Управление асинхронным двигателем: Трехфазный асинхронный двигатель

Содержание

Реверсивная схема управления асинхронным двигателем

08 Апр 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.

Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.

На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.

В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.

Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.

Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.

1. Исходное состояние схемы.

При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.

Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.

На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.

2. Работа цепей управления при вращении двигателя влево.

При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.

Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.

На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.

3. Работа цепей управления при вращении двигателя вправо.

Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.

Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.

При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:

Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.

Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.

4. Силовые цепи.

А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.

Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.

Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.

А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.

Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.

Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».

Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.

5. Защита силовых цепей от короткого замыкания или «защита от дурака».

Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.

Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».

А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.

6. Заключение.

Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.

И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.

А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!

Электромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

По сущности, электромагнитный пускатель — это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях — и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение — цепь размыкается. Каждый контакт находится в дугогасительной специальной камере.

Реверсивные и нереверсивные пускатели

Устройства бывают различных видов и выполняют все поставленные задачи.

Пускатели бывают двух типов:

В реверсивном пускателе в одном корпусе существуют два единичных магнитных устройства, имеющих электрическое подсоединение между собой и прикреплённых в совокупном основании, но функционировать может только один из данных пускателей — или только первый, или только второй.

Реверсивный прибор вводится через естественно-закрытые блокировочные контакты, роль которых — устранить синхронное включение двух групп контактов — реверсивной и нереверсивной, для того чтобы не случилось межфазного замыкания. Определённые модификации реверсивных пускателей для предоставления этой же функции имеют защиту. Фазы питания возможно переключать по очереди для того, чтобы выполнялась главная функция реверсивного пускателя — перемена направления вращения электродвигателя. Изменился порядок чередования фаз — поменялось и направление ротора.

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Конструкция реверсивного магнитного двигателя

Распространение этих модификаций становится все обширнее с каждым годом, так как они помогают управлять асинхронным двигателем на дистанции. Это приспособление даёт возможность как включать, так и отключать мотор.

Корпус реверсивного пускателя состоит из таких следующих частей:

  1. Контактор.
  2. Тепловое микрореле.
  3. Кожух.
  4. Инструменты управления.

После того как поступила команда «Пуск», цепь замыкается. Далее ток начинает передаваться на катушку. В это же время действует механическое блокирующее приспособление, которое не дает запуститься ненужным контактам. Здесь нужно отметить, что механическая блокировка также закрывает и контакты клавиши, это дает возможность не удерживать её надавленной постоянно, а спокойно освободить. Еще одна важная часть состоит в том, что вторая клавиша этого устройства совместно с пуском всего аппарата будет размыкать электрическую цепь. Благодаря этому даже надавливание не дает практически никакого результата, формируя дополнительную безопасность.

Особенности функционирования модели

При нажатии клавиши «Вперед» действует катушка, и вводятся контакты. Вместе с этим выполняется операция пусковой клавиши постоянно разомкнутыми контактами устройства КМ 1.3, благодаря чему при непосредственном отпускании клавиши питание на катушку действует по шунтированию.

После введения первого пускателя размыкаются именно контакты КМ 1.2, что отключает катушку К2. В итоге при непосредственном нажатии в клавишу «Назад» ничего не происходит. Для того чтобы ввести мотор в обратную сторону необходимо надавить «Стоп» и обесточить К1. Все блокировочные контакты возвратиться могут в противоположное состояние, после этого возможно ввести мотор в противоположном направлении. Аналогично при этом вводится К2 и отключается блок с контактами. Происходит включение катушки 2 пускателя К1. К2 содержит силовые контакты КМ2, а К1- КМ1. К кнопкам для подсоединения от пускателя следует провести пятижильный провод.

Правила подключения

В любой установке, в которой требуется пуск электродвигателя в прямом и в противоположном направлении, непременно существует электромагнитный прибор реверсивной схемы. Подсоединение подобного элемента не считается столь непростой задачей, как может показаться на первый взгляд. К тому же нужность подобных задач возникает довольно часто. К примеру, в сверловочных станках, отрезных конструкциях либо же лифтах, если это не касается домашнего применения.

Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. Кроме того, для реализации переключения подобная установка оборудована клавишей. Подобная система, как правило, защищена от замыкания. Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов (КМ1.2 и КМ2.2), помещённых в позиции (КМ1 и КМ2).

Реверсивное подключение трехфазного двигателя

При работе выключателя QF1, одновременно все без исключения три фазы прилегают к контактам пускателя (КМ1 и КМ2) и находятся в таком состоянии. При этом первая стадия, представляющая собой питание для цепочки управления, протекая через аппарат защиты схемы управления SF1 и клавишу выключения SB1, непосредственно подаёт напряжение в контакты под третьим номером, который относится к SB2, SB3. При этом существующий контакт 13НО приобретает значение основного дежурного. Подобным способом система считается целиком готовой к работе.

Переключение системы при противоположном вращении

Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1. Уже после этого совершается введение нормально-разомкнутых контактов и выключение нормально-замкнутых. Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. При этом все без исключения три фазы поступают в нужной обмотке двигателя, который, в свою очередь, начинает формировать вращательное перемещение.

Созданная модель предусматривает наличие одного рабочего приспособления. К примеру, может функционировать только лишь КМ1 либо же, напротив, КМ2. Отмеченная цепь обладает действительными элементами.

Изменение поворотного движения

Теперь для придания противоположного направления перемещения вам следует поменять состояние силовых фаз, что удобно совершить при помощи переключателя КМ2. Все совершается благодаря размыканию первой фазы. При этом все без исключения контакты вернутся в исходное состояние, обесточив обмотку мотора. Эта фаза считается ждущим режимом.

Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. Это влияние вынуждает мотор вращаться в противоположном направлении. Теперь КМ2 будет ведущим, и пока не случится его разъединение, КМ1 будет не задействован.

Защита цепей от короткого замыкания

Как уже было заявлено прежде, прежде чем осуществить процесс перемены фазности, необходимо прекратить вращение мотора. Для этого в системе учтены нормально-замкнутые контакты. Поскольку при их нехватке невнимательность оператора привела бы к межфазному непосредственному замыканию, которое может случиться в обмотке мотора второй и третьей фазы. Предложенная модель считается оптимальной, поскольку допускает работу только лишь одного магнитного пускателя.

Схема подсоединения реверсивного магнитного пускателя считается ядром управления, так как много электрооборудования функционирует на реверсе, и непосредственно этот аппарат меняет направление верчения мотора.

Реверсивные схемы электромагнитных пускателей устанавливают там, где они на самом деле нужны, поскольку существуют подобные устройства, а обратный процесс недопустим и может вызвать серьёзную поломку автоматического характера.

Типовые узлы и схемы релейно-контакторного управления асинхронными двигателями строятся по тем же принципам, что и схемы управления двигателями постоянного тока.

Типовые схемы управления асинхронным двигателем с короткозамкнутым ротором. Двигатели этого типа малой и средней мощности обычно пускаются прямым подключением к сети без ограничения пусковых токов. В этих случаях они управляются с помощью магнитных пускателей, которые одновременно обеспечивают и некоторые виды их защиты.

Схема управления асинхронным двигателем с использованием магнитного пускателя (рис. 3.8) включает в себя магнитный пускатель, состоящий из контактора КМ и трех встроенных в него тепловых реле защиты КК Схема обеспечивает прямой (без ограничения тока и момента) пуск двигателя, отключение его от сети, а также защиту от коротких замыканий (предохранители FA) и перегрузки (тепловые реле КК).

Для пуска двигателя замыкают выключатель QF и нажимают кнопку пуска SB1. Получает питание катушка контактора КМ, который, включившись, своими главными силовыми контактами в цепи статора двигателя подключает его к источнику питания, а вспомогательным контактом шунтирует кнопку SB1. Происходит разбег двигателя по его естественной характеристике. Для отключения двигателя нажимается кнопка остановки SB2, контактор КМ теряет питание и отключает двигатель от сети. Начинается процесс торможения двигателя выбегом под действием момента нагрузки на его валу.

Рис. 3.8. Схема управления асинхронным двигателем с использованием нереверсивного магнитного пускателя

Реверсивная схема управления асинхронным двигателем. Основным элементом этой схемы является реверсивный магнитный пускатель, который включает в себя два линейных контактора КМI и КМ2 и два тепловых реле защиты КК (рис. 3.9). Схема обеспечивает прямой пуск и реверс двигателя, а также торможение про- тивовключением при ручном (неавтоматическом) управлении.

В схеме предусмотрена защита от перегрузок двигателя (реле КК) и коротких замыканий в цепи статора (автоматический выключатель QF) и управления (предохранители FA). Кроме того, схема управления обеспечивает и нулевую защиту от исчезновения (снижения) напряжения сети (контакторы КМ1 и КМ2).

Пуск двигателя при включенном автоматическом выключателе QFв условных направлениях «Вперед» или «Назад» осуществляется нажатием соответственно кнопок SB1 или SB2. Это приводит к срабатыванию контактора КМ1 или КМ2, подключению двигателя к сети и его разбегу.

Для реверса или торможения двигателя вначале нажимается кнопка SB3, что приводит к отключению включенного до сих пор контактора (например, KMI), после чего нажимается кнопка SB2.

Это приводит к включению контактора КМ2 и подаче на АД напряжения источника питания с другим порядком чередования фаз. Магнитное поле двигателя изменяет свое направление вращения на противоположное, и начинается процесс реверса, состоящий из двух этапов: торможения противовключением и разбега в противоположную сторону.

Рис. 3.9. Схема управления асинхронным двигателем с использованием реверсивного магнитного пускателя

В случае необходимости только торможения двигателя при достижении им нулевой скорости должна быть вновь нажата кнопка SB3, что приведет к отключению двигателя от сети и возвращению схемы в исходное положение. Если кнопка SB3 нажата не будет, то это приведет к разбегу двигателя в другую сторону, т.е. к его реверсу.

Во избежание короткого замыкания в цепи статора, которое может возникнуть в результате одновременного ошибочного нажатия кнопок SB1 и SB2, в реверсивных магнитных пускателях иногда предусматривается специальная механическая блокировка. Она представляет собой рычажную систему, которая предотвращает втягивание одного контактора, если включен другой. В дополнение к механической блокировке в схеме используется типовая электрическая блокировка, применяемая в реверсивных схемах управления. Она предусматривает перекрестное включение размыкающих контактов аппарата КМ1 в цепь катушки аппарата КМ2 и, наоборот.

Отметим, что повышению надежности и удобства в эксплуатации способствует использование в схеме воздушного автомати- юз

ческого выключателя QF. Его наличие исключает возможность работы привода при обрыве одной фазы, при однофазном коротком замыкании, как это может иметь место при установке предохранителей, а также он не требует замены элементов (как в предохранителях при сгорании их плавкой вставки).

Схема управления многоскоростным асинхронным двигателем. Эта схема (рис. 3.10) обеспечивает получение двух скоростей двигателя путем соединения секций (полуобмоток) обмотки статора в треугольник или двойную звезду, а также его реверсирование. Защита электропривода осуществляется тепловыми реле КК1 и КК2 и предохранителями FA.

Рис. 3.10. Схема управления двухскоростным асинхронным двигателем

Для пуска двигателя на низкую скорость вращения нажимается кнопка SB4, после чего срабатывает контактор КМ2 и блокировочное реле KV. Статор двигателя оказывается включенным по схеме треугольника, а реле KV, замкнув свои контакты в цепях катушек аппаратов КМЗ и КМ4, подготавливает подключение двигателя к источнику питания. Далее нажатие кнопки SB1 или SB2 приводит к включению соответственно в направлении «Вперед» или «Назад».

После разбега двигателя до низкой скорости может быть осуществлен его разгон до высокой скорости. Для этого нажимается кнопка SB5, что приведет к отключению контактора КМ2, включению контактора КМI и пересоединению тем самым секций обмоток статора с треугольника на двойную звезду.

Остановка двигателя производится нажатием кнопки SB3, что вызовет отключение всех контакторов от сети и торможение двигателя выбегом.

Применение в схеме двухцепных кнопок управления не допускает одновременного включения контакторов КМ1 и КМ2, КМЗ и КМ4. Этой же цели служит перекрестное включение размыкающих блок-контактов контакторов КМ 1 и КМ2, КМЗ и КМ4 в цепи их катушек.

Схема управления асинхронным двигателем, обеспечивающая прямой пуск и динамическое торможение в функции времени. Пуск двигателя осуществляется нажатием кнопки SBI (рис. 3.11), после чего срабатывает линейный контактор КМ, подключающий двигатель к источнику питания. Одновременно с этим замыкание контакта КМ в цепи реле времени КТ вызовет его срабатывание и замыкание его контакта в цепи контактора торможения KMI. Однако последний не срабатывает, так как перед этим разомкнулся в этой цепи размыкающий контакт КМ.

Рис. 3.11. Схема управления пуском и динамическим торможением асинхронного двигателя с короткозамкнутым ротором

Для остановки двигателя нажимается кнопка SB3. Контактор КМ отключается, размыкая свои контакты в цепи статора двигателя и отключая тем самым его от сети переменного тока. Одновременно с этим замыкается контакт КМ в цепи аппарата КМ 1 и размыкается контакт КМ в цепи реле КТ. Это приводит к включению контактора торможения КМ1, подаче в обмотки статора постоянного тока от выпрямителя Кчерез резистор Д. и переводу двигателя в режим динамического торможения.

Реле времени КТ, потеряв питание, начинает отсчет выдержки времени. Через интервал времени, соответствующий времени останова двигателя, реле КТ размыкает свой контакт в цепи контактора КМ1, тот отключается, прекращая подачу постоянного тока в цепь статора. Схема возвращается в исходное положение.

Интенсивность динамического торможения регулируется резистором Rт, с помощью которого устанавливается необходимый постоянный ток в статоре двигателя.

Для исключения возможности одновременного подключения статора к источникам переменного и постоянного тока в схеме использована типовая блокировка с помощью размыкающих контактов КМ и КМ1, включенных перекрестно в цепи катушек этих аппаратов.

Типовые схемы управления асинхронным двигателем с фазным ротором. Схемы управления двигателя с фазным ротором, которые рассчитаны в основном на среднюю и большую мощность, должны предусматривать ограничение токов при их пуске, реверсе и торможении с помощью добавочных резисторов в цепи ротора. За счет включения резисторов в цепь ротора можно также увеличить момент при пуске вплоть до уровня критического (максимального) момента.

Схема одноступенчатого пуска асинхронного двигателя в функции времени и торможения противовключением в функции ЭДС. После подачи напряжения включается реле времени КТ (рис. 3.12), которое своим размыкающим контактом разрывает цепь питания контактора КМЗ, предотвращая тем самым его включение и преждевременное закорачивание пусковых резисторов в цепи ротора.

Включение двигателя производится нажатием кнопки SB1, после чего включается контактор КМ1. Статор двигателя подсоединяется к сети, электромагнитный тормоз YB растормаживается, и начинается разбег двигателя. Включение КМ1 одновременно приводит к срабатыванию контактора КМ4, который своим контактом шунтирует ненужный при пуске резистор противовключения R&, а также разрывает цепь катушки реле времени КТ Последнее, потеряв питание, начинает отсчет выдержки времени, после чего замыкает свой контакт в цепи катушки контактора КМЗ, который срабатывает и шунтирует пусковой резистор R:il в цепи ротора, и двигатель выходит на свою естественную характеристику.

Управление торможением обеспечивает реле торможения KV, контролирующее уровень ЭДС (скорости) ротора. С помощью резистора оно отрегулировано таким образом, что при пуске, когда скольжение двигателя 0 = 0,87, скольжение sHOM = 0,02, кратность пускового тока IJInoiA = l, кратности максимального и пускового моментов MmJMH0M = 2,7, Мпном= 1,7.

При длительном режиме работы двигателя требуется:

  • • выбрать магнитный пускатель с тепловыми реле защиты;
  • • выбрать автоматический выключатель;
  • • рассчитать параметры предохранителей и выбрать их по каталогу;
  • • рассчитать уставки тепловых реле.

Задача 3.8. Схема электропривода приведена на рис. 3.11. Требуется выбрать по каталогу контакторы КМ и КМ1. К каким последствиям в работе электропривода приведет обгар контакта аппарата КМ в цепи катушки контактора КМ 11

Задача 3.9. Составить схему управления, которая обеспечивает пуск асинхронного двигателя с фазным ротором в две ступени в функции времени и торможение противовключением в функции скорости (с использованием реле контроля скорости).

Задача 3.10. Составить схему управления, которая обеспечивает прямой пуск асинхронного двигателя с короткозамкнутым ротором и его торможение противовключением в функции времени.

Пример 3.2. Схема электропривода приведена на рис. 3.12, двигатель имеет данные, представленные в задаче 3.7. Суммарный момент инерции электропривода /=0,7 кгм 2 , момент нагрузки равен номинальному моменту. Определить соотношение сопротивлений пускового резистора Ял] и обмотки ротора Я2, при котором пусковой момент двигателя будет равен максимальному (критическому), и выдержку реле времени.

Рассчитываем величину критического скольжения двигателя на естественной характеристике, используя его паспортные данные:

Находим требуемое соотношение сопротивлений, учитывая, что на искусственной характеристике при заданном условии критическое скольжение sKp и = 1:

Определяем величину критического момента двигателя:

Принимая искусственную характеристику двигателя в первом квадранте линейной и полагая момент переключения на 15% превышающим номинальный момент, оценим механическую постоянную времени и выдержку реле времени:

Принцип действия частотного управления асинхронным двигателем ~ Электропривод

Чтобы понять способ частотного управления асинхронным двигателем, а конкретно его угловой скоростью, при помощи регулирования частоты подводимого напряжения, необходимо рассмотреть формулу зависимости синхронной частоты вращения двигателя от частоты подводимого напряжения f1 и числа пар полюсов двигателя рn. Из формулы видно, что скорость вращения электромагнитного поля статора прямо пропорциональна частоте питающего напряжения.

По этому принципу возможно построение широкорегулируемых электроприводов с жесткими механическими характеристиками. Важным преимуществом частотного управления асинхронным двигателем являются благоприятные энергетические показатели. Это объясняется тем, что двигатель с частотным управлением работает при малых скольжениях, что обусловливает малые потери и высокий КПД во всем диапазоне регулирования скорости. Однако при изменении частоты возникает необходимость одновременного регулирования напряжения, подводимого к статору. С изменением частоты питающего напряжения изменяется и величина потока двигателя Ф1, поэтому одновременно с изменением частоты питающего напряжения необходимо регулировать и его амплитуду.

Необходимость уменьшения напряжения при уменьшении частоты питающего напряжения возникает из за того, что с уменьшением сопротивления обмоток двигателя, ток намагничивания возрастает. Это приводит к тому, что магнитопровод двигателя насыщается, что ведет к перегреву двигателя. При частотном управлении двигателем, необходимо следить, чтобы скольжение двигателя было минимальным.

В настоящее время в качестве преобразователей частоты используются полупроводниковые статические преобразователи частоты. Если пренебрегать величиной активного сопротивления статора (r1=0), то, для того чтобы при частотном управлении (уменьшении частоты вниз от номинальной) сохранять критический момент постоянным, нужно величину напряжения изменять пропорционально изменению частоты.

Механические характеристики, соответствующие частотному регулированию при выполнении соотношения показаны на рисунке сплошными линиями.

Для того чтобы реализовать принцип частотного управления двигателем, необходимо управлять напряжением и током в статоре асинхронной машины при изменении частоты питания. Поэтому в разомкнутых системах ПЧ — АД не удается достичь большого диапазона регулирования скорости, так как в сильной степени проявляется статизм (влияние изменений момента нагрузки) на механические характеристики привода. Кроме того, при снижении скорости может возникать область статической неустойчивости, которая затрудняет практическое использование таких приводов. Существует несколько алгоритмов одновременного изменения частоты и напряжения статора в статическом режиме. Чаще всего стремятся сохранить постоянной перегрузочную способность двигателя, т.е. сделать так, чтобы при всех режимах отношение максимального момента к моменту сил сопротивления оставалось постоянным:

Таким образом, напряжение необходимо регулировать не только в функции частоты, но и в функции нагрузки. Критический момент трехфазного АД:

где ω0- синхронная скорость; Rj — активное фазное сопротивление обмотки статора; XK=XJ+X’2 — индуктивное фазное сопротивление к.з. Пренебрегая величиной Ri по сравнению с Xk и учитывая, что Xk=2f1Lf, можно получить

Следовательно, критический момент прямо пропорционален квадрату напряжения и обратно пропорционален квадрату частоты, поэтому

Таким образом, для сохранения постоянной перегрузочной способности необходимо изменять напряжение пропорционально частоте и корню квадратному от момента нагрузки. Этот общий принцип регулирования может быть уточнен для конкретных режимов работы механизма.

Микроконтроллерная система управления асинхронным трехфазным двигателем

В настоящее время практически 60% всей вырабатываемой электроэнергии потребляется электродвигателями. Поэтому достаточно остро стоит задача экономии электроэнергии и уменьшения стоимости электродвигателей.

Трехфазные асинхронные двигатели считаются достаточно универсальными и наиболее дешевыми, но подключать их к однофазной сети и управлять частотой вращения достаточно сложно.

Рис. 1. Числоимпульсный метод управления асинхронным двигателем с частотой модуляции 10 кГц.

Заманчива перспектива увеличения номинальной частоты вращения двигателя в двое и более раз или использование малогабаритных двигателей, рассчитанных на частоту питающей сети 400…1000 Гц и имеющихменьшую массу и стоимость. В данной радиолюбительской конструкции предпринята попытка решения проблемы.

Предлагаемая система управления работает от однофазной сети 220 В и позволяет плавно менять обороты двигателя и отображать частоту инвертора на двухразрядном цифровом индикаторе.

Дискретность изменения частоты инвертора составляет 1 Гц и регулируется в пределах от 1 до 99 Гц. В предлагаемой схеме используется числоимпульсный метод управления асинхронным двигателем с частотой модуляции 10 кГц (рис.1), позволяющий получать синусоидальный ток на обмотках двигателя.

Существует более перспективный, широтно-импульсный метод (ШИМ, PWM — англ.), использующий управление с обратными связями и без них, с частотами модуляции от 3 до 20 кГц и всевозможные методы коммутации, позволяющие увеличить выходное напряжение инвертора на 15.27% по сравнению с питающей сетью, т.е. до 354.390 В.

Принципиальная схема

Схема, показанная на рис.2, состоит из: управляющего устройства D2 (применен микроконтроллер PIC16F628-20/P, работающий на частоте 20 МГц), кнопок управления «Пуск» (SA1), «Стоп» (SA2), кнопок увеличения и уменьшения частоты SA3 и SA4 соответственно, двоично-семисегментного дешифратора D1, светодиодных матриц HG1 и HG2, узла торможения VT9, VT10, K1.

В силовой цепи используется трехфазный мостовой драйвер D4 IR2130 фирмы International Rectifier, имеющий три выхода для управления нижними ключами моста и три выхода для ключей с плавающим потенциалом управления.

Рис. 2. Принципиальная схема микроконтроллерного управления асинхронным трехфазным двигателем.

Рис. 2. Принципиальная схема микроконтроллерного управления асинхронным трехфазным двигателем (продолжение).

Данная микросхема имеет систему защиты по току, которая в случае перегрузки выключает все ключи, а также предотвращает одновременное открывание верхних и нижних транзисторов, тем самым предотвращает протекание сквозных токов. Для сброса защиты необходимо установить все единицы на входах HNx, LNx. В качестве силовых ключей применены МОП-транзисторы IRF740.

Цепь перегрузки состоит из датчика тока R10, делителя напряжения R7R9, позволяющего точно установить ток срабатывания защиты, и интегрирующей цепочки R6C3, которая предотвращает ложное срабатывание токовой защиты в моменты коммутаций. Напряжение срабатывания защиты составляет 0,5 В по входу ITRP (D4).

После срабатывания защиты на выходе FAULT (открытый коллектор) появляется лог.»0″, зажигается светодиод HL1 и закрываются все силовые ключи.

Для более быстрой разрядки емкостей затворов силовых транзисторов можно установить параллельно резисторам, включенным в цепь затвора, диоды в обратном направлении. Двигатель необходимо включить по схеме звезды.

Источник питания состоит из мощных диодов VD11-VD14, токоограничительного резистора R20, фильтрующей емкости C10, емкости C11, предотвращающей всплески, которые возникают при коммутациях на паразитных индуктивностях схемы, а также маломощного трансформатора T1, стабилизатора напряжения 15 В D5 для питания схемы драйвера, стабилизатора напряжения 5 В D3 для питания микроконтроллера и схемы индикации.

При использовании более мощного двигателя вместо транзисторов IRF740 можно использовать IGBT-транзисторы типов IRGBC20KD2-S, IRGBC30KD2-S, при этом диоды VD7-VD10, VD15, VD16 следует выпаять. Конденсатор C11 типа К78-2 на напряжение 600…1000 В. Вместо VD1-VD6 желательно применить сверхбыстрые диоды типа 10DF6, а емкости С15-С17 уменьшить до 2,2…4,7 мкФ, которые должны быть рассчитаны на напряжение 50 В. Трансформатор T1 мощностью 0,5.2 Вт от калькулятора с перемотанной вторичной обмоткой. Обмотка намотана проводом 00,2 и должна выдавать 19.20 В.

Печатная плата и прошивка МК

Печатная плата (рис.3) выполнена из одностороннего стеклотекстолита, для того чтобы можно было воспользоваться утюго-лазерной технологией изготовления. Светодиод HL1, матрицы HG1, HG2, кнопки SA1-SA4 установлены со стороны дорожек.

Рис. 3. Печатная плата.

HEX-формат программы приведен в таблице. В момент записи в нулевую ячейку ОЗУ необходимо поместить шестнадцатеричное число от 1 до 63, начальная частота инвертора.

Коды для прошивки в текстовом формате: Скачать

Программа выполнена таким образом, что двигатель стартует с плавным набором скорости от 0 до установленной частоты примерно за 2 с (эта константа находится в ячейках 0207 и 0158 таблицы). Если нужно увеличить скорость нарастания в два раза, то вместо кодов 3005 необходимо записать 300A.

С.М. Абрамов, г. Оренбург, Россия. Электрик-2004-08.

Литература:

  1. Козаченко В. Основные тенденции развития встроенных систем управления двигателями и требования к микроконтроллерам//СЫр№ш -1999. — №1.
  2. Обухов Д, Стенин С., Струнин Д, Фрадкин А. — Модуль управления электроприводом на микроконтроллере PIC16C62 и драйвере IR2131//ChipNews. — 1999. -№6.

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ АСИНХРОННЫМ ДВИГАТЕЛЕМ ПО КРИТЕРИЮ ПОТЕРЬ ЭНЕРГИИ

Полная библиографическая ссылка: Самосейко В. Ф. ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ АСИНХРОННЫМ ДВИГАТЕЛЕМ ПО КРИТЕРИЮ ПОТЕРЬ ЭНЕРГИИ / Вениамин Францевич Самосейко, Владимир Олегович Гуськов // Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. — 2020. — №4(62). — C. 775-788. DOI: 10.21821/2309-5180-2020-12-4-775-788


ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ АСИНХРОННЫМ ДВИГАТЕЛЕМ ПО КРИТЕРИЮ ПОТЕРЬ ЭНЕРГИИ

Аннотация

В статье предложен алгоритм управления, позволяющий осуществлять управление асинхронным двигателем оптимально по критерию минимума потерь энергии. В качестве показателя энергоэффективности управления используется отношение электромагнитный момент / потери мощности. Синтез системы управления осуществляется при помощи уравнений напряжения асинхронного двигателя. Применяются уравнения токов ошибок векторного управления, позволяющие перейти от дифференциальных уравнений 4-го порядка, описывающих динамику электромагнитных процессов асинхронного двигателя, к уравнениям 2-го порядка. Управление электромагнитными процессами ведется путем создания двух контуров управления токами намагничивания и нагрузки. Описана операция настройки контуров тока намагничивания и тока нагрузки на «модульный оптимум». В результате синтеза электромагнитных процессов формируется электромагнитный момент асинхронного электродвигателя. Высокое быстродействие и свойство робастности для системы управления обеспечиваются применением контуров виртуальной диссипации. Выполнено моделирование и сравнение предложенной оптимальной системы управления по критерию потерь энергии с системой управления при постоянном токе намагничивания. Выявлены зависимости показателя энергоэффективности от момента сопротивления на валу асинхронного двигателя и скорости вращения ротора асинхронного двигателя для сопоставляемых систем управления. Сравнение по показателю энергоэффективности и качеству динамических процессов выделяет преимущества предложенной системы управления над системой управления при постоянном токе намагничивания. Оптимальное управление по критерию потерь энергии позволяет управлять асинхронным двигателем с более высоким значением показателя энергоэффективности в отличие от системы управления, в которой поддерживается постоянство тока намагничивания. Качество динамических переходных процессов оптимальной системы управления по критерию потерь энергии ненамного уступает качеству динамических процессов системы управления с постоянным током намагничивания.

Ключевые слова

асинхронный двигатель, векторное управление, оптимальное управление, показатель энергоэффективности, ток намагничивания, ток нагрузки, потери энергии

Читать полный текст статьи:  PDF

Список литературы

Об авторах

Самосейко Вениамин Францевич — доктор технических наук, профессор

[email protected]. [email protected]

ФГБОУ ВО «ГУМРФ имени адмирала С. О. Макарова»

Гуськов Владимир Олегович — инженер

[email protected]

Завод «Электросила» — филиал ПАО «Силовые машины»

Векторное и скалярное управление асинхронным двигателем (видео)

Электропривод сегодня является основой большинства подъемно-транспортных, обрабатывающих комплексов. Одним из способов их плавной работы является векторное управление асинхронным двигателем, преобразующим электрическую энергию в механическую – вращение приводного вала и связанных с ним механизмов.

Что такое асинхронный двигатель?

Прежде чем переходить к модели, алгоритмам и системам управления электроприводом, нужно точно знать, что он собой представляет. Это позволяет выявить в его цепи такие моменты, которые можно будет использовать для организации плавного изменения ключевых характеристик (частота/скорость вращения, напряжение). Соответственно, можно определить параметры контроллера, разработать технологические карты для его размещения в шкафу и обслуживания.

Работа любого асинхронного двигателя базируется на возбуждении на контактных обмотках магнитного поля при подаче электричества от шкафа управления. Оно возникает на статоре – неподвижной части двигателя, которая состоит из кольцевого сердечника (магнитопровода), собранного из отдельных металлических пластин. Каждая из них имеет концентрические пазы на внутренней стороне кольца, которые при совмещении образуют продольные пазы. Они служат для намотки проволоки, составляющей основу статорной обмотки.

Также асинхронный двигатель имеет подвижную часть – ротор, совмещенный с приводным валом. Он также имеет пластинчатый сердечник с пазами, но уже на внешней стороне. Вместо проволоки используются медные прутки, которые по краям замыкаются пластинами (такой вариант двигателя называется с короткозамкнутым ротором).

За счет того, что частоты вращения магнитных полей статора и ротора отличаются, в обмотках последнего за счет индукции наводится электрический ток. Он, в свою очередь, побуждает электромагнитную силу, приводящую ротор в движение (вращение). Разница частот обычно называется скольжением. Его величина составляет порядка 2…10%.

Как можно управлять скоростью вращения двигателя?

Очевидно, что двигатель в обычном режиме работы от сети (электрического шкафа) имеет стандартную скорость/частоту вращения. Это ограничивает прямое его использование, вынуждая применять различные редукторные механизмы для понижения частоты до требуемой. Но даже тогда нет возможности динамично менять обороты, а вместе с ними, мощность, подачу, поскольку все равно остаются фиксированными частоты на выходе из двигателя и редуктора. Для расширения существующих рамок используют разные способы управления (частотные, импульсные, фазные и т. д), которые можно разделить на две большие группы:

  1. Скалярное. Как правило, используется на приводных двигателях компрессорных, вентиляторных, насосных и прочих механизмов, где требуется контроль скорости вращения или любого другого параметра, связанного с датчиками,
  2. Векторное. Это усовершенствованная концепция, которая предполагает раздельный, независимый контроль, изменение момента и магнитного потока. Токосцепление ротора поддерживается на постоянном уровне, что позволяет сохранить максимальный показатель момента.

Управление асинхронным двигателем

Отличие скалярного от векторного управления как раз заключается в возможности осуществления контроля возбуждения (потока). Фактически, он представляется как двигатель постоянного тока, имеющий независимые друг от друга обмотки. Такой подход позволяет создать подобную математическую модель системы работы контроллера.

Формы и схема векторного управления

Все существующие на сегодня системы векторного управления работой двигателей можно разделить на две группы:

  1. Датчиковые. Блок управления работой двигателя имеет с ним обратную связь по скорости, с помощью расположения на валу соответствующих датчиков,
  2. Бездатчиковые. Это системы, которые работают без датчиков скорости на основном валу.

Датчиковые системы являются более сложными, так как точность контроля составляет 1:10000. Бездатчиковые системы работают на уровне не более 1:100. Все частотники с учетом уровня создаваемых помех устанавливаются в центральных или отдельных шкафах.

Если представить все выше сказанное как наглядную схему, то получится нечто следующее:

Здесь можно видеть такие ключевые компоненты системы управления, как:

  • АД – собственно, асинхронный двигатель (объект контроля),
  • БРП – логический блок регуляторов для переменных уравнения,
  • БВП – логический блок, отвечающий за вычисления по переменным,
  • БЗП – блок, задающий значения переменных,
  • ДС – датчик скорости на валу двигателя,
  • АИН ШИМ – блок амплитудно-импульсной/широтно-импульсной модуляции.

То, что на схеме отображено в виде блоков, на практике является всего лишь параметрическими элементами цепи управления, которая реализуется на микроконтроллере. Соответственно, сам контроллер и сопутствующие исполнительные механизмы монтируются в электрический шкаф. Для правильного монтажа разрабатывается технологическая карта.

Управление частотными контроллерами

Современные преобразователи частоты тока/напряжения работают и по скалярному, и по векторному варианту, используя параметрические математические модели, реализованные в программном коде встроенного микроконтроллера. Частотники электронного типа работают на тиристорных мостовых схемах и включают следующие основные компоненты:

  • Выпрямитель – тиристорный или транзисторный мост, преобразующий переменный ток в постоянный,
  • Инвертор – блок АИМ/ШИМ, работающий по обратному принципу, то есть преобразующий постоянный ток в переменный.

Поскольку такой переход так или иначе влияет на форму графика выходного напряжения, то блочный контроллер/частотник может использовать в схеме дросселя и специальные ЕМС фильтры. Последние применяют для снижения интенсивности электромагнитных помех.

Управление частотными контроллерами

Центральный контроллер обеспечивает параметрическое управление схемой, а также вспомогательными задачами, например, диагностикой состояния, защитой от перегрузок и т. п. Сам частотник обычно монтируется в отдельный шкаф, чтобы уменьшить электромагнитные помехи на оборудование.

В целом, векторное управление, организованное на современном контроллере и преобразователе частоты, позволяет добиться плавного регулирования ключевых величин, а также побочных параметров работы оборудования. Ввиду наличия электромагнитных помех при работе, частотники обычно размещают отдельно от основного электрического шкафа.

Ящик управления асинхронным двигателем Я5111М-2974 УХЛ4 Т.р. 5,5-8,0А 3,00 кВт

Описание товара:

Ящики управления Я5111М-2974 УХЛ4 предназначены для управления асинхронными двигателями с короткозамкнутым ротором в продолжительном, кратковременном и повторно-кратковременном режимах работы, а также для сигнализации и защиты асинхронных двигателей с короткозамкнутым ротором. На щите установлена светодиодная арматура, которая указывает состояние двигателя (включен/отключен). Щит используется в нефтяной отрасли, промышленности, офисных помещениях и для вентиляции помещений. Основное отличие ящика от Я5110 это наличие переключателя для изменения режима работы с местного на дистанционный

Подробное описание и Технические характеристики:

  • Номинальное напряжение: 380/220 В; 50 Гц.
  • Напряжение питания цепи управления: 220В
  • Номинальный ток ящика, А: 8А
  • Мощность двигателя по категории применения АС3: 3 кВт
  • Предел регулировки тока теплового реле, А: 5,5А — 8А
  • Номинальный ток расцепителя автоматического выключателя, А: 8
  • Имеет 1 фидер, с переключателом на дистанционый режим или автоматический
  • Степень защиты: IP31.
  • Тип установки: навесной.
  • Тип корпуса: металлический, окрашен порошково-полимерным композитом.
  • Габаритные размеры (ВхШхГ), мм: 400х300х155.
Конструктивное исполнение ящиков управления:

Ящики каждого устройства имеет сварную конструкцию корпуса с дверью на петлях фиксируемой замком и покрытым порошковой краской. Вся необходимая аппаратура устанавливается на монтажной панели и на двери с внутренней стороны. Номинальное напряжение главной цепи 380 В 50 Гц. Номинальное напряжение цепи управления 220В, 50 Гц. Каждый ящик имеет заземляющее крепление. Ящики поставляются для отдельной установки навесного исполнения. Ящик Я5111М-2974 производится как на отечественных комплектующих Энергия, ИЭК (IEK), ТДМ, Электротехник, Техэнерго, так и на импортных устройствах Schneider Electric, ABB, Andeli, Chint, Legrand, Elvert.

Ящик управления состоит из:

  • Коммутационной аппаратуры;

  • аппаратуры защиты;

  • аппаратуры управления и сигнализации;

  • блоков зажимов.

В ящике Я5111М-2974 предусмотрены следующие виды защит:

  • защита силовой цепи от коротких замыкании и перегрузки;
  • защита двигателя от перегрузки и обрыва фаз;
  • защита цепей управления от коротких замыканий;

Ящик Я5111М-2974


Ящик управления АД с к/з ротором Я5111М-2974 УХЛ4 Т.р. 0,4-0,63А 0,18 кВт предназначен для управлением двигателем

Я5111М-2974 схема

Внимание! Комплектацию ящиков управления электродвигателями Я5111М-2974 необходимо согласовывать до заказа.

Частотное управление асинхронным двигателем. Основные сведения

Есть вопрос? Задайте его Вашему персональному менеджеру. Служба поддержки призвана помочь пользователям в решении любых проблем, связанных с вопросами публикации своих работ и другими аспектами работы издательства «Проблемы науки».

Страница 3 из 3

 

При векторном управлении ток двигателя разделяют на два вектора: один из них производит поток намагничивания, а другой образует вращающий момент, каждый из которых регулируется отдельно. Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять не только амплитуду, но и вектор тока, которым является фаза статорного тока. Для управления вектором тока и положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по токам и напряжения статорных обмоток.

Векторное управление обеспечивает высокие быстродействие и точность управления скоростью электродвигателя и вращающего момента. Также оно позволяет существенно увеличить диапазон управления, точность регулирования и повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Основное различие между этими двумя типами управления заключается в том, что скалярное управление учитывает только величины мгновенных электрических величин (магнитного потока, тока и напряжения), приложенных к статору, с уравнениями стационарного состояния на основе эквивалентной электрической цепи электродвигателя. А при векторном управлении асинхронный двигатель рассматривается как двигатель постоянного тока с отдельно управляемыми моментом и потоком. При этом типе управления рассчитываются мгновенные электрические величины, влияющие на потокосцепление ротора в качестве векторов, и его уравнения основываются на пространственной динамической модели двигателя.

Литература

 

  1.      Чжо Ту. Разработка математических моделей, методов и алгоритмов цифрового управления режимами двигателей металлообрабатывающих станков.: Дисс. … канд. технич. наук. Москва, 2014. 151 с.


Асинхронный двигатель с управлением двигателем

AC

Один из наиболее распространенных электродвигателей, используемых в большинстве приложений, известный как асинхронный двигатель. Этот двигатель также называют асинхронным двигателем, потому что ротор всегда вращается с меньшей скоростью, чем поле, что делает его асинхронным двигателем переменного тока. Он работает со скоростью, меньшей, чем его синхронная скорость. Асинхронные двигатели переменного тока бывают однофазными или многофазными. Однофазная система питания широко используется по сравнению с трехфазной системой для бытовых, коммерческих и, в некоторой степени, промышленных целей.

Статор двигателя состоит из перекрывающихся смещений обмоток. Когда первичная обмотка или статор подключены к источнику переменного тока, создается вращающееся магнитное поле, которое вращается с синхронной скоростью. Теоретическая скорость ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля.Он вращается с постоянной скоростью, если вы не используете частотно-регулируемый привод.

Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. Асинхронные двигатели могут быть довольно тяжелыми и громоздкими из-за их катушечной обмотки. Трехфазные ИД широко используются в промышленных приводах, лифтах, кранах, приводных токарных станках..etc, потому что они прочные, надежные и экономичные. Однофазные IM широко используются для небольших нагрузок, таких как бытовые приборы, такие как вентиляторы, насосы, миксер, игрушки, пылесосы, сверлильные станки и т. Д.


Вернуться на главную страницу управления двигателем

Управление трехфазным асинхронным двигателем

Название дистрибьютора Регион Опись Дата инвентаризации

При выборе предпочтительный дистрибьютор, вы будете перенаправлены к их веб-сайт к разместить и обслужить ваш заказ.Пожалуйста, будьте осторожны что дистрибьюторы независимы предприятия и набор их собственный цены, сроки и условия продажи.NXP не делает нет представления или гарантии, явные или подразумевается, около дистрибьюторы, или цены, сроки а также условия продажи согласованные вами и любыми распределитель.

алгоритмов управления двигателем переменного тока | Renesas

Скалярное управление

Скалярное управление (или управление В / Гц) — это простой метод управления скоростью асинхронного двигателя.

Стационарная модель асинхронного двигателя в основном используется для разработки метода, поэтому переходные характеристики невозможны. Система не имеет токовой петли.Для управления двигателем трехфазное питание варьируется только по величине и частоте.

Векторное управление или управление ориентацией поля

Крутящий момент в электродвигателе изменяется в зависимости от полей статора и ротора и достигает своего пика, когда два поля ортогональны друг другу. В скалярном управлении угол между двумя полями значительно различается.

Векторное управление направлено на воссоздание ортогональных отношений в двигателе переменного тока. Для управления током, создающим крутящий момент, отдельно от тока, создающего магнитный поток, чтобы обеспечить чувствительность машины постоянного тока.

Векторное управление асинхронным двигателем переменного тока аналогично управлению двигателем постоянного тока с независимым возбуждением. В двигателе постоянного тока поток поля Φ F , создаваемый током возбуждения I F , перпендикулярен потоку якоря Φ A , создаваемому током якоря I A . Эти поля не связаны друг с другом и стационарны. Следовательно, когда ток якоря регулируется для управления крутящим моментом, магнитный поток поля остается неизменным, обеспечивая быструю переходную реакцию.

Полевое управление (FOC) трехфазного двигателя переменного тока включает имитацию работы двигателей постоянного тока. Все контролируемые переменные преобразуются в постоянный ток, а не в переменный, посредством математического преобразования. Целью является независимое управление крутящим моментом и магнитным потоком.

Существует два метода полевого управления (FOC):

  • Прямой FOC: Угол потока ротора вычисляется непосредственно на основе оценки или измерения потока.
  • Indirect FOC: Угол потока ротора косвенно вычисляется из доступных вычислений скорости и скольжения.

Векторное управление требует знания положения магнитного потока ротора и может быть вычислено с использованием усовершенствованных алгоритмов на основе знания тока и напряжений на клеммах с использованием динамической модели асинхронного двигателя переменного тока. Однако с точки зрения реализации критически важна потребность в вычислительных ресурсах.

Для реализации алгоритма векторного управления можно использовать разные методы. Для улучшения отклика и стабильности можно использовать методы прямой связи, модели оценки и методы адаптивного управления.

Векторное управление двигателями переменного тока: подробный обзор

В основе алгоритма векторного управления лежат два важных математических преобразования: преобразование Кларка, преобразования Парка и их обратные. Использование преобразователей Кларка и Парка переносит токи статора, которыми можно управлять, в область ротора. Это позволяет системе управления двигателем определять напряжения, которые должны подаваться на статор, чтобы максимизировать крутящий момент при динамически изменяющихся нагрузках.

Преобразование Кларка: Математическое преобразование Кларка преобразует трехфазную систему в двухкоординатную.

, где I a и I b — компоненты ортогональной плоскости отсчета, а I o — гомопланарный компонент, который не имеет большого значения

Рисунок 4 : Связь трехфазных токов статора с вращающейся системой отсчета

Преобразование Парка: Математическое преобразование Парка преобразует двухфазные стационарные системные векторы в вращающиеся системные векторы

Двухфазное представление кадра α, β , вычисленное с помощью преобразования Кларка, затем подается в блок вращения вектора, где он поворачивается на угол θ, чтобы следовать кадру d, q , прикрепленному к потоку ротора.Поворот на угол θ осуществляется по приведенным выше формулам.

Базовая схема ориентированного на поле векторного управления двигателем переменного тока:

На рис. 2 показана базовая схема ориентированного на поле векторного управления двигателем переменного тока.

Преобразование Кларка использует трехфазные токи I A , I B и I C для расчета токов в двухфазной ортогональной оси статора: I α и; I β .Эти два тока в фазе статора с фиксированной координатой преобразуются в составляющие токов I sd и I sq в кадре d , q с преобразованием Парка. Токи I sd , I sq и мгновенный угол магнитного потока θ, вычисленный с помощью модели магнитного потока двигателя, используются для расчета электрического момента асинхронного двигателя переменного тока.

Рисунок 2 : Базовая схема векторного управления асинхронными двигателями

Эти полученные значения сравниваются с заданием и обновляются ПИ-регулятором.

Сравнение скалярного и векторного управления двигателями

Параметры управления Управление В / Гц Векторное управление Бездатчиковое векторное управление
Регулировка скорости 1% 0,001% 0,05%
Регулировка крутящего момента Плохо +/- 2% +/- 5%
Модель двигателя Не требуется Требуется Требуется точная модель
MCU Мощность обработки Низкий Высокая высокий + DSP

Неотъемлемым преимуществом векторного управления двигателем является то, что одну и ту же схему можно использовать для управления различными типами двигателей переменного, постоянного-переменного тока или BLDC путем выбора соответствующих математических моделей для соответствующих двигателей.

Векторное управление двигателями BLDC

Двигатели

BLDC также являются первыми кандидатами для векторного управления с ориентацией поля. Бесщеточные двигатели, использующие подход FOC, могут достигать еще более высокого КПД, до 95 процентов, и эффективны в самом высоком диапазоне скоростей двигателя.

Методы контроля Требования к MCU Предлагаемые микроконтроллеры
RL78
Семья
RX
Семья
RH850
Семья
RZ / T1
Группа
Управление двигателем переменного тока Управление V / F Таймер захвата входа, прерывания, ШИМ для управления трехфазным двигателем
Упрощенное векторное управление Таймер захвата входа, прерывания, ШИМ с запаздыванием для управления трехфазным двигателем
Векторное управление (FOC) Высокопроизводительный микроконтроллер + MAC, высокоскоростной аналого-цифровой преобразователь, входной захват, прерывание, таймер PWM с мертвым временем для управления трехфазным двигателем
Бездатчиковое векторное управление Высокопроизводительный микроконтроллер + MAC, высокоскоростной аналого-цифровой преобразователь, прерывание, таймер PWM с запаздыванием для управления трехфазным двигателем

(PDF) Асинхронный привод без датчика скорости с инверторным выходом LC-фильтр

Рис.11. Устойчивость предложенной системы — сравнение переходных процессов скорости

в экспериментах для привода с фильтром и без фильтра —

структура управления и оценки и коэффициенты усиления контроллера были одинаковыми.

VIII. ВЫВОДЫ

Когда LC-фильтр используется в системе бессенсорного управления скоростью

, структура управления и структура наблюдателя

должны быть изменены. Электроприводы без таких изменений

работают с ограниченной динамикой, или иногда

не работают в режиме управления с обратной связью.

Для обеспечения низкой стоимости и надежности системы количество датчиков

не могло быть увеличено. Некоторые

дополнительных переменных, которые появляются в элементе управления, должны быть рассчитаны на

. Это возможно, когда в структуру вычислительной системы

будут входить уравнения LC-фильтра.

В предложенной системе управления количество датчиков

было ограничено двумя датчиками тока для измерения тока на выходе инвертора

и одним датчиком напряжения для измерения напряжения звена постоянного тока

.

Правильность предложенной системы управления

подтверждена моделированием и экспериментами.

СПРАВОЧНЫЕ МАТЕРИАЛЫ

[1] Дж. Эрдман, Р. Керкман, Д. Шлегель, Г. Скибински, «Влияние инверторов

PWM на токи в подшипниках и напряжения на валу электродвигателей переменного тока»,

in Proc. Конференция IEEE APEC, Даллас, США. 1995.

[2] Х. Конратс, Ф. Гислер, Х. Хейнинг, «Напряжения на валу и подшипники

токов — новые явления в асинхронных машинах с инверторным приводом»,

в Proc.Конференция EPE, Лозанна, Франция. 1999.

[3] A. Muetze, A. Binder, «Высокочастотные заземляющие токи статора

асинхронных двигателей с короткозамкнутым ротором с питанием от инвертора до 500 кВт», в

Proc. Конференция EPE, Тулуза, Франция. 2003.

[4] Дж. К. Стейнке, «Использование LC-фильтра для достижения благоприятных для двигателя характеристик

инвертора источника напряжения PWM», IEEE Transactions

on Energy Conversion, vol. 14, вып. 3, 1999.

[5] H.Акаги, «Перспективы и ожидания силовой электроники в 21 веке

», в Proc. Конференция по преобразованию энергии PCC’2002.

Осака, Япония, 2002.

[6] Х. Акаги, Х. Хасегава, Т. Доумото, «Пассивный фильтр электромагнитных помех

для использования с инвертором PWM-источником напряжения с синусоидальным выходом

напряжения и нулевой общей- режим », IEEE Transactions on Power

Electronics. т. 19, нет. 4, 2004.

[7] Z. Krzeminski, J.Guzinski J, «Выходной фильтр для источника напряжения

инвертор

, питающего асинхронный двигатель», в Proc. Международная конференция

по силовой электронике, интеллектуальным движениям и мощности

Quality PCIM, Нюрнберг, Германия, 2005 г.

[8] Дж. Понт, Дж. Родригес, М. Ротелла, «Выходной синусоидальный фильтр для привода среднего напряжения

. с прямым управлением крутящим моментом », в Proc. 40-е Ежегодное собрание

, Общество отраслевых приложений, IAS 2005, Гонконг

, Китай, 2005.

[9] Р. Селига, В. Кочара, «Многоконтурная стратегия управления с обратной связью в синусоидальном инверторе напряжения

для системы индукционного привода с регулируемой скоростью

», в Proc. 9-я Европейская конференция по энергетике

Электроника и приложения EPE’2001, Грац, Австрия, 2001.

[10] М. Кодзима, К. Хирабаяси, Я. Кавабата, Е.К. Эйджогу, Т.

Кавабата, «Новый вектор контроля система, использующая deadbeat-

управляемый ШИМ-инвертор с выходным LC-фильтром », IEEE

Transactions on Industry Applications, vol.40, нет. 1, 2004.

[11] Дж. Саломаки, Дж. Луоми, «Векторное управление асинхронным двигателем, питаемым

от инвертора PWM с выходным LC-фильтром», EPE Journal, vol. 16,

нет. 1, февраль 2006 г.

[12] Дж. Саломаки, М. Хикканен, Дж. Луоми, «Бездатчиковое управление приводами с асинхронным двигателем

, оснащенными выходным фильтром инвертора», в

Proc. Международная конференция IEEE по электрическим машинам и приводам

, IEMDC 2005, Сан-Антонио, Техас, США, 2005.

[13] Дж. Гузински Дж., Х. Абу-Руб, «Нелинейное управление асинхронным двигателем

с LC-фильтром на выходе инвертора», 2-я Средиземноморская конференция

по интеллектуальным системам и автоматизации, 23-25 ​​марта

2009, Зарзис , Тунис.

[14] М. Адамович, Я. Гузинский, «Управление бездатчиковым электроприводом

с выходным фильтром инвертора», 4-е Междунар. Симпозиум по автоматическому управлению

AUTSYM 2005. 22-23 сентября 2005 г.Висмар,

Германия.

[15] Р. Селига, В. Кочара, «Стратегия управления мгновенным током и напряжением

в преобразователе постоянного / переменного напряжения синусоидального напряжения на основе фильтра нижних частот.

Топология

для системы управления ШИМ с регулируемой скоростью. IEEE

Международный симпозиум по промышленной электронике ISIE, 2002,

Л’Акуила, Италия.

[16] Т. Кавабата, Т. Мияшита, Ю. Ямамото, «Цифровое управление трехфазным ШИМ-инвертором

с L-C фильтром», IEEE 19th Power

Конференция специалистов по электронике PESC 1988.Апрель 1988 года,

Токио, Япония.

[17] З. Кжемински, «Нелинейное управление асинхронным двигателем», 10-й

Всемирный конгресс по автоматическому управлению, IFA’1987, Мюнхен,

Германия, 1987.

[18] К. Раджашекара, А. Кавамура , К. Мацусе, «Бездатчиковое управление приводами электродвигателей переменного тока

», Общество промышленной электроники IEEE. IEEE Press,

1996.

[19] Дж. Хольц, «Бездатчиковое управление асинхронными машинами — с или

без подачи сигнала?», IEEE Trans.по промышленной электронике,

т. 53, нет. 1, февраль 2006 г.

[20] З. Кжемински, «Бездатчиковое управление асинхронным двигателем на основе

на новом наблюдателе», Международная конференция по силовой электронике,

Интеллектуальные движения и качество электроэнергии, PCIM 2000, Нюрнберг,

Германия, 2000.

[21] Х. Абу-Руб, Х. Шмиргель, Й. Хольц, «Бездатчиковое управление асинхронными двигателями

для достижения максимального установившегося крутящего момента и быстрой динамики

при ослаблении поля», IEEE / IAS 41-я Ann.Встреча,

Тампа, Флорида, США, 2006.

[22] Х. Абу-Руб. и Н. Ойкономоу, «Бездатчиковая система наблюдения для управления асинхронным двигателем

», 39-я конференция специалистов по силовой электронике IEEE

, PESC08, Родос, Греция, 2008.

[23] Х. Абу-Руб и Дж. Хольц ». Бессенсорная система управления индукционным двигателем

с замкнутым контуром Flux Observer », Патент — Управление коммерциализации технологий

, Техасский университет A&M, США,

Ссылка на нововведение TAMUS 2921, 2009.

[24] Дж. Хольц, «Представление динамики машины переменного тока с помощью

сложных графов потока сигналов», IEEE Trans. по Промышленной

Электроника, т. 42, нет. 3, июнь 1995.

[25] Абу-Руб Х., Гузински Дж., Родригес Дж., Кеннел Р., Кортес П.,

«Регулятор тока с прогнозированием для бессенсорного асинхронного двигателя

привод», Международная конференция по промышленному производству Technology, IEEE-

ICIT 2010, 14-17 марта 2010 г., Винья-дель-Мар, Чили.

Трехфазный асинхронный двигатель переменного тока в работе и его управление с помощью svpwm

Некоторые из преимуществ, такие как низкая стоимость, прочная конструкция, менее сложная и простая в обслуживании двигатели переменного тока, приводят к тому, что многие промышленные операции выполняются с использованием приводов переменного тока, а не приводов постоянного тока. Асинхронный двигатель переменного тока — это особый тип электродвигателя, имеющий свои типовые характеристики и характеристики с точки зрения запуска, управления скоростью, защиты и т. Д.


Асинхронный двигатель переменного тока

Благодаря своим характеристикам в широком диапазоне приложений на трехфазные асинхронные двигатели приходится 85 процентов установленной мощности промышленных приводных систем.Давайте обсудим основную информацию об этом двигателе и его специальной технике управления SVPWM.

Трехфазный асинхронный двигатель переменного тока

Трехфазный асинхронный двигатель переменного тока представляет собой вращающуюся электрическую машину, предназначенную для работы от трехфазного источника питания. Этот трехфазный двигатель также называют асинхронным двигателем. Эти двигатели переменного тока бывают двух типов: асинхронные двигатели с короткозамкнутым ротором и с контактным кольцом. Принцип действия этого двигателя основан на создании вращающегося магнитного поля.

Конструкция трехфазного асинхронного двигателя

Эти трехфазные двигатели состоят из статора и ротора, между которыми отсутствует электрическое соединение. Эти статор и роторы сконструированы с использованием материалов сердечника с сильным магнитным полем, чтобы уменьшить гистерезис и потери на вихревые токи.

Конструкция трехфазного асинхронного двигателя

Рама статора может быть изготовлена ​​из чугуна, алюминия или стального проката. Рама статора обеспечивает необходимую механическую защиту и опору для многослойного сердечника статора, обмоток и других устройств вентиляции.Статор имеет трехфазные обмотки, которые перекрываются друг с другом с фазовым сдвигом 120 градусов, вставленные в щелевые пластины. Шесть концов трех обмоток выведены и подключены к клеммной коробке, так что эти обмотки возбуждаются трехфазным сетевым питанием.

Эти обмотки изготовлены из медного провода, изолированного лаком и помещенного в изолированные ламели с прорезями. При всех рабочих температурах лак с пропиткой остается жестким. Эти обмотки обладают высоким сопротивлением изоляции и высокой устойчивостью к соленой атмосфере, влаге, щелочным парам, маслам, жирам и т. Д.В зависимости от того, какой уровень напряжения подходит, эти обмотки подключаются по схеме звезды или треугольника.

Асинхронный двигатель с короткозамкнутым ротором

Ротор трехфазного асинхронного двигателя переменного тока отличается для асинхронных двигателей с контактным кольцом и с короткозамкнутым ротором. Ротор с контактным кольцом состоит из тяжелых алюминиевых или медных стержней, закороченных на обоих концах цилиндрического ротора. Вал асинхронного двигателя поддерживается двумя подшипниками на каждом конце, чтобы обеспечить свободное вращение внутри статора и уменьшить трение.Он состоит из стопки стальных пластин, равномерно расположенных пазов, пробитых по окружности, в которые помещаются неизолированные тяжелые алюминиевые или медные стержни.

Ротор с контактным кольцом состоит из трехфазных обмоток, которые на одном конце соединены звездой, а другие концы выведены наружу и соединены с контактными кольцами, установленными на валу ротора. А для развития высокого пускового момента эти обмотки подключаются к реостату с помощью угольных щеток. Этот внешний резистор или реостат используется только в период запуска.Когда двигатель достигает нормальной скорости, щетки замыкаются накоротко, и ротор с обмоткой работает как ротор с короткозамкнутым ротором.

Принцип работы трехфазного асинхронного двигателя

Принцип работы трехфазного асинхронного двигателя
  • Когда двигатель возбуждается трехфазным питанием, трехфазная обмотка статора создает вращающееся магнитное поле со 120 смещениями постоянной величины, которое вращается с синхронной скоростью. Это изменяющееся магнитное поле разрезает проводники ротора и индуцирует в них ток в соответствии с принципом законов электромагнитной индукции Фарадея.Поскольку эти проводники ротора закорочены, ток начинает течь через эти проводники.
  • При наличии магнитного поля статора проводники ротора размещаются, и поэтому, согласно принципу силы Лоренца, на проводник ротора действует механическая сила. Таким образом, вся сила проводников ротора, то есть сумма механических сил, создает крутящий момент в роторе, который стремится перемещать его в том же направлении, что и вращающееся магнитное поле.
  • Это вращение проводника ротора также можно объяснить законом Ленца, который гласит, что индуцированные токи в роторе противодействуют причине его образования, здесь это противодействие — вращающееся магнитное поле.В результате ротор начинает вращаться в том же направлении, что и вращающееся магнитное поле статора. Если скорость ротора больше скорости статора, то в роторе не будет индуцироваться ток, поскольку причиной вращения ротора является относительная скорость магнитных полей ротора и статора. Эта разность полей статора и ротора называется скольжением. Так трехфазный двигатель называют асинхронной машиной из-за относительной разницы скоростей между статором и роторами.
  • Как мы обсуждали выше, относительная скорость между полем статора и проводниками ротора вызывает вращение ротора в определенном направлении.Следовательно, для обеспечения вращения скорость Nr ротора всегда должна быть меньше скорости Ns возбуждения статора, а разница между этими двумя параметрами зависит от нагрузки на двигатель.

Разница скорости или скольжение асинхронного двигателя переменного тока задается как

  • Когда статор неподвижен, Nr = 0; Таким образом, скольжение становится равным 1 или 100%.
  • Когда Nr находится на синхронной скорости, скольжение становится равным нулю; поэтому двигатель никогда не работает с синхронной скоростью.
  • Скольжение трехфазного асинхронного двигателя от холостого хода до полной нагрузки составляет от 0,1% до 3%; вот почему асинхронные двигатели называются двигателями с постоянной скоростью.
SVPWM Управление трехфазным асинхронным двигателем

Чаще всего для управления асинхронными двигателями используются инверторные приводы с ШИМ. По сравнению с приводами с фиксированной частотой, эти ШИМ-переключатели регулируют как величину напряжения, так и частоту тока, а также напряжение, подаваемое на асинхронный двигатель.Путем изменения сигналов ШИМ, подаваемых на затворы переключателя мощности, количество мощности, выдаваемой этими приводами, также изменяется, так что достигается управление скоростью трехфазного асинхронного двигателя.


SVPWM Управление трехфазным асинхронным двигателем от Edgefxkits.com

Для управления приводами трехфазных двигателей используется ряд схем широтно-импульсной модуляции (ШИМ). Но наиболее широко используются синусоидальная ШИМ (SPWM) и пространственно-векторная ШИМ (SVPWM). По сравнению с SPWM, управление SVPWM дает более высокий уровень основного напряжения и пониженное содержание гармоник.Здесь мы представили практическую реализацию этого элемента управления SVPWM с использованием микроконтроллеров 8051.

В приведенной ниже схеме используется трехуровневый инвертор напряжения для получения трех выходных напряжений, зависящих от напряжения шины постоянного тока. Однофазное питание выпрямляется для подачи питания постоянного тока как на схему микроконтроллера, так и на схемы инвертора. 8051 Микроконтроллер запрограммирован на формирование сигналов SVPWM, которые подаются на ИС драйвера затвора.

Блок-схема SVPWM-управления трехфазным асинхронным двигателем от Edgefxkits.com

Схема инвертора состоит из шести полевых МОП-транзисторов для обеспечения переменного трехфазного питания, для каждой фазы развернуты два полевых МОП-транзистора. Затворы этих полевых МОП-транзисторов подключены к ИС драйвера затвора. При получении сигналов ШИМ от драйвера затвора микроконтроллера, полевые МОП-транзисторы переключаются так, что создается переменное выходное напряжение переменного тока. Следовательно, этот переменный переменный ток при изменении напряжения и частоты изменяет скорость двигателя.

Это основная информация об асинхронном двигателе переменного тока, его конструкции и принципах работы.В дополнение к этому, метод SVPWM для управления скоростью двигателя имеет много преимуществ по сравнению с другими методами PWM, как мы видели выше. Если у вас есть сомнения по поводу программирования микроконтроллера для реализации в нем техники SVPWM, вы можете связаться с нами, оставив комментарий ниже.

Фото:

  • Асинхронный двигатель переменного тока от Викимедиа
  • Конструкция трехфазного асинхронного двигателя от electronicdesign
  • Асинхронные двигатели с контактным кольцом и короткозамкнутым ротором от tpub
  • Принцип работы трехфазного асинхронного двигателя от blogspot

Как использовать сервоприводы с асинхронными (асинхронными) двигателями?

Учитывая высокую стоимость изготовления синхронных серводвигателей с постоянными магнитами из редкоземельных элементов, асинхронные (асинхронные) двигатели по возможности более приемлемы.

Крейг Далквист • Разработчик приложений в Lenze Americas

Один из способов получить сервоуправление асинхронным двигателем (при напряжении питания от 400 до 480 В переменного тока) — использовать обычный двигатель 230/400 или 230/460 В переменного тока (соединение треугольником / звездой).

Обычно соединение треугольником используется для 230 В переменного тока (50/60 Гц) через линию. Но с инвертором двигатель 50 Гц с напряжением питания 400 В переменного тока может управлять 230 В переменного тока при 50 Гц.

Пока соблюдается правильная кривая напряжения / Гц, двигатель может максимизировать мощность при 87 Гц.

Крутящий момент также останется постоянным до 87 Гц, прежде чем двигатель перейдет в режим ослабления поля.

Математика для этого проста: 400/230 · 50 Гц = 87 Гц. Расчеты аналогичны для конфигурации двигателей 230/460 В переменного тока, 60 Гц. Поскольку крутящий момент остается постоянным, результирующая мощность равна номинальной мощности двигателя при 50 Гц · 1,732 (квадратный корень из 3). Номинальный ток также будет иметь коэффициент 1,732 по сравнению с номинальным напряжением 400 В переменного тока при соединении звездой.

В результате получится мотор на 73.На 2% больше мощности при той же инерции ротора. Резольвер — наше самое распространенное устройство обратной связи. Резольвер надежен (благодаря отсутствию изнашиваемых деталей) и представляет собой однооборотное устройство абсолютного позиционирования (для обратной связи по углу положения ротора).

Сервоось, как правило, должна очень динамично ускоряться и замедляться для приложения. Иногда это возможно только с серводвигателем с постоянными магнитами. Когда асинхронный двигатель может соответствовать техническим требованиям приложения, как правило, стоимость асинхронного двигателя намного меньше, чем стоимость серводвигателя с постоянными магнитами. Другой причиной использования асинхронного сервопривода или асинхронного двигателя является использование преимущества большей инерции ротора двигателя. Когда приложение имеет высокую инерционную нагрузку, может потребоваться меньшее рассогласование по инерции между двигателем / мотор-редуктором и нагрузкой. Кроме того, в обмотках асинхронный двигатель предлагает очень большой диапазон ослабления поля.

Применение обмоток — основная причина, по которой Lenze предлагает двигатели с номинальной частотой значительно ниже 50 или 60 Гц.Это позволяет двигателю раньше столкнуться с ослаблением поля, чтобы лучше согласовать кривую скорость-крутящий момент приложения обмотки с двигателем.

Как и во всех конструкциях, требования к применению определяют технологические возможности двигателя. В общем, следующим шагом является определение наиболее экономичного решения для приложения. Иногда асинхронный двигатель может использоваться в приложении, которое ранее считалось приложением серводвигателя с постоянными магнитами.Или асинхронный двигатель — единственный выбор для некоторых приложений.


Lenze производит асинхронные серводвигатели более 25 лет. Двигатели специально разработаны для номинальных рабочих частот, которые намного выше или ниже 50 или 60 Гц. Асинхронные двигатели также специально разработаны для увеличения удельной мощности двигателя. Мощность двигателя варьируется от 80 Вт (0,107 л.с.) до 60 кВт (80 л.с.). Диапазон рабочих частот от 20 до 140 Гц. Двигатели, которые не находятся в диапазоне 50/60 Гц, необходимо подключать с помощью универсального или сервоусилителя.

Двигатели, отличные от 50/60 Гц, нельзя подключать напрямую к трехфазному источнику питания 230 (0,080–0,6 кВт) или 400/480 В переменного тока.

Моделирование управления двигателем с переменной скоростью — MATLAB и Simulink

Моделирование управления двигателем с переменной скоростью

Управление с переменной скоростью электрических машин переменного тока использует электронику с принудительной коммутацией. переключатели, такие как IGBT, MOSFET и GTO. Асинхронные машины питаются от ширины импульса модуляция (PWM) преобразователи напряжения (VSC) в настоящее время постепенно замена двигателей постоянного тока и тиристорных мостов.С ШИМ в сочетании с современным управлением такие методы, как управление с ориентацией на поле или прямое управление крутящим моментом, вы можете получить то же самое гибкость в управлении скоростью и крутящим моментом, как в машинах постоянного тока. В этом руководстве показано, как построить простой привод переменного тока с разомкнутым контуром, управляющий асинхронной машиной. Simscape ™ Специализированные электрические системы Electrical ™ содержат готовые модели, позволяющие моделировать системы электроприводов без необходимости строить эти сложные системы самостоятельно.Для большего информацию см. в разделе «Модели электроприводов».

Библиотека>>> содержит четыре наиболее часто используемых трехфазных машины: упрощенная и комплектные синхронные машины, асинхронные машины и синхронные машины с постоянными магнитами машина. Каждая машина может использоваться как в генераторном, так и в моторном режиме. В сочетании с линейными и нелинейные элементы, такие как трансформаторы, линии, нагрузки, выключатели и т. д., они могут быть использованы для моделировать электромеханические переходные процессы в электрической сети.Их также можно комбинировать с силовые электронные устройства для моделирования приводов.

Библиотека>>> содержит блоки, позволяющие моделировать диоды, тиристоры, ГТО. тиристоры, полевые МОП-транзисторы и устройства IGBT. Вы можете соединить несколько блоков вместе, чтобы построить трехфазный мост. Например, для инверторного моста IGBT потребуется шесть IGBT и шесть антипараллельные диоды.

Чтобы облегчить реализацию мостов, блок Universal Bridge автоматически выполняет эти соединения для ты.

Построение и моделирование двигателя с ШИМ-управлением

Выполните следующие действия, чтобы построить модель двигателя с ШИМ-управлением.

Сборка и настройка модели
  1. Введите power_new в командной строке, чтобы открыть новая модель. Сохраните модель как power_PWMmotor

  2. Добавьте блок Universal Bridge из>>> библиотеки

  3. В настройках Parameters для блока Universal Bridge установите Силовое электронное устройство Параметр до IGBT / Диоды .

  4. Добавить блок единиц СИ для асинхронной машины из>>> библиотеки

  5. Установите параметры блока Asynchronous Machine SI Units как следует.

    3 900 Параметры
    Настройки Параметр Значение
    Конфигурация Тип ротора Беличья клетка
    Номинальная мощность, напряжение (линейное) и частота [Pn (ВА), Vn (Vrms), fn (Hz)] [3 * 746 220 60]
    Сопротивление и индуктивность статора [Rs (Ом) Lls (H) ] [1.2) F (Н.м.с) p () ] [0,02 0,005752 2]
    [скольжение, th (градус), ia, ib, ic (A), pha, phb, phc (градусы)] [1 0 0 0 0 0 0 0]

    Установка номинальной мощности на 3 * 746 ВА и номинальной линейное напряжение Vn до 220 Vrms реализует 3 л.с., 60 Гц машина с двумя парами полюсов.Таким образом, номинальная скорость немного ниже, чем синхронная частота вращения 1800 об / мин, или Вт с = 188,5 рад / с.

    Установка параметра Тип ротора на Беличья клетка , скрывает выходные порты, a , b и c , потому что эти три клеммы ротора обычно замкнуты накоротко для нормального двигателя. операция.

  6. Доступ к внутренним сигналам блока Asynchronous Machine:

    1. Добавьте блок Bus Selector из библиотеки>.

    2. Подключите выходной порт измерения, м , машины блок на входной порт блока Bus Selector.

    3. Откройте диалоговое окно Block Parameters для блока Bus Selector. Двойной клик блок.

    4. Удалить предварительно выбранные сигналы. В серии Selected элементы панель, Shift выберите ??? signal1 и ??? signal2 , затем щелкните Удалить .

    5. Выберите интересующие сигналы:

      1. На левой панели диалогового окна выберите>. Щелкните Выберите >> .

      2. Выбрать>. Щелкните Выберите >> .

      3. Выбрать. Щелкните Выберите >> .

Загрузка и привод двигателя

Реализуйте характеристику крутящего момента-скорости нагрузки двигателя.Предполагая квадратичный крутящий момент-скорость характеристика (нагрузка вентилятора или насоса)., крутящий момент T пропорционален в квадрат скорости ω.

Номинальный крутящий момент двигателя составляет

Следовательно, постоянная k должна быть

  1. Добавить интерпретируемый функциональный блок MATLAB из библиотека>. Дважды щелкните функциональный блок и введите выражение для крутящий момент как функция скорости: 3.2 .

  2. Подключите выход функционального блока к входу крутящего момента. порт, Тм , станочного блока.

  3. Добавьте блок источника напряжения постоянного тока из библиотеки>>>. В настройках Parameters для блока, для параметра Амплитуда (В) укажите 400 .

  4. Измените имя блока измерения напряжения на VAB .

  5. Добавьте блок Ground из библиотеки>>>. Подключите силовые элементы и блоки датчиков напряжения, как показано на рисунке. на схеме двигателя power_PWM модель.

Управление мостом инвертора с помощью генератора импульсов

Для управления мостом инвертора используйте генератор импульсов.

  1. Добавьте блок генератора ШИМ (2 уровня) из библиотеки>>>>. Вы можете настроить преобразователь для работы в разомкнутом контуре, и три модулирующих сигнала ШИМ генерируются внутри.Подключите выход P к вход импульсов блока Universal Bridge

  2. Открыть диалоговое окно блока PWM Generator (2-Level) и установите параметры следующим образом.

    Тип генератора

    Трехфазный мост (6 импульсов)

    Режим работы

    906

    906

    Частота

    18 * 60 Гц (1080 Гц)

    Начальная фаза

    0 градусов

    значения

    [-1,1]

    Отбор проб техника

    Natural

    Внутренняя генерация ссылки сигнал

    выбран

    Индекс модуляции

    0.9

    Опорный сигнал частота

    60 Гц

    Опорный сигнал фаза

    0 градусов

    Время выборки

    10e-6 с

  3. Дискретизированный блок импульсы меняются кратно указанному временному шагу.Время шаг 10 мкс соответствует +/- 0,54% периода переключения при 1080 Гц.

    Один из распространенных методов генерации импульсов ШИМ использует сравнение синтезируемого выходного напряжения (в данном случае 60 Гц) с треугольным волна на частоте переключения (в данном случае 1080 Гц). Линия в линию Выходное среднеквадратичное напряжение является функцией входного напряжения постоянного тока и индекс модуляции м , как определяется следующим уравнение:

    Следовательно, постоянное напряжение 400 В и коэффициент модуляции 0.90 дает выходное линейное напряжение 220 В среднекв. номинальное напряжение асинхронного двигателя.

Отображение сигналов и измерение основного напряжения и тока
  1. Теперь вы добавляете блоки, измеряющие основную составляющую (60 Гц) встроены в прерванное напряжение Vab и в ток фазы А. Добавьте в модель блок Фурье из библиотеки>>>.

    Откройте диалоговое окно блока Фурье и убедитесь, что параметры устанавливаются следующим образом:

    Фундаментальный частота

    60 Гц

    Гармоника n

    1

    00003

    начальный ввод

    Время выборки

    10e-6 с

    Подключите этот блок к выходу датчика напряжения Vab.

  2. Дублируйте блок Фурье. Для измерения фазы А ток, вы подключаете этот блок к току статора is_a - вывод блока выбора шины.

  3. Передайте эти сигналы в Инспектор данных моделирования: Te, сигналы ias и w измерительного выхода асинхронного Блок машины, и напряжение VAB.

Моделирование привода с ШИМ-двигателем с помощью алгоритма непрерывной интеграции

Установите время остановки на 1 с и запустите моделирование.Откройте Simulation Data Inspector и посмотрите на сигналы.

Двигатель запускается и достигает установившейся скорости 181 рад / с. (1728 об / мин) через 0,5 с. При запуске величина тока 60 Гц достигает пика 90 А (64 А RMS), тогда как его установившееся значение составляет 10,5 A (7,4 А RMS). Как и ожидалось, величина напряжения 60 Гц содержала в рубленой волне остается на уровне

Также обратите внимание на сильные колебания электромагнитного момента при запуске. Если вы увеличите крутящий момент в установившемся режиме, вы должны наблюдают зашумленный сигнал со средним значением 11.9 Н-м, соответствующий к моменту нагрузки при номинальной скорости.

Если вы увеличите масштаб трех токов двигателя, вы увидите, что все гармоники (кратные частоте переключения 1080 Гц) фильтруется индуктивностью статора, так что составляющая 60 Гц доминирующий.

ШИМ-привод двигателя; Результаты моделирования для двигателя Запуск при полном напряжении

Использование блока мультиметра

Универсальный мостовой блок не является обычным подсистема, в которой доступны все шесть отдельных переключателей.Если вы хотите измерить переключать напряжения и токи, необходимо использовать блок мультиметра, который дает доступ к внутренним сигналам моста:

  1. Откройте Universal Диалоговое окно Bridge и установите параметр Measurement до Токи устройства .

  2. Добавьте блок мультиметра из>>> библиотеки. Дважды щелкните блок мультиметра. Появится окно, показывающее шесть токов переключения.

  3. Выберите два тока моста рука подключена к фазе А.Они обозначены как

    .

    iSw1

    Универсальный мост

    iSw2

    Универсальный мостик Количество сигналов (2) отображается на значке мультиметра.

  4. Отправьте сигнал из блока мультиметра в Simulation Data Inspector.

  5. Перезапустите моделирование. Формы волны полученные для первых 20 мс показаны на этом графике.

    Токи в переключателях 1 и 2 IGBT / диодах

  6. Как и ожидалось, токи в переключателях 1 и 2 дополняют друг друга. Положительный ток указывает на ток, протекающий в IGBT, тогда как отрицательный ток указывает на ток в антипараллельном диоде.

    Примечание

    Использование блока мультиметра не ограничивается Универсальный мостиковый блок.Многие блоки В библиотеках электрических источников и элементов есть параметр измерения, в котором вы можете выберите напряжения, токи или насыщаемые потоки трансформатора. Разумное использование блока мультиметра уменьшает количество датчиков тока и напряжения в вашем цепь, что упрощает отслеживание.

    Дискретизация привода двигателя ШИМ

    Вы могли заметить, что моделирование с использованием переменного шага алгоритм интеграции относительно длинный. В зависимости от вашего компьютера, имитация одной секунды может занять десятки секунд.Чтобы сократить время моделирования, вы можете дискретизировать свою схему и моделировать при фиксированном временные шаги моделирования.

    На вкладке Simulation щелкните Model Settings . Выбирать Решатель . В разделе Выбор решателя выберите Фиксированный шаг и Дискретный (без непрерывного говорится) вариантов. Откройте блок powergui и установите Simulation type на Дискретный . Установите Sample time на 10e-6 с.Энергосистема, включая асинхронную машину, в настоящее время дискретизируется при времени выборки 10 мкс.

    Запустить симуляцию. Обратите внимание, что симуляция теперь выполняется быстрее. чем с непрерывной системой. Результаты хорошо сравниваются с постоянным система.

    Выполнение гармонического анализа с помощью инструмента БПФ

    Два блока Фурье позволяют вычислять основные составляющие напряжения и тока во время моделирования. Если вы хотели бы чтобы наблюдать гармонические составляющие, вам также понадобится блок Фурье для каждой гармоники.Такой подход неудобен.

    Добавьте блок Scope к своей модели и подключите его на выход блока измерения напряжения VAB. В блоке «Область действия» запишите данные в рабочую область в виде структуры со временем. Начать моделирование. Теперь используйте инструмент FFT powergui, чтобы отобразить частотный спектр напряжения. и формы волны тока.

    Когда симуляция завершена, откройте powergui и выберите FFT. Анализ . Откроется новое окно. Задайте параметры, определяющие анализируемые сигнал, временное окно и частотный диапазон следующим образом:

    Имя

    ScopeData

    Ввод

    вход 1

    Номер сигнала

    1

    Время начала

    0.7 с

    Количество циклов

    2

    Дисплей

    Окно БПФ

    Основная частота

    60 Гц

    Макс.частота

    5000 Гц

    Ось частоты

    Порядок гармоник

    Стиль отображения

    Бар (относительно Фонда или DC)

    Анализируемый сигнал отображается в верхнем окне.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *

    © 2011-2024 Компания "Кондиционеры"