленьких булавок для удара лента, покрытая чернилами, в результате чего чернила переходят на бумагу в точка удара.
    • Персонаж принтеры в основном компьютеризированные пишущие машинки. Они иметь шарик или серию полосок с реальными символами (буквами и цифры), тисненые на поверхности. Выбран соответствующий символ напротив красящей ленты, перенося изображение персонажа на бумагу. Символьные принтеры быстрые и четкие для основного текста, но очень ограничены для другого использования.

  • Non-impact — Эти принтеры не касаются бумаги при создании изображение.Струйные принтеры входят в эту группу, в которую входят:
    • Струйные принтеры , которые описаны в этой статье, используют ряд сопел для распыления капель чернил прямо на бумагу.
    • Laser принтеры используют сухие чернила (тонер), статическое электричество и нагрейте, чтобы нанести чернила на бумагу и приклеить их.

Тепло против вибрации
На струйных принтерах разных типов капли чернил образуются по-разному.В настоящее время производителями принтеров используются две основные струйные технологии:

  • Тепловой пузырь — Используется такими производителями, как Canon и Hewlett Packard, этот метод обычно называют пузырьковой струей . В струйный термопринтер, крошечные резисторы выделяют тепло, и это тепло испаряется чернила, чтобы создать пузырь. По мере расширения пузыря часть чернил выталкивается наружу. сопла на бумагу. Когда пузырь «лопается» (схлопывается), появляется создается вакуум.Это втянет больше чернил в печатающую головку из картридж. Типичная головка пузырьковой струйной печати имеет 300 или 600 крошечных сопел и все они могут выстрелить каплей одновременно.

  • Пьезоэлектрический — В этой технологии, запатентованной Epson, используется пьезоэлемент . Кристаллы . Кристалл расположен на задней стороне резервуара с чернилами каждого сопло. Кристалл получает крошечный электрический заряд, который заставляет его вибрировать.qJ; ‘a8W [/: iB & -0E; 99p0jb3 + VodI «# i # P aqQElfL2rXL & Qf3K3% @ 00ED = 08VTU8 # 3gq; 0l * fp! XCf`X? J # E + 6q2d & cRCp $ jHfB 0EE $ K6 & 7jdQV # sPM0 (A + 5t1ZV% Po «ZOFqOdW9RCnOIiLMcrf` $ 229; 8p.7Ya =`: & = , hFPOZ6aG (etAY: G [aMoJ * ‘CYTJFOcj5J / IbIL] D> KI $ [=? [& DIS C4 * Tu, + p / \ r] pN? (F7CaEI = # V! # D`4a8ioCB`VqD / (d [i! B` & jTB.2G! = 7la # QfM \ & b \ A «$ ej $ IgCT +`, d «I $» A3% 6m) I6P (d! t! «! 1 \ Vujhkl + CgSB = Z`7 * 6Ljm%? TN # j8] /]. 52V>! — qmsMlTs-KnKKp (U%> 5m $ 1 & qJ% -n # RW @ + [LB! 5S *, & Ha-mKLQ, R !&ПФ» i0YDnKV4D>! sRYf / .VeiW # QWWJ: K6X «Q: Т.е.! serN650I :: b3 ‘.$ ncBS54YJFI.TYU1 = a It]? G «: / lH = 9O.VWF» _ \ nV БК: е., «К) РИМ && TDL4 & O & S & К_ & Aq8eR &&& е & Gj & rIIN5 & aAdkl &&& RhmD & DM3X & R2: EVK & dROWW & Мр & r.Y & Х &&&& EGWo & fI_US &&&& ca0WN &&& HKU & D && d9CY &&& V & tq8j5XYb6 &&& п &&&& Ц. & _AWWiLgR && FO & ч && R_ZniT & KZL &&& ЕХО & д && ЗК & п && k7JJeCTL: &&& XCPU1k 56hz>

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*