Управление частотным преобразователем, векторное, скалярное.
Компания Русэлком производит и поставляет преобразователи частоты для управления асинхронными двигателями. Поэтому для понимания принципа частотного управления рассмотрим более детально работу асинхронного двигателя и методы его частотного регулирования
Конструкция асинхронного двигателя схематически изображена на рис. 2. Двигатель состоит из неподвижной части, которая называется статор и подвижной (вращающейся) части называемой ротор.
В пазах статора уложены три группы обмоток А-В-С. Обмотки статора сдвинуты друг относительно друга в пространстве на угол 120°. Это является одним из двух обязательных условий для создания вращающегося магнитного поля статора.
Ротор двигателя изготовлен в виде цельного цилиндра из специальной электротехнической стали с короткозамкнутой обмоткой.
Рис.2. Схематический разрез асинхронного двигателя.
На обмотки статора от источника питания подается трехфазное напряжение uа, uв, uс с частотой
Напряжения uа, uв, uс сдвинуты друг относительно друга по фазе на 120°. Это является вторым обязательным условием для создания вращающегося магнитного поля статора.
При питании обмоток статора электрического двигателя трехфазным напряжением с частотой создается вращающееся магнитное поле. Угловая скорость вращения этого поля в радианах определяется по известной формуле
– число пар полюсов статора.
Переход от угловой скорости вращения поля измеряемой в радианах, к частоте вращения выраженной в оборотах в минуту, осуществляется по следующей формуле
где 60 – коэффициент пересчета размерности.
Подставив в это уравнение скорость вращения поля, получим, что
Из формулы видно, что частота вращения магнитного поля статора зависит от частоты напряжения питания и числа пар полюсов.
К примеру, в двигателе с одной парой полюсов при частоте питающего напряжения 50 Гц частота вращения магнитного поля равна 3000 об/мин.
В синхронном электрическом двигателе частота вращения ротора на установившемся режиме равна частоте вращения магнитного поля статора
В асинхронном электрическом двигателе частота вращения ротора на установившемся режиме отличается от частоты вращения на величину скольжения . Для примера в асинхронном двигателе с одной парой полюсов при частоте питающего напряжения 50 Гц и при скольжении 5% частота вращения ротора равна 2850 об/мин.
Таким образом, частота вращения ротора синхронного и асинхронного двигателей зависит от частоты напряжения питания.
На этой зависимости и основан метод частотного регулирования.
Изменяя с помощью преобразователя частоту на входе двигателя, мы регулируем частоту вращения ротора.
В наиболее распространенном частотно регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное частотное управление.
При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к.п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.
В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя к моменту сопротивления на валу. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.
При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.
Максимальный момент, развиваемый двигателем, определяется следующей зависимостью
где — постоянный коэффициент.
Поэтому зависимость напряжения питания от частоты определяется характером нагрузки на валу электрического двигателя.
Для постоянного момента нагрузки поддерживается отношение U/f = const, и, по сути, обеспечивается постоянство максимального момента двигателя. Характер зависимости напряжения питания от частоты для случая с постоянным моментом нагрузки изображен на рис. 2. Угол наклона прямой на графике зависит от величин момента сопротивления и максимального крутящего момента двигателя.
Вместе с тем на малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня напряжения питания.
В случае вентиляторной нагрузки реализуется зависимость U/f2 = const. Характер зависимости напряжения питания от частоты для этого случая показан на рис.3. При регулировании в области малых частот максимальный момент также уменьшается, но для данного типа нагрузки это некритично.
Используя зависимость максимального крутящего момента от напряжения и частоты, можно построить график U от f для любого типа нагрузки.
Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.
Скалярное управление достаточно для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1: 40.
Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.
Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять кроме амплитуды и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».
Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.
Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.
Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.
Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости – сотые доли процента, точность по моменту – единицы процентов.
В синхронном частотно регулируемом приводе применяются те же методы управления, что и в асинхронном.
Однако в чистом виде частотное регулирование частоты вращения синхронных двигателей применяется только при малых мощностях, когда нагрузочные моменты невелики, и мала инерция приводного механизма. При больших мощностях этим условиям полностью отвечает лишь привод с вентиляторной нагрузкой. В случаях с другими типами нагрузки двигатель может выпасть из синхронизма.
Для синхронных электроприводов большой мощности применяется метод частотного управления с самосинхронизацией, который исключает выпадение двигателя из синхронизма. Особенность метода состоит в том, что управление преобразователем частоты осуществляется в строгом соответствии с положением ротора двигателя.
Векторное управление асинхронным двигателем | Техпривод
Преобразователь частоты регулирует момент и скорость вращения асинхронного двигателя, используя один из двух основных методов частотного управления — скалярный или векторный. Рассмотрим подробнее особенности этих методов.
Линейная скалярная рабочая характеристика ПЧ
При работе асинхронного электродвигателя от скалярного частотного преобразователя напряжение на двигателе понижается линейно с понижением частоты. Это происходит из-за того, что применяется широтно-импульсная модуляция (ШИМ), при которой отношение действующего напряжения к частоте является константой во всем диапазоне регулирования.
Вольт-частотная (вольт-герцовая) рабочая характеристика ПЧ будет линейной, пока напряжение на возрастет до предела, определяемого напряжением питания преобразователя. Скалярное управление не позволяет двигателю развить требуемую мощность на низких частотах (мощность зависит от напряжения), и момент на валу сильно падает.
Квадратичная скалярная рабочая характеристика
В некоторых случаях, например, при работе преобразователя на мощные вентиляторы и насосы, используют квадратичную вольт-частотную характеристику с пониженным моментом, что позволяет учесть механику процесса, снизить токи, и, соответственно, потери на низких частотах.
Основной минус скалярной вольт-частотной характеристики
У линейной и квадратичной вольт-частотной зависимости, при её простоте и широком распространении, есть большой минус – падение мощности на валу, а значит падение момента и частоты вращения двигателя. При этом происходит так называемое скольжение, когда частота вращения ротора отстает от частоты вращения электромагнитного поля.
Для устранения этого эффекта используется компенсация скольжения, позволяющая скорректировать выходную частоту (обороты двигателя) при возрастании момента нагрузки. Если правильно выбрать значение компенсации, фактическая скорость вращения при большой нагрузке будет приближаться к скорости вращения на холостом ходу.
Кроме этого, в большинстве ПЧ с линейной вольт-частотной характеристикой имеется функция компенсации момента на низких скоростях. Данная функция реализуется за счет повышения напряжения на низких частотах и при неправильном применении может вызвать перегрев двигателя.
Оба параметра компенсации имеют неизменное (установленное при настройке) значение и от нагрузки не зависят.
Преимущества векторного управления
Существует множество задач, когда нужно обеспечить заданную частоту вращения, и описанный недостаток становится очень актуальным. В таких случаях применяют векторное частотное управление, при котором контроллер вычисляет напряжение, необходимое для поддержания момента, обеспечивающего стабильную частоту. В отличие от скалярного режима, здесь происходит «умное» управление магнитным потоком ротора.
Векторное управление асинхронным двигателем особенно актуально на низких частотах – ниже 10 Гц, когда рабочий момент двигателя сильно падает. Кроме того, данный метод позволяет держать стабильную скорость (с предсказуемым линейным изменением) при разгоне. Это достигается за счет получения высокого пускового момента вплоть до выхода двигателя на режим.
Важно и то, что при векторном управлении происходит сбережение электроэнергии (в некоторых случаях – до 60%), поскольку большую часть времени частотный преобразователь передает в двигатель ровно столько энергии, сколько необходимо для поддержания заданной скорости.
Различают два вида векторного управления — без датчика скорости (без обратной связи, или бессенсорное) и с обратной связью, когда в качестве датчика, как правило, используется энкодер.
Векторное управление без обратной связи
В этом случае частотный преобразователь вычисляет скорость вращения двигателя по математической модели на основе ранее введенных данных (параметров двигателя) и данных о мгновенных значениях тока и напряжения. Опираясь на полученные расчеты, ПЧ принимает решение об изменении выходного напряжения.
Перед включением векторного бессенсорного режима необходимо тщательно выставить номинальные параметры двигателя: напряжение, ток, частоту, скорость (обороты), мощность, количество полюсов, а также сопротивление обмоток и индуктивные параметры. Если какие-то значения неизвестны, рекомендуется провести автотестирование двигателя на холостом ходу. Некоторые модели векторных преобразователей частоты устанавливают параметры по умолчанию для стандартного двигателя после введения номинальных значений. Также необходимо задать пределы временных и токовых параметров векторного управления.
Векторное управление с обратной связью
Этот режим отличается более высокой точностью управления скоростью двигателя. Обратную связь обеспечивает энкодер, который сопрягается с частотным преобразователем через дополнительный модуль.
Энкодер устанавливается на валу электродвигателя либо последующего механизма и передает данные о текущей частоте вращения. На основании полученной информации преобразователь меняет напряжение, момент и, соответственно, скорость двигателя. Стоит добавить, что при больших динамических нагрузках (частых изменениях момента) и работе на пониженных скоростях рекомендуется применение принудительного охлаждения внешним вентилятором.
Другие полезные материалы:
10 типичных проблем с частотниками
Тонкости настройки преобразователя частоты
Назначение и виды энкодеров
Системы управления асинхронным электродвигателем
СИСТЕМЫ УПРАВЛЕНИЯ АСИНХРОННЫМИ ДВИГАТЕЛЯМИ
Асинхронные двигатели полностью вытеснили двигатели постоянного тока, синхронные двигатели. Это обусловлено более качественными показателями, таких как стоимость, статические и динамические характеристики, простота в управлении. Двигатели переменного тока с короткозамкнутым ротором используются повсеместно. Это могут быть приводы вентиляторов, насосов, лифтов, конвейеров и других устройств. Приводы могут вращать исполнительный механизм «напрямую», либо с использованием редуктора. Применение схемы подключения механизма к валу более экономичное (с точки зрения энергетики), и позволяет более точно управлять электродвигателем. Использование функционала мотор-редуктор также имеет свои плюсы:
— при больших нагрузках электродвигатель можно использовать другого типа размера.
— малый вес конструкции, за счет использования электродвигателя меньшей мощности
— удобство монтажа
При этом, снижаются показатели в управлении, поскольку редуктор имеет ограниченное количество передач.
Какие требования предъявляются к современным системам управления?
Система управления асинхронным двигателем должна обеспечивать:
А) максимальную экономию электроэнергии
Б) иметь высокую точность регулирования частоты
В) иметь высокую надежность и невысокую стоимость.
Г) иметь возможность дистанционного управления
Для подбора (проектирования) систем управления, специалист оценивает все 4 показателя, и принимает решение о выборе на основе комплексных показателей. При этом, если Заказчик предоставляет техническое задание, инженер обязан руководствоваться им.
Все системы управления асинхронными двигателями можно классифицировать:
По аппаратной части
— релейно-контакторные
— микропроцессорные
По использованию обратной связи:
— скалярные
— с обратной связью
РЕЛЕЙНО-КОНТАКТОРНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ
Используются повсеместно для управления приводами малой мощности. Для пуска двигателя используются пускатели (контакторы), которые замыкают цепь питания от сети на обмотки двигателя.
Плюсы:
— низкая стоимость. Контакторы не дорогие и, приобрести их можно в любом специализированном магазине
— высокая ремонтно пригодность. Замена пускателя не вызывает сложностей в полевых условиях.
— хорошие показатели при модернизации схемы управления. Релейно-контакторные системы легко модернизировать
Минусы:
— высокие пусковые токи. При замыкании питания сети на обмотки двигателя, возникает пусковой ток в 7-9 раз превышающий номинальный ток двигателя..
— повышенные динамические нагрузки на электродвигатель и механизм.
— невозможность управления частотой вращения асинхронным двигателем. Низкая надежность.
Релейно-контакторные системы нельзя назвать «устаревшими». Созданные в конце прошлого века, эти системы по-прежнему плотно занимают свою нишу. Большинство двигателей мощностью до 10 кВт используют контакторную схему управления. Тем не менее, для приводов большой мощности, выше 15 кВт часто используется схема пуска «звезда-треугольник». О чем речь?
При включении трехфазного электродвигателя «звездой» концы обмоток статора соединяются вместе. Напряжение от сети подается на начало обмоток. Фазное напряжение будет на 1,73 меньше линейного. Уменьшается пусковой ток, момент, нагрузки на механику всей системы. После того, как асинхронный двигатель раскрутится, обмотки статора соединяются в «треугольник». Напряжение сети напрямую подключается к обмоткам электродвигателя.
Плюсы системы управления «звезда-треугольник» очевидны: снижение пусковых токов и момента при запуске. Не высокая стоимость и хорошие эксплуатационные характеристики. Из минусов можно отметить использование дополнительно коммутационную аппаратуру (реле, пускатели), а также, реле времени (определяет время работы в режиме «звезда»).
МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ
Системы управления с использованием микропроцессоров выводят на новый уровень регулирование частоты. Практическое применение таких систем обусловлено:
— точностью поддержания заданной частоты электродвигателя
— использование обратной связи
— высокая помехозащищенность питающей сети и защита электродвигателя от перенапряжений
— гибкость построения
Микропроцессорные системы используются там, где требуется поддерживание заданного значения при работе исполнительного механизма. Например, требуется поддержание заданного расхода воздуха вентилятором, или заданного значения давления на «выкиде» насоса. Поддержание заданной частоты возможно только с применением преобразователя частоты (ПЧ).
Преобразователь частоты (либо асинхронный преобразователь частоты): электронное устройство, предназначенное для преобразования напряжения сети переменного тока (постоянной частоты) в трехфазное напряжение регулируемой частоты. Регулирование частоты осуществляется по закону V/f, также возможно использование векторного управления.
Помимо регулирования частоты асинхронного электродвигателя, ПЧ способен обеспечить защиту двигателя, возможность диагностики электрических характеристик обмоток. Преобразователь частоты имеет возможность принимать и отдавать информацию о величине тока, напряжения, частоты по каждой из фаз, производить архивацию данных. Также, есть функция подсчета количество наработанных часов.
Плюсы:
— отличные эксплуатационные характеристики. Вывести из строя преобразователь частоты достаточно непросто. Малые габариты.
— точность управления, гибкость системы, использование обратной связи
— возможность управления по протоколу, удаленно, совместно с другими ПЧ
Минусы:
— требуется охлаждение. ПЧ греется, и монтаж его в шкаф без принудительного охлаждения может нарушить его работу.
— сложность в наладке. Для параметрирования ПЧ требуются знания и навыки. Настройка протоколов обмена данными также требует углубленных знаний.
— высокая стоимость.
— низкая ремонтно пригодность. Ремонт в полевых условиях практически невозможен.
Зачастую, при работе с электродвигателями большой мощностью поддержание заданной частоты не требуется. К примеру, насос перекачивает 24 часа в сутки сточные воды из резервуаров на очистные сооружения. Давление на «выкиде» насоса постоянное и не требует изменения по величине. В таких случаях, рационально использование «УПП».
УПП – устройство плавного пуска «soft starter», предназначено для запуска асинхронного электродвигателя с постепенным увеличением частоты. Основным электронным элементом является тиристор, открытием которым управляет микропроцессор. Время запуска задается наладчиком, в секундах, после чего двигатель постепенно раскручивается и выходит на номинальную частоту. После выхода на режим, УПП отключается и подключает асинхронный электродвигатель напрямую в сеть.
УПП от преобразователя частоты отличается только тем, что не имеет возможности изменять частоту вращения электродвигателя. При этом, сохраняются все преимущества ПЧ, такие как гибкость системы, высокие эксплуатационные характеристики, применение протоколов. Также, УПП значительно дешевле преобразователя частоты, что несомненно является плюсом. В системах управления, где не требуется изменение частоты вращения электродвигателем, устройства плавного пуска прочно занимают свои позиции.
Полезные формулы:
Теоретическая формула мощности трехфазного электродвигателя при соединении в звезду или треугольником P = 3 * Uф * Iф * cos(α).
Однако для линейных значений напряжения и тока она выглядит как P = √3× Uф × Iф × cos(α).
Для расчета номинального вращающего момента используют формулу Мном = 30Рном ÷ pi × нном, где: Рном — номинальная мощность электрического двигателя, Вт; нном — номинальное число оборотов, мин-1
Расчет тока в 3х фазной сети I = P/(√3*U*cos φ)
Расчет тока в 1 фазной сети I = P/(U*cos φ)
Закон Ома для участка цепи: U=I*R
Булгаков А.А. Частотное управление асинхронными двигателями
Булгаков А.А. Частотное управление асинхронными двигателями
Введение
Основным средством автоматизации машин-орудий в современном производстве является электропривод. В США электродвигатели потребляют 64% всей электроэнергии. Стало банальным утверждение, что самым дешевым, надежным и быстродействующим электродвигателем является асинхронный. И это бесспорно, но короткозамкнутый асинхронный двигатель, при всех своих достоинствах, при питании от сети стандартной частоты становится двигателем с постоянной скоростью, а современный электропривод из средства снабжения механической энергией рабочих машин, благодаря регулированию скорости, в прогрессирующей степени становится могучим средством управления, повышения производительности и качества технологических процессов.
Вот почему техническая мысль свыше полувека занята проблемой освобождения короткозамкнутого двигателя от оков стандартной частоты вращения при сохранении всех его достоинств. Для этоrо было необходимо и достаточно всего только обеспечить каждый двигатель своим индивидуальным источником энергий переменной, управляемой частоты. Отсюда следует термин, которым мы будем пользоваться, «частотное управление».
В интересах истины можно заметить, что частотное управление короткозамкнутыми двигателями является по праву и преимуществу русским, советским достижением.
В 1889 г. русский инженер М. О. Доливо-Добровольский, ставший в результате политической эмиграции главным инженером немецкой фирмы АЭГ (Всеобщая компания электричества), разрабатывая впервые энергосистему трехфазного тока, получил патент DRP 51083 от 31.08.1889 г. на трехфазный асинхронный короткозамкнутый двигатель. До этого, в 1885 г. Галлилей Феррарис открыл явление вращающегося магнитного поля, а год спустя, в 1886 г., серб Н. Тесла, независимо от Феррариса, построил двухфазный асинхронный двигатель с распределенной обмоткой, но с неудачной (не круглой) конструкцией ротора.
…
Система управления асинхронным двигателем на основе искусственного интеллекта
%PDF-1.5 % 2 0 obj > /Metadata 4 0 R /Pages 5 0 R /StructTreeRoot 6 0 R /Type /Catalog >> endobj 4 0 obj > stream
Предназначен для проведения лабораторно-практических занятий по учебной дисциплине «Электрический привод» в учреждениях начального, среднего и высшего профессионального образования, а также на курсах повышения квалификации персонала промышленных предприятий. Состав:
Методическое обеспечение:
Технические характеристики:
Лабораторные работы:
|
Векторное управление для асинхронного электродвигателя «на пальцах»
В предыдущей статье
«Векторное управление электродвигателем «на пальцах»рассматривалась векторная система управления для синхронных электродвигателей. Статья получилась большой, поэтому вопрос про асинхронные электродвигатели (induction motors) был вынесен в отдельную публикацию. Данная статья является продолжением предыдущей и опирается на приведенные там объяснения принципов работы электродвигателей. Она расскажет об особенностях работы асинхронного двигателя применительно к векторному управлению, а также покажет отличия в структуре векторной системы управления между синхронной и асинхронной машиной.
Как работает асинхронный электродвигатель? Наиболее популярное объяснение говорит что-то типа «статор создает вращающееся магнитное поле, которое наводит ЭДС в роторе, из-за чего там начинают течь токи, в результате ротор увлекается полем статора и начинает вращаться». Лично я от такого объяснения всю физику процесса понимать не начинаю, поэтому давайте объясню по-другому, «на пальцах».
Все же видели видео, как магнит взаимодействует с медным цилиндром? Особенно обратите внимание на диапазон времени с 0:49 до 1:03 – это уже самый настоящий асинхронный двигатель:
Эффект происходит из-за появления в цилиндре вихревых токов. Согласно закону электромагнитной индукции, открытого Майклом Фарадеем, при изменении магнитного потока замкнутого контура в нем возникает ЭДС (по-простому считайте, что напряжение). Эта ЭДС, применительно к медному цилиндру, тут же вызывает появление в цилиндре тока. При этом этот ток тоже создает свой, ответный магнитный поток, направленный ровно в противоположную сторону от изменения потока магнита, который мы подносим:
Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Это можно понимать так, что замкнутый контур сопротивляется изменению магнитного потока внутри себя. Если вы резко поднесёте магнит к медному цилиндру, т.е. сделаете резкое изменение магнитного потока, то в цилиндре потекут такие ответные токи, что магнитное поле внутри цилиндра в первый момент времени будет равно нулю: магнитное поле поднесенного магнита будет полностью скомпенсировано магнитным полем токов цилиндра (с допущениями, конечно). Если магнит поднести и держать, то токи в цилиндре из-за наличия активного сопротивления меди постепенно спадут, а поле цилиндра, создаваемое его токами, пропадет: магнитный поток постоянного магнита «прорвется» внутрь цилиндра, как будто никакого цилиндра и нет. Но стоит попытаться убрать магнит, как цилиндр отреагирует снова – теперь он будет пытаться сам «воссоздать» внутри себя пропадающий магнитный поток, т.е. будет опять сопротивляться изменению магнитного потока, в данном случае его исчезновению. Но что значит «воссоздать магнитный поток»? Это значит, что на какое-то время медный цилиндр можно считать условно «постоянным магнитом» – в нем циркулирует вихревой ток, создающий магнитное поле (на этом же принципе «висят» сверхпроводники в магнитном поле, но это совсем другая история).
Давайте теперь обратимся к конструкции асинхронного двигателя. Ротор асинхронного двигателя условно можно представлять себе также в виде медного цилиндра. Но в реальных конструкциях это некая решётка в виде «беличьей клетки» (рисунок 1) из меди или алюминия, совмещенная с магнитопроводом (шихтованное железо).
Рисунок 1. Ротор асинхронного двигателя типа «беличья клетка» с током в одной из «рамок» беличьей клетки, реагирующей на нарастание внешнего магнитного поля.
На рисунке схематично показано протекание тока в одной из «рамок», т.е. в некоторых прутьях беличьей клетки, если сверху поднести магнит (создать ток в статоре). На самом деле ток в этом случае протекает во всех прутьях, кроме, условно, верхнего и нижнего, для которых изменения потока нет (но они бы среагировали на горизонтально поднесенный магнит).
Помните ещё из начала прошлой статьи картинку со схематическим изображением двухфазной синхронной машины, где ротором был магнит? Давайте теперь сделаем из неё асинхронный двигатель: вместо магнита поставим две перпендикулярные короткозамкнутые катушки, символизирующие медный цилиндр ротора (рисунок 2).
Рисунок 2. Схематическое изображение двухфазного асинхронного двигателя с короткозамкнутым ротором.
Замена цилиндра на две катушки для пояснения принципа работы (или моделирования) корректна, точно также как корректна замена трехфазной обмотки на двухфазную. Только в этом случае мы заменяем… «бесконечнофазную обмотку» цилиндра (бесконечное число рамок) на две катушки с эквивалентной индуктивностью и сопротивлением. Ведь двумя катушками можно создать точно такой же вектор тока и магнитного потока, как и цилиндром.
А теперь давайте сделаем на короткое время из асинхронной машины синхронную. Подадим в катушку оси β постоянный ток и подождем секунды две-три, пока в роторе перестанут течь ответные токи: «поднесем внешний магнит». То есть дождемся спадания токов в роторе, чтобы магнитное поле статора «пронзило ротор» и никто ему не мешал. Что теперь будет, если выключить ток в статоре? Правильно, на те же две-три секунды, пока ток ротора этому противится, мы из ротора получим «обычный магнит» (рисунок 3).
Рисунок 3. Асинхронный двигатель, когда только что выключили постоянный ток по фазе
β– течет ток в роторе
ird.
Что же мы ждем? Быстрее, пока магнит не пропал, рисуем вдоль него привычную ось d (как в синхронной машине) и перпендикулярную ей ось q, привязанные к ротору. Включаем структуру векторного управления синхронной машиной, подаем ток по оси q, создавая момент, поехали!
Так можно даже действительно сделать несколько оборотов, пока наш сахарный магнит не растаял, а ось d не ушла в небытие. Что же делать? Давайте не будем выключать ток по оси d, подпитывая наш магнит! И опять же сохраним структуру векторного управления синхронной машиной, просто подав задание по оси d (раньше там был ноль). Итак, смотрим на рисунок 4: оси d, q по датчику положения «приделаны» к ротору, двигатель стоит, подан ток по оси d в статоре, что в данном случае для стоячей машины совпадает с осью β. Тока по оси q пока нет: ждем, пока ротор «намагнитится». И вот подаем ток isq (s – статор)! Поехали!
Рисунок 4. Подадим ток в ось
d, намагнитив машину, подготовив всё для подачи тока в ось
qстатора.
Далеко ли мы уедем таким методом барона Мюнхгаузена? К сожалению, нет. Смотрите, что произошло (рисунок 5):
Рисунок 5. А магнит-то сполз!
Двигатель начал крутиться, но через некоторое время после того, как мы подали ток в ось q, образовав суммарный ток is и «прибив» этот вектор к положению ротора, магнит в роторе «съехал»! И встал ровно вдоль вектора is. Ротор же не понимает, где мы нарисовали ему оси d, q… Ему все равно, крутился он или нет. Важно, что его внутренний «наведенный магнит» в конечном счете хочет стать сонаправленным с магнитным потоком статора, «подчиниться» внешнему потоку. Из-за съехавшего магнита двигатель перестанет крутиться: мало того, что между магнитом ротора и током iq нет желаемых 90 градусов, так еще и ток оси d теперь его тянет в противоположную сторону, компенсируя момент, создаваемый током iq. Метод барона Мюнхгаузена не удался.
Что же делать с ускользающим магнитом ротора? А давайте сделаем структуру векторного управления асинхронного двигателя не в осях d,q, приделанных к ротору, а в других осях, приделанных именно к текущему положению «магнита ротора» – назовем их оси x,y, чтобы отличать от d,q. По «научному» – это оси, ориентированные по потокосцеплению ротора. Но как же узнать, где конкретно сейчас это потокосцепление ротора, т.е. куда повернут магнит в роторе? Его положение зависит… во-первых, от положения самого ротора (датчик положения у нас есть, хорошо), во-вторых, от токов статора (создающих поток статора, по которому и собирается в конечном счете повернуться магнит ротора), а в-третьих от параметров роторной цепи – индуктивности и сопротивления «медного цилиндра» (он же беличья клетка, он же роторная обмотка, он же цепь ротора). Поэтому… зная всё это, положение «магнита» ротора можно просто вычислять по нескольким дифференциальным уравнениям. Делает это так называемый наблюдатель потокосцепления ротора, выделенный цветом на итоговой структурной схеме векторного управления асинхронным двигателем (рисунок 6).
Рисунок 6. Векторная датчиковая структура управления асинхронным двигателем
В наблюдатель заводятся показания с датчика положения ротора, а также текущие токи статора в осях α, β. На выходе наблюдателя – положение «магнита» ротора, а именно угол наблюдаемого потокосцепления ротора . В остальном структура полностью аналогична таковой для синхронной машины, только оси d,q переименованы в x,y, а на ось x подано задание тока, который будет поддерживать наш «магнит» в роторе. Также на многих обозначениях добавлен индекс “s”, чтобы показать, что данная величина имеет отношение к статору, а не к ротору. Также надо отметить, что в западной литературе не используют оси x,y: у них ось d всегда направлена по полю ротора, что для асинхронного двигателя, что для синхронного. Наши ученые еще в советское время разделили оси d,q и x,y, чтобы исключить путаницу: d,q прикреплены к ротору, а x,y к полю ротора.
Что же получается? Магнит ротора всё время скользит, сползает от текущего положения на роторе в сторону тока оси y. Чем больше этот ток, тем сильнее скольжение. Наблюдатель в реальном времени вычисляет положение этого магнита и «подкручивает» оси x,y всё время вперед по отношению к осям d,q (положению ротора). Ось x всегда соответствует текущему положению потокосцепления в роторе – положению «магнита». Т.е. оси x,y бегут всегда (в двигательном режиме) немного быстрее вращения ротора, компенсируя скольжение в нем. Токи в роторе, если их измерить или промоделировать, получаются синусоидальными. Только изменяются они не с частотой статорных токов, а с частотой этого скольжения, т.е. очень медленно. Если в статоре промышленного асинхронника 50Гц, то при работе под нагрузкой частота тока в роторе – единицы герц. Вот, собственно, и весь секрет векторного управления для асинхронного двигателя.
Чем векторное управление асинхронным двигателем лучше, чем скалярное? Скалярное управление это такое, когда к двигателю прикладывается напряжение заданной частоты и амплитуды – например, 380В 50Гц. И от нагрузки на роторе оно не зависит – никаких регуляторов токов, векторов… Просто задается частота напряжения и его амплитуда – скалярные величины, а токи и потоки в двигателе пусть сами себе удобное место находят, как хотят. В установившемся режиме работы двигателя векторное управление неотличимо от скалярного – векторное точно также будет прикладывать при номинальной нагрузке те же, скажем, 380В, 50Гц. Но в переходных режимах… если нужно быстро запустить двигатель с заданным моментом, если нужно отрабатывать диаграмму движения, если есть импульсная нагрузка, если нужно сделать генераторный режим с определенным уровнем мощности – всё это скалярное управление или не может сделать, или делает это с отвратительными, медленными переходными процессами, которые могут к тому же «выбить защиту» преобразователя частоты по превышению тока или напряжения звена постоянного тока (двигатель колеблется и может запрыгивать в генераторный режим, к которому преобразователь частоты не всегда приспособлен).
В векторной же структуре «всё под контролем». Момент вы задаете сами, поток тоже. Можно ограничить их на нужном уровне, чтобы не превысить уставок защиты. Можно контролируемо форсировать токи, если кратковременно нужно сделать в несколько раз больший момент. Можно регулировать не только момент двигателя, но и поток (ток оси x): если нагрузка на двигателе мала, то нет никакого смысла держать полный поток в роторе (делать магнит «номинального режима») – можно ослабить его, уменьшив потери. Можно стабилизировать скорость регулятором скорости с высокой точностью и быстродействием. Можно использовать асинхронный привод в качестве тягового (в транспорте), задавая требуемый момент тяги. В общем, для сложных применений с динамичной работой двигателя векторное управление асинхронным двигателем незаменимо.
Также есть отличительные особенности векторного управления асинхронного двигателя от синхронного. Первая – это датчик положения. Если для синхронного привода нам нужно знать абсолютное положение ротора, чтобы понять, где магнит, то в асинхронном приводе этого не требуется. Ротор не имеет какой-то выраженной полюсной структуры, «магнит» в нем постоянно скользит, а если посмотреть в формулы наблюдателя потокосцепления ротора, то там не требуется знания положения: в формулы входит только частота вращения ротора (на самом деле есть разные формулы, но в общем случае так). Поэтому на датчике можно сэкономить: достаточно обычного инкрементального энкодера для отслеживания частоты вращения (или даже тахогенератора), абсолютные датчики положения не требуются. Вторая особенность – управление потоком в асинхронном электродвигателе. В синхронной машине с постоянными магнитами поток не регулируется, что ограничивает максимальную частоту вращения двигателя: перестает хватать напряжения на инверторе. В асинхронном двигателе, когда это случается… просто уменьшаете задание по оси x и едете дальше! Максимальная частота не ограничена! Да, от этого будет снижаться момент двигателя, но, главное, ехать «вверх» можно, в отличие от синхронной машины (по-правде там тоже можно, но недалеко, не для всех двигателей и с кучей проблем).
Точно также существуют бездатчиковые алгоритмы векторного управления асинхронным двигателем, которые оценивают угол потокосцепления ротора не используя сигнал датчика положения (или скорости) вала ротора. Точно также, как и для синхронных машин, в работе таких систем есть проблемы на низкой частоте вращения ротора, где ЭДС двигателя мала.
Также следует сказать пару слов о роторе. Если для промышленных асинхронных двигателей его удешевляют, используя алюминиевую беличью клетку, то в тяге, где массогабаритные показатели важнее, наоборот, могут использовать медный цилиндр. Так, во всеми любимом электромобиле Tesla стоит именно асинхронный электродвигатель с медным ротором (рисунок 7)
Рисунок 7. Ротор асинхронного электродвигателя Tesla Model S в стальной обшивке (фото из разных источников за разные годы)
Вот, собственно, и всё, что я хотел сказать про асинхронный двигатель. В данной обзорной статье не рассмотрены многие тонкости, такие как регулятор потока ротора, возможное построение векторной структуры в других осях координат, математика наблюдателя потокосцепления ротора и многое другое. Как и в конце прошлой статьи, за дальнейшими подробностями отсылаю читателя к современным книгам по приводу, например к «Анучин А. С. Системы управления электроприводов. МЭИ, 2015».
На каком микроконтроллере можно сделать полноценное векторное управление, читайте, например, в статье «Новый отечественный motor-control микроконтроллер К1921ВК01Т ОАО «НИИЭТ», а как это отлаживать в статье «Способы отладки ПО микроконтроллеров в электроприводе». Также наша фирма ООО «НПФ Вектор» предлагает разработку на заказ систем управления электродвигателями и другим электрооборудованием, примеры выполненных проектов можно посмотреть на нашем сайте.
P.S.
У специалистов прошу прощения за не совсем корректное обращение с некоторыми терминами, в частности с терминами «поток», «потокосцепление», «магнитное поле» и другими – простота требует жертв…
AC
Один из наиболее распространенных электродвигателей, используемых в большинстве приложений, известный как асинхронный двигатель. Этот двигатель также называют асинхронным двигателем, потому что ротор всегда вращается с меньшей скоростью, чем поле, что делает его асинхронным двигателем переменного тока. Он работает со скоростью, меньшей, чем его синхронная скорость. Асинхронные двигатели переменного тока бывают однофазными или многофазными. Однофазная система питания широко используется по сравнению с трехфазной системой для бытовых, коммерческих и, в некоторой степени, промышленных целей.
Статор двигателя состоит из перекрывающихся смещений обмоток. Когда первичная обмотка или статор подключены к источнику переменного тока, создается вращающееся магнитное поле, которое вращается с синхронной скоростью. Теоретическая скорость ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля.Он вращается с постоянной скоростью, если вы не используете частотно-регулируемый привод.
Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. Асинхронные двигатели могут быть довольно тяжелыми и громоздкими из-за их катушечной обмотки. Трехфазные ИД широко используются в промышленных приводах, лифтах, кранах, приводных токарных станках..etc, потому что они прочные, надежные и экономичные. Однофазные IM широко используются для небольших нагрузок, таких как бытовые приборы, такие как вентиляторы, насосы, миксер, игрушки, пылесосы, сверлильные станки и т. Д.
Вернуться на главную страницу управления двигателем
Методы управления скоростью асинхронного двигателя
Асинхронный двигатель практически представляет собой двигатель с постоянной скоростью, что означает, что для всего диапазона нагрузок изменение скорости двигателя довольно мало.Скорость параллельного двигателя постоянного тока можно очень легко изменять с хорошим КПД, но в случае асинхронных двигателей снижение скорости сопровождается соответствующей потерей эффективности и низким коэффициентом мощности. Поскольку асинхронные двигатели широко используются, регулирование их скорости может потребоваться во многих приложениях. Различные методы управления скоростью асинхронного двигателя объясняются ниже.Регулировка скорости асинхронного двигателя со стороны статора
1. Путем изменения подаваемого напряжения:
Из уравнения крутящего момента асинхронного двигателя,Сопротивление ротора R 2 постоянно, и если скольжение s мало, то (sX 2 ) 2 настолько мало, что им можно пренебречь.Следовательно, T ∝ sE 2 2 , где E 2 — ЭДС, индуцированная ротором, а E 2 ∝ V
. Таким образом, T ∝ sV 2 , что означает, что если подаваемое напряжение уменьшается, развиваемый крутящий момент уменьшается. Следовательно, для обеспечения того же момента нагрузки скольжение увеличивается с уменьшением напряжения, и, следовательно, скорость уменьшается. Этот метод самый простой и дешевый, но до сих пор используется редко, потому что
- требуется большое изменение напряжения питания для относительно небольшого изменения скорости.
- большое изменение напряжения питания приведет к большому изменению плотности магнитного потока, следовательно, это нарушит магнитные условия двигателя.
2. Изменяя применяемую частоту
Синхронная скорость вращающегося магнитного поля асинхронного двигателя равна,. где f = частота питания и P = количество полюсов статора.
Следовательно, синхронная скорость изменяется с изменением частоты питания. Фактическая скорость асинхронного двигателя определяется как N = Ns (1 — s) .Однако этот метод не получил широкого распространения. Его можно использовать там, где асинхронный двигатель питается от специального генератора (так что частоту можно легко изменять, изменяя скорость первичного двигателя). Кроме того, при более низкой частоте ток двигателя может стать слишком большим из-за пониженного реактивного сопротивления. А если частота превышает номинальное значение, максимальный развиваемый крутящий момент падает, а скорость увеличивается.
3. Постоянное регулирование U / F асинхронного двигателя
Это самый популярный метод управления скоростью асинхронного двигателя.Как и в описанном выше методе, если частота питания снижается при сохранении номинального напряжения питания, поток в воздушном зазоре стремится к насыщению. Это вызовет чрезмерный ток статора и искажение магнитной волны статора. Следовательно, напряжение статора также должно быть уменьшено пропорционально частоте, чтобы поддерживать постоянный магнитный поток в воздушном зазоре. Величина потока статора пропорциональна отношению напряжения статора к частоте. Следовательно, если отношение напряжения к частоте остается постоянным, магнитный поток остается постоянным.Кроме того, при поддержании постоянного V / F развиваемый крутящий момент остается приблизительно постоянным. Этот метод дает более высокую эффективность во время выполнения. Поэтому в большинстве приводов переменного тока для управления скоростью используется метод постоянного напряжения / частоты (или метод переменного напряжения и переменной частоты). Наряду с широким диапазоном регулирования скорости, этот метод также предлагает возможность «плавного пуска».4. Изменение количества полюсов статора
Из приведенного выше уравнения синхронной скорости можно увидеть, что синхронная скорость (и, следовательно, скорость движения) может быть изменена путем изменения количества полюсов статора.Этот метод обычно используется для асинхронных двигателей с короткозамкнутым ротором, поскольку ротор с короткозамкнутым ротором адаптируется к любому количеству полюсов статора. Смена полюсов статора достигается двумя или более независимыми обмотками статора, намотанными на разное количество полюсов в одинаковых пазах.Например, статор намотан с двумя 3-фазными обмотками, одна на 4 полюса, а другая на 6 полюсов.
для частоты питания 50 Гц
i) синхронная скорость при подключении 4-х полюсной обмотки, Ns = 120 * 50/4 = 1500 об / мин
ii) синхронная скорость при подключении 6-полюсной обмотки, Ns = 120 * 50/6 = 1000 об / мин
Регулировка скорости со стороны ротора:
1.Регулятор реостата ротора
Этот метод аналогичен управлению реостатом якоря параллельного двигателя постоянного тока. Но этот метод применим только к электродвигателям с фазным ротором, так как добавление внешнего сопротивления в ротор электродвигателей с короткозамкнутым ротором невозможно.2. Каскадный режим
В этом методе регулирования скорости используются два двигателя. Оба установлены на одном валу, поэтому оба работают с одинаковой скоростью. Один двигатель питается от трехфазного источника питания, а другой двигатель получает питание от наведенной ЭДС в первом двигателе через контактные кольца.Расположение показано на следующем рисунке.Двигатель A называется основным двигателем, а двигатель B — вспомогательным двигателем.
Пусть, N s1 = частота двигателя A
N с2 = частота двигателя B
P 1 = количество полюсов статора двигателя A
P 2 = количество полюсов статора двигателя B
N = скорость установки и одинаковая для обоих двигателей
f = частота питания
Теперь скольжение двигателя A, S 1 = (N s1 — N) / N s1 .
частота ЭДС, индуцированная ротором в двигателе A, f 1 = S 1 f
Теперь на вспомогательный двигатель B подается ЭДС индукции ротора
, следовательно, N s2 = (120f 1 ) / P 2 = (120S 1 f) / P 2 .
теперь ставим значение S 1 = (N s1 — N) / N s1
я.е. N = N с2 .
из приведенных выше уравнений можно получить, что
С помощью этого метода можно получить четыре различных скорости
1. когда работает только двигатель A, соответствующая скорость = .Ns1 = 120f / P 1
2. когда работает только двигатель B, соответствующая скорость = Ns2 = 120f / P 2
3. если выполнено коммуляционное каскадирование, скорость набора = N = 120f / (P 1 + P 2 )
4. Если выполняется дифференциальное каскадирование, скорость установки = N = 120f (P 1 — P 2 )
3.Путем подачи ЭДС в цепь ротора
В этом методе скорость асинхронного двигателя регулируется путем подачи напряжения в цепь ротора. Необходимо, чтобы подаваемое напряжение (ЭДС) имело ту же частоту, что и частота скольжения. Однако ограничений по фазе вводимой ЭДС нет. Если мы подаем ЭДС, которая находится в противофазе с ЭДС, индуцированной ротором, сопротивление ротора будет увеличиваться. Если мы введем ЭДС, которая находится в фазе с ЭДС, индуцированной ротором, сопротивление ротора уменьшится.Таким образом, изменяя фазу инжектируемой ЭДС, можно управлять скоростью. Основным преимуществом этого метода является широкий диапазон регулирования скорости (как выше нормы, так и ниже нормы). ЭДС может быть введена различными методами, такими как система Крамера, система Шербиуса и т. Д.VFD или симистор для асинхронных двигателей переменного тока?
Когда на асинхронный двигатель переменного тока подается напряжение, он работает с определенной скоростью. Требования к переменной скорости для асинхронных двигателей переменного тока обычно выполняются трехфазным двигателем и инвертором или частотно-регулируемым приводом.В этом сообщении в блоге также представлен еще один вариант.
Во-первых, давайте поговорим о наиболее распространенном методе регулирования скорости для асинхронных двигателей переменного тока, которым является инвертор или частотно-регулируемый привод (VFD). Я больше всего знаком с серией FRENIC Mini C2 от Fuji Electric.
ЧРП Fuji Electric FRENIC Mini C2
Как это устройство контролирует скорость двигателя переменного тока? Давайте сначала поймем, почему двигатель работает с определенной скоростью. С математической точки зрения синхронная скорость двигателя рассчитывается по формуле:
Большинство промышленных асинхронных двигателей переменного тока являются 4-полюсными, поэтому скорость двигателя синхронизируется с частотой входного источника питания (Гц).При 60 Гц двигатель будет работать со скоростью 1800 об / мин.
Частотно-регулируемый привод управляет скоростью двигателя с помощью ШИМ (широтно-импульсной модуляции) для изменения частоты источника питания, подаваемого на двигатель. Как правило, от двигателя нет обратной связи; хотя некоторые диски используют обратную ЭДС в качестве обратной связи.
Вот блок-схема логики управления частотно-регулируемым приводом FRENIC Mini C2 (из руководства). Обратите внимание на его сложность из-за огромного количества компонентов. Такие функции, как динамическое усиление крутящего момента или управление компенсацией скольжения, обычно предлагаются для повышения производительности.
Одним из недостатков использования частотно-регулируемых приводов является то, что они могут быть дорогими и сложными в размере. Также требуется трехфазный асинхронный двигатель переменного тока с номинальным режимом работы инвертора или, по крайней мере, с номинальным режимом непрерывного режима. Если двигатель оснащен тормозным механизмом, он обычно сокращает рабочий цикл. Я видел частотно-регулируемые приводы для однофазных двигателей на рынке в прошлом, но их трудно найти, и мы никогда не тестировали их с нашими двигателями.
Другой способ управления скоростью однофазных асинхронных двигателей переменного тока?
Теперь давайте посмотрим на другой метод управления скоростью.Взгляните на кривую крутящего момента однофазного асинхронного двигателя переменного тока, которая описывает, что двигатель будет делать после включения. Двигатель запускается со скоростью 0 об / мин, затем разгоняется до номинальной скорости. Обратите внимание, как входное напряжение влияет на форму кривой скорость-крутящий момент. Если момент нагрузки остается прежним, а входное напряжение снижается со 100 В до 90 В, то скорость двигателя снижается. Да, вы можете использовать напряжение для управления скоростью двигателя переменного тока .
ПРИМЕЧАНИЕ: максимальная скорость составляет ~ 1500 об / мин, поскольку входная мощность составляет 50 Гц.Для двигателей 60 Гц частота вращения 1500 об / мин будет равна 1800 об / мин.
Однако вы можете видеть, что скорость не сильно уменьшается при падении напряжения на 10 В. Если напряжение снижается слишком сильно, двигатель может быть вынужден работать в нестабильной области (менее ~ 1000 об / мин) и, возможно, заглохнет. В идеале вы действительно хотите, чтобы двигатель работал с оптимальной номинальной скоростью для наилучшей и наиболее эффективной работы. Этот метод управления скоростью очень похож на метод управления скоростью щеточных двигателей постоянного тока.Однако диапазон оборотов управления скоростью намного шире у щеточных двигателей постоянного тока.
Чтобы этот метод управления был успешным, необходимо устройство обратной связи, чтобы замкнуть контур между двигателем и регулятором скорости. Эта обратная связь необходима для предотвращения слишком сильных колебаний скорости двигателя (и входного напряжения).
Oriental Motor использует тахогенераторы для замыкания контура между нашими двигателями с регулируемой скоростью переменного тока и контроллерами скорости, такими как серии DSC или US2. Тахогенератор, он же тахометр, вырабатывает напряжение, пропорциональное скорости.Он используется в непрерывном контуре обратной связи для поддержания точности скорости на уровне ± 1% или меньше.
Это упрощенная схема цепи управления для серии DSC.
Для всех, кому интересно, это схема цепи управления с более подробной информацией. Вы можете видеть, что мы используем TRIAC для управления напряжением. Также мы используем однополупериодный выпрямитель.
Показывает, как тахогенератор используется во время работы двигателя.
Поскольку схема управления намного менее сложна, чем у частотно-регулируемого привода, двигатели с регулируемой скоростью переменного тока являются более экономичным вариантом по сравнению с двигателями переменного тока с приводом от частотно-регулируемого привода.Метод управления фазой также демонстрирует меньший электрический шум по сравнению с двигателями с приводом от частотно-регулируемого привода, где частотно-регулируемые приводы переключаются с гораздо большей скоростью.
Еще одно преимущество, представленное в серии DSC, — это вертикальная работа. В прошлом двигатели тахогенераторов были проблемой при вертикальном перемещении. Причина в гравитации.
В этом примере двигатель перемещает груз вниз по ленточному конвейеру. Когда груз опускается, сила тяжести будет тянуть груз вниз и увеличивать его скорость.С увеличением скорости увеличивается напряжение тахогенератора. Это заставляет контроллер скорости думать, что двигатель движется слишком быстро, что снижает его напряжение, чтобы попытаться снизить скорость. Однако при понижении напряжения двигатель теряет крутящий момент. Этот процесс повторяется до тех пор, пока крутящий момент двигателя не истощится и нагрузка не упадет. В серии DSC функция останова при замедлении позволяет осуществлять контролируемое замедление с автоматическим электромагнитным торможением. |
Недостатком двигателей переменного тока с регулировкой скорости с обратной связью от тахогенератора является то, что на низких скоростях двигатель имеет определенные ограничения по крутящему моменту.Кривая крутящего момента скорости двигателя помечена, чтобы показать это. Убедитесь, что работает ниже «линии безопасной эксплуатации». Для комбинированных типов (мотор-редукторы) см. Пунктирную линию с надписью «Допустимый крутящий момент для комбинированного типа».
Другими словами, чтобы избежать этой проблемы, используйте мотор-редуктор.
Чтобы узнать больше о серии DSC или ее методе управления скоростью, прочтите официальный документ.
Подпишитесь, пожалуйста, в правом верхнем углу страницы!
Есть ли другая альтернатива? | ||||||
Если требуется работа при более низких температурах, идеальным вариантом является более высокая энергоэффективность, лучшее регулирование скорости, постоянный выходной крутящий момент или более широкий диапазон скоростей. Для таких применений, как двойные ленточные конвейеры, машины для полировки / удаления заусенцев или перемешивающие машины, слишком сильные колебания скорости из-за нагрузки могут повлиять на конечный продукт. Если постоянный крутящий момент и регулировка скорости имеют решающее значение, а системы серводвигателей выходят за рамки бюджета, стоит подумать о бесщеточных двигателях.
Щелкните ниже, чтобы сравнить 3 доступные технологии управления скоростью. |
Три способа управления однофазным асинхронным двигателем
Каждый день инженеры разрабатывают продукты, в которых используются однофазные асинхронные двигатели. Регулирование скорости однофазных асинхронных двигателей желательно в большинстве приложений управления двигателями, поскольку оно не только обеспечивает регулируемую скорость, но также снижает потребление энергии и звуковой шум.
Большинство однофазных асинхронных двигателей являются однонаправленными, что означает, что они предназначены для вращения в одном направлении.Либо путем добавления дополнительных обмоток, внешних реле и переключателей, либо путем добавления зубчатых передач, направление вращения можно изменить. Используя системы управления на основе микроконтроллеров, можно добавить в систему изменение скорости. В дополнение к возможности изменения скорости, направление вращения также может быть изменено в зависимости от используемых алгоритмов управления двигателем.
Двигатели с постоянным разделенным конденсатором (PSC) — самый популярный тип однофазных асинхронных двигателей. В этой статье будут рассмотрены различные методы и топологии приводов для управления скоростью двигателя PSC в одном и двух направлениях.
Интерфейс микроконтроллера
Микроконтроллер — это мозг системы. Часто контроллеры, используемые для приложений управления двигателем, имеют специализированные периферийные устройства, такие как ШИМ для управления двигателем, высокоскоростные аналого-цифровые преобразователи (АЦП) и диагностические выводы. PIC18F2431 и dsPIC30F2010 от Microchip имеют эти встроенные функции.
Наличие доступа к специализированным периферийным устройствам микроконтроллера упрощает реализацию алгоритмов управления.
Каналы АЦП используются для измерения тока двигателя, температуры двигателя и температуры радиатора (подключены к выключателям питания). Третий канал АЦП используется для считывания уровней потенциометра, который затем используется для установки скорости двигателя. Дополнительные каналы АЦП могут использоваться в конечном приложении для считывания различных датчиков, таких как бесконтактный переключатель, датчики мутности, уровня воды, температуры морозильной камеры и т. Д.
Входы и выходы общего назначения (I / Os) могут использоваться для взаимодействия переключает и отображает в приложении.Например, в холодильнике эти универсальные входы / выходы могут использоваться для управления ЖК-дисплеем, семисегментным светодиодным дисплеем, кнопочным интерфейсом и т. Д. Каналы связи, такие как I2C (TM) или SPI ( TM) используются для соединения платы управления двигателем с другой платой для обмена данными.
Интерфейсы неисправностей и диагностики включают в себя входные линии со специальными функциями, такими как возможность отключения ШИМ в случае катастрофических сбоев в системе. Например, в посудомоечной машине, если привод заблокирован из-за скопившихся отходов, это может помешать вращению двигателя.Эта блокировка может быть обнаружена в виде перегрузки по току в системе управления двигателем. Используя функции диагностики, эти типы неисправностей могут регистрироваться и / или отображаться, или передаваться на ПК для устранения неисправностей обслуживающего персонала. Часто это предотвращает серьезные отказы и сокращает время простоя продукта, что приводит к снижению затрат на обслуживание.
Аппаратный интерфейс для PIC 18F2431 или dsPIC30F2010. |
ШИМ — это основные периферийные устройства, используемые для управления двигателем. Используя указанные выше входные данные, алгоритм управления двигателем микроконтроллера определяет рабочий цикл ШИМ и схему вывода. К наиболее ценным функциям PWM относятся дополнительные каналы с программируемым мертвым временем. ШИМ могут быть выровнены по краям или по центру. Выровненные по центру ШИМ имеют то преимущество, что они снижают электромагнитный шум (EMI), излучаемый изделием.
Вариант №1: Однонаправленное управление
Управление VF в одном направлении делает топологию привода и алгоритм управления относительно простыми.Задача состоит в том, чтобы создать источник питания с переменным напряжением и частотой из источника питания с фиксированным напряжением и частотой (такого как источник питания от настенной розетки). На рисунке на странице 85 показана блок-схема этой топологии привода с тремя основными секциями построения, которые обсуждались ранее. Обмотки двигателя подключены к центру каждого полумоста на выходной секции инвертора. Многие двигатели, имеющиеся в наличии, имеют как основную, так и пусковую обмотки, соединенные вместе с конденсатором, включенным последовательно с пусковой обмоткой.В этой конфигурации двигатель может иметь только два выступающих провода (M1 и M2).
MCU, показанный на блок-схеме, имеет модуль PWM управления мощностью (PCPWM), который способен выводить до трех пар PWM с зоной нечувствительности между парами. Зона нечувствительности важна в приложении управления асинхронным двигателем, чтобы избежать перекрестной проводимости шины постоянного тока через переключатели питания, когда один выключается, а другой включается. Схема диагностики может включать в себя контроль тока двигателя, контроль напряжения на шине постоянного тока и контроль температуры на радиаторе, подключенном к силовым переключателям и двигателю.
Блок-схема топологии привода с тремя основными секциями здания. В этой конфигурации двигатель может иметь только два выступающих провода (M1 и M2). Показанный MCU имеет модуль ШИМ, который способен выводить до трех пар ШИМ с зоной нечувствительности между парами. |
Двунаправленное управление с помощью H-моста. |
Двунаправленное управление
Большинство двигателей PSC предназначены для работы в одном направлении. Однако во многих приложениях требуется двунаправленное вращение двигателя. Исторически для достижения двунаправленного вращения использовались зубчатые передачи или внешние реле и переключатели. При использовании механических шестерен вал двигателя вращается в одном направлении, а шестерни прямого и обратного хода включаются и выключаются в соответствии с требуемым направлением. С помощью реле и переключателей полярность пусковой обмотки электрически меняется на обратную в зависимости от требуемого направления.
К сожалению, все эти компоненты увеличивают стоимость системы для базового управления включением и выключением в двух направлениях.
В этом разделе мы обсудим два метода двунаправленного управления скоростью для двигателей PSC с использованием привода на основе микроконтроллера. Обсуждаемые здесь топологии привода создают эффективные напряжения, которые приводят в действие главную обмотку и пусковую обмотку с фазовым сдвигом на 90 градусов относительно друг друга. Это позволяет разработчику системы навсегда удалить конденсатор, включенный последовательно с пусковой обмоткой, из схемы, тем самым снижая общую стоимость системы.
Вариант № 2: H-мостовой инвертор
У этого метода есть удвоитель напряжения на входе; на выходе используется H-мост или двухфазный инвертор (см. рисунок выше). К каждому полумосту подключаются один конец основной и пусковой обмоток; другие концы соединены вместе в нейтральной точке источника переменного тока, которая также служит центральной точкой для удвоителя напряжения.
Для схемы управления требуются четыре ШИМ с двумя дополнительными парами и достаточной зоной нечувствительности между дополнительными выходами.PWM0-PWM1 и PWM2-PWM3 — это пары ШИМ с зоной нечувствительности. Используя ШИМ, шина постоянного тока синтезируется для обеспечения двух синусоидальных напряжений, сдвинутых по фазе на 90 градусов, с различной амплитудой и переменной частотой в соответствии с профилем VF. Если напряжение, приложенное к основной обмотке, отстает от пусковой обмотки на 90 градусов, двигатель вращается в прямом направлении. Чтобы изменить направление вращения, напряжение, подаваемое на главную обмотку, должно опережать напряжение, подаваемое на пусковую обмотку.
Фазные напряжения при вращении двигателя в прямом и обратном направлении. |
Этот метод преобразователя H-моста для управления двигателем типа PSC имеет следующие недостатки.
Основная и пусковая обмотки имеют разные электрические характеристики. Таким образом, ток, протекающий через каждый переключатель, неуравновешен. Это может привести к преждевременному выходу из строя коммутационных аппаратов в инверторе.
Общая точка обмоток напрямую подключена к нейтрали. Это может увеличить количество коммутационных сигналов, проникающих в основной источник питания, и может увеличить шум, излучаемый в линию.В свою очередь, это может ограничить уровень электромагнитных помех продукта, нарушая определенные цели и нормы проектирования.
Эффективное обрабатываемое постоянное напряжение относительно высокое из-за схемы удвоения входного напряжения.
Наконец, стоимость самой схемы удвоителя напряжения высока из-за двух мощных конденсаторов.
Лучшим решением для минимизации этих проблем было бы использование трехфазного инверторного моста, как обсуждается в следующем разделе.
Вариант № 3: Использование трехфазного инверторного моста
Входная секция заменена на стандартный диодно-мостовой выпрямитель.В выходной секции установлен трехфазный инверторный мост. Основное отличие от предыдущей схемы — способ подключения обмоток двигателя к инвертору. Один конец основной и пусковой обмоток подключены к одному полумосту каждый. Остальные концы связываем вместе и подключаем к третьему полумосту.
Управление с помощью трехфазного инверторного моста. |
При такой топологии привода управление становится более эффективным.Однако алгоритм управления усложняется. Напряжениями обмоток, Va, Vb и Vc, следует управлять для достижения разности фаз между действующими напряжениями на основной и пусковой обмотках, чтобы иметь фазовый сдвиг на 90 градусов относительно друг друга.
Чтобы иметь одинаковые уровни напряжения и нагрузки на всех устройствах, что улучшает использование устройства и обеспечивает максимально возможное выходное напряжение для заданного напряжения на шине постоянного тока, все три фазных напряжения инвертора поддерживаются на одной и той же амплитуде, как указано в :
| Va | = | Vb | = | Vc |
Эффективное напряжение на основной и пусковой обмотках, как указано по формуле:
Vmain = Va-Vc
Vstart = Vb-Vc
Направление вращения можно легко контролировать с помощью фазового угла Vc по отношению к Va и Vb .
На рисунках на стр. 87 показаны фазные напряжения Va, Vb и Vc, эффективные напряжения на основной обмотке (Vmain) и пусковой обмотке (Vstart) для прямого и обратного направлений соответственно.
Использование метода управления трехфазным инвертором на компрессоре мощностью 300 Вт дало 30% экономии энергии по сравнению с первыми двумя методами.
Необходимые ресурсы микроконтроллера | ||||
---|---|---|---|---|
Ресурс | Однонаправленный | Двунаправленный H-образный мост | Двунаправленный с трехфазным мостом | Банкноты |
Программная память | 1.5 Кбайт | 2,0 Кбайт | 2,5 Кбайт | – |
Память данных | ~ 20 байт | ~ 25 байтов | ~ 25 байт | – |
ШИМ каналов | 2 канала | 2 канала | 3 канала | Дополняет мертвое время |
Таймер | 1 | 1 | 1 | 8- или 16-битный |
Аналого-цифровой преобразователь | 3-4 канала | 3-4 канала | 3-4 канала | Ток двигателя, измерения температуры, потенциометр регулировки скорости |
Цифровые входы / выходы | от 3 до 4 | от 3 до 4 | от 3 до 4 | Для пользовательских интерфейсов, таких как переключатели и дисплеи |
Входы неисправностей | 1 или 2 | 1 или 2 | 1 или 2 | Для перегрузки по току / перенапряжения / перегрева и т. Д. |
Сложность алгоритма управления | Низкий | Средний | Высокая | – |
Сравнение затрат | ||||
Однонаправленный | Двунаправленный с Н-мостом | Двунаправленный с трехфазным мостом | ||
Секция входного преобразователя | Low — Однофазный диодный мостовой выпрямитель | Высокий — из-за цепи удвоителя напряжения | Low — Однофазный диодный мостовой выпрямитель | |
Выходная секция инвертора | Low — Два полумоста | Средний — Два полумоста.Силовые выключатели на повышенное напряжение | High — трехфазный инвертор. Использование интегрированных силовых модулей (IPM) лучше, чем дискретных компонентов | |
Двигатель | Medium — Требуется пусковой конденсатор | Low — Пусковой конденсатор снят с двигателя | Low — Пусковой конденсатор снят с мотора | |
Время разработки | Короткий | Средний | длинный | |
Общая стоимость | Низкий | Средний | Medium — Эффективный контроль при заданной стоимости |
Еще одно преимущество использования трехфазного метода управления состоит в том, что та же самая топология приводного оборудования может использоваться для управления трехфазным асинхронным двигателем.В этом сценарии микроконтроллер должен быть перепрограммирован для вывода синусоидальных напряжений с фазовым сдвигом на 120 градусов относительно друг друга, что приводит в действие трехфазный асинхронный двигатель. Это сокращает время разработки.
Однофазные асинхронные двигатели очень популярны в бытовой технике, а также в промышленных и бытовых приложениях. PSC — самый популярный тип однофазных асинхронных двигателей. Управление скоростью двигателя имеет множество преимуществ, таких как энергоэффективность, снижение слышимого шума и лучший контроль над приложением.В этой статье мы обсудили различные методы управления скоростью, которые можно использовать с двигателем PSC в однонаправленном и двунаправленном режимах. Наилучшие результаты дает управление двигателем PSC с использованием топологии трехфазного инвертора.
|
Фазное напряжение при вращении двигателя в прямом и обратном направлениях. |
Двигатели переменного тока, контроллеры и частотно-регулируемые приводы
Что такое двигатель переменного тока?
Основы электродвигателя переменного тока
Стандартное определение двигателя переменного тока — это электродвигатель, приводимый в действие переменным током.Двигатель переменного тока используется для преобразования электрической энергии в механическую. Эта механическая энергия создается за счет использования силы, создаваемой вращающимися магнитными полями, создаваемыми переменным током, протекающим через его катушки. Двигатель переменного тока состоит из двух основных компонентов: стационарного статора, который находится снаружи и имеет катушки, на которые подается переменный ток, и внутреннего ротора, который прикреплен к выходному валу.
Как работает двигатель переменного тока?
Основная работа двигателя переменного тока основана на принципах магнетизма.Простой двигатель переменного тока содержит катушку с проводом и два фиксированных магнита, окружающих вал. Когда электрический заряд (переменного тока) прикладывается к катушке с проволокой, она становится электромагнитом, генерирующим магнитное поле. Проще говоря, когда магниты взаимодействуют, вал и катушка проводов начинают вращаться, приводя в движение двигатель.
Обратная связь двигателя переменного тока
ПродуктыAC Motor имеют два варианта управления с обратной связью. Этими опциями являются либо резольвер двигателя переменного тока, либо энкодер двигателя переменного тока.И резольвер двигателя переменного тока, и энкодер двигателя переменного тока могут определять направление, скорость и положение выходного вала. Хотя и преобразователь двигателя переменного тока, и энкодер двигателя переменного тока предлагают одно и то же решение для различных приложений, они сильно различаются.
В резольверах двигателей переменного тока используется второй набор катушек статора, называемый трансформатором, для создания напряжения на роторе в воздушном зазоре. Поскольку в резольвере отсутствуют электронные компоненты, он очень прочный и работает в широком диапазоне температур. Резольвер двигателя переменного тока также естественно устойчив к ударам благодаря своей конструкции.Резольвер часто используется в суровых условиях.
В оптическом кодировщике электродвигателя переменного тока используется затвор, который вращается для прерывания луча света, пересекающего воздушный зазор между источником света и фотодетектором. Вращение заслонки со временем вызывает износ энкодера. Этот износ снижает долговечность и надежность оптического кодировщика.
Тип приложения определяет, нужен ли преобразователь или кодировщик. Энкодеры двигателей переменного тока проще в реализации и более точны, поэтому им следует отдавать предпочтение в любом приложении.Резолвер следует выбирать только в том случае, если этого требует среда, в которой он будет использоваться.
Основные типы двигателей переменного тока
Электродвигатель переменного тока бывает трех различных типов: индукционный, синхронный и промышленный. Эти типы двигателей переменного тока определяются конструкцией ротора, используемого в конструкции. В линейке продуктов Anaheim Automation представлены все три типа.
Асинхронный двигатель переменного тока
Асинхронные двигатели переменного тока называются асинхронными двигателями или вращающимися трансформаторами.Этот тип двигателя переменного тока использует электромагнитную индукцию для питания вращающегося устройства, которым обычно является вал. Ротор в асинхронных двигателях переменного тока обычно вращается медленнее, чем его частота. Наведенный ток — это то, что вызывает магнитное поле, окружающее ротор этих двигателей. Этот асинхронный двигатель переменного тока имеет одну или три фазы.
Синхронный двигатель переменного тока
Синхронный двигатель обычно представляет собой двигатель переменного тока, ротор которого вращается с той же скоростью, что и переменный ток, который к нему подается.Ротор также может вращаться со скоростью, кратной величине подаваемого на него тока. Контактные кольца или постоянный магнит, на который подается ток, создают магнитное поле вокруг ротора.
Промышленный двигатель переменного тока
Промышленные двигатели переменного тока разработаны для применений, требующих трехфазного асинхронного двигателя большой мощности. Номинальная мощность промышленного двигателя превышает номинальную мощность стандартного однофазного асинхронного двигателя переменного тока. Anaheim Automation предлагает промышленные электродвигатели переменного тока мощностью от 220 до 2200 Вт в трехфазном режиме при 220 или 380 В переменного тока.
Где используются двигатели переменного тока?
В каких отраслях используются двигатели переменного тока?
Асинхронные двигатели в основном используются в быту из-за их относительно низких производственных затрат и долговечности, но также широко используются в промышленных приложениях.
Для чего используются двигатели переменного тока?
Асинхронные двигатели используются во многих бытовых приборах и приложениях, в том числе:
— Часы
— Электроинструменты
— Дисковые накопители
— Стиральные машины и другая бытовая техника
— Аудиоповоротные столы
— Вентиляторы
Их также можно найти в промышленности:
— Насосы
— Воздуходувки
— Конвейеры
— Компрессоры
Как управляются двигатели переменного тока?
Контроллеры переменного тока:
Основы
Контроллер переменного тока (иногда называемый драйвером) известен как устройство, контролирующее скорость двигателя переменного тока.Контроллер переменного тока также может называться частотно-регулируемым приводом, преобразователем частоты, преобразователем частоты и т. Д. Двигатель переменного тока получает мощность, которая в конечном итоге преобразуется контроллером переменного тока в регулируемую частоту. Этот регулируемый выход позволяет точно контролировать скорость двигателя.
Компоненты контроллера переменного тока
Обычно контроллер переменного тока состоит из трех основных частей: выпрямителя, инвертора и звена постоянного тока для их соединения.Выпрямитель преобразует входной переменный ток в постоянный ток (постоянный ток), а инвертор переключает постоянное напряжение на выходное переменное напряжение с регулируемой частотой. Инвертор также можно использовать для управления выходным током, если это необходимо. И выпрямитель, и инвертор управляются набором элементов управления для генерации определенного количества переменного напряжения и частоты, чтобы соответствовать системе двигателя переменного тока в данный момент времени.
Приложения
Контроллер переменного тока может использоваться во многих различных промышленных и коммерческих приложениях.Контроллер переменного тока, который чаще всего используется для управления вентиляторами в системах кондиционирования и отопления, позволяет лучше контролировать воздушный поток. Контроллер переменного тока также помогает регулировать скорость насосов и воздуходувок. В последнее время применяются конвейеры, краны и подъемники, станки, экструдеры, линии для производства пленки и прядильные машины для текстильного волокна.
Преимущества и недостатки
Преимущества
— Увеличивает срок службы двигателя за счет высокого коэффициента мощности
— Экономичное регулирование скорости
— Оптимизация пусковых характеристик двигателя
— Более низкие затраты на обслуживание, чем при управлении постоянным током
Недостатки
— генерирует большое количество тепла и гармоник
История
Никола Тесла изобрел первый асинхронный двигатель переменного тока в 1888 году, представив более надежный и эффективный двигатель, чем двигатель постоянного тока.Однако регулирование скорости переменного тока было сложной задачей. Когда требовалось точное управление скоростью, двигатель постоянного тока стал заменой двигателя переменного тока из-за его эффективных и экономичных средств точного управления скоростью. Только в 1980-х годах регулятор скорости переменного тока стал конкурентом. Со временем технология привода переменного тока в конечном итоге превратилась в недорогого и надежного конкурента традиционному управлению постоянным током. Теперь контроллер переменного тока может управлять скоростью с полным крутящим моментом, достигаемым от 0 об / мин до максимальной номинальной скорости.
Преобразователи частоты
Основы
Частотно-регулируемый привод — это особый тип привода с регулируемой скоростью, который используется для управления скоростью двигателя переменного тока. Чтобы управлять скоростью вращения двигателя, частотно-регулируемый привод регулирует частоту подаваемой на него электроэнергии. Добавление частотно-регулируемого привода к приложению позволяет регулировать скорость двигателя в соответствии с его нагрузкой, что в конечном итоге позволяет экономить энергию.Частотно-регулируемый привод, обычно используемый во множестве приложений, работает в системах вентиляции, насосах, конвейерах и приводах станков.
Как работает частотно-регулируемый привод
Когда полное напряжение подается на двигатель переменного тока, он сначала ускоряет нагрузку и снижает крутящий момент, сохраняя ток особенно высоким, пока двигатель не достигнет полной скорости. Частотно-регулируемый привод работает иначе; он устраняет чрезмерный ток, контролируемое повышение напряжения и частоты при запуске двигателя.Это позволяет двигателю переменного тока генерировать до 150% от номинального крутящего момента, который потенциально может быть создан с самого начала, вплоть до полной скорости, без потерь энергии. Частотно-регулируемый привод преобразует мощность через три различных этапа. Сначала мощность переменного тока преобразуется в мощность постоянного тока, после чего включаются и выключаются силовые транзисторы, вызывая форму волны напряжения на желаемой частоте. Эта форма сигнала затем регулирует выходное напряжение в соответствии с предпочтительным обозначенным значением.
Физические свойства
Обычно система частотно-регулируемого привода включает двигатель переменного тока, контроллер и интерфейс оператора.Трехфазный асинхронный двигатель чаще всего применяется в частотно-регулируемом приводе, поскольку он обеспечивает универсальность и экономичность по сравнению с однофазным или синхронным двигателем. Хотя в некоторых случаях они могут быть полезными, в системе частотно-регулируемого привода часто используются двигатели, предназначенные для работы с фиксированной скоростью.
Интерфейсы оператора частотно-регулируемого привода позволяют пользователю регулировать рабочую скорость, а также запускать и останавливать двигатель. Интерфейс оператора может также позволить пользователю переключаться и реверсировать между автоматическим управлением или ручным регулированием скорости.
Преимущества частотно-регулируемого привода
— Температуру технологического процесса можно регулировать без отдельного контроллера
— Низкие затраты на обслуживание
— Более длительный срок службы двигателя переменного тока и другого оборудования
— Более низкие эксплуатационные расходы
— Оборудование в системе, с которым невозможно справиться чрезмерный крутящий момент защищен
Типы частотно-регулируемых приводов
Существует три распространенных частотно-регулируемых привода (VFD), которые обладают как преимуществами, так и недостатками в зависимости от приложения, для которого они используются.Три распространенных конструкции ЧРП включают: инвертор источника тока (CSI), инвертор источника напряжения (VSI) и широтно-импульсную модуляцию (ШИМ). Однако существует четвертый тип частотно-регулируемого привода, называемый векторным приводом потока, который становится все более популярным среди конечных пользователей благодаря своей функции управления с обратной связью. Каждый частотно-регулируемый привод состоит из преобразователя, звена постоянного тока и инвертора, но конструкция каждого из них зависит от привода. Хотя секции каждого частотно-регулируемого привода похожи, они требуют изменения схемы в том, как они подают частоту и напряжение на двигатель.
Инвертор источника тока (CSI)
Инвертор источника тока (CSI) — это тип преобразователя частоты (VFD), который преобразует входящее напряжение переменного тока и изменяет частоту и напряжение, подаваемое на асинхронный двигатель переменного тока. Общая конфигурация этого типа частотно-регулируемого привода аналогична конфигурации других частотно-регулируемых приводов в том, что он состоит из преобразователя, звена постоянного тока и инвертора. В преобразовательной части CSI используются кремниевые выпрямители (SCR), тиристоры с коммутацией затвора (GCT) или симметричные тиристоры с коммутацией затвора (SGCT) для преобразования входящего переменного напряжения в переменное постоянное напряжение.Чтобы поддерживать правильное соотношение напряжения к частоте (Вольт / Герц), напряжение должно регулироваться путем правильной последовательности SCR. В звене постоянного тока для этого типа частотно-регулируемого привода используется индуктор для регулирования пульсаций тока и для хранения энергии, используемой двигателем. Инвертор, который отвечает за преобразование постоянного напряжения обратно в синусоидальную форму сигнала переменного тока, состоит из SCRS, тиристоров отключения затвора (GTO) или симметричных тиристоров с коммутацией затвора (SGCT). Эти тиристоры ведут себя как переключатели, которые включаются и выключаются для создания выхода с широтно-импульсной модуляцией (ШИМ), который регулирует частоту и напряжение двигателя.Частотно-регулируемые приводы CSI регулируют ток, для работы требуется большой внутренний индуктор и нагрузка двигателя. Важным примечанием к конструкциям ЧРП CSI является требование входных и выходных фильтров, которые необходимы из-за высоких гармоник на входе мощности и низкого коэффициента мощности. Чтобы обойти эту проблему, многие производители используют либо входные трансформаторы, либо реакторы и фильтры гармоник в точке общего соединения (электрическая система пользователя, подключенная к приводу), чтобы уменьшить влияние гармоник на систему привода.Из обычных приводных систем с частотно-регулируемым приводом, частотно-регулируемые приводы CSI являются единственным типом приводов, которые имеют возможность рекуперации энергии. Возможность рекуперации энергии означает, что мощность, передаваемая от двигателя обратно к источнику питания, может быть поглощена.
Преимущества CSI
• Возможность рекуперации энергии
• Простая схема
• Надежность (операция ограничения тока)
• Чистая форма кривой тока
Недостатки CSI
• Зубцы двигателя, когда выходная частота ШИМ ниже 6 Гц
• Используемые индукторы большие и дорогостоящие
• Генерация больших гармоник мощности отправляется обратно в источник питания
• Зависит от нагрузки двигателя
• Низкий коэффициент входной мощности
Инвертор источника напряжения (VSI)
Секция преобразователя VSI аналогична секции преобразователя CSI в том, что входящее напряжение переменного тока преобразуется в напряжение постоянного тока.Отличие от секции преобразователя CSI и VSI заключается в том, что VSI использует выпрямитель на диодном мосту для преобразования напряжения переменного тока в напряжение постоянного тока. В звене постоянного тока VSI используются конденсаторы для сглаживания пульсаций постоянного напряжения, а также для хранения энергии для системы привода. Секция инвертора состоит из биполярных транзисторов с изолированным затвором (IGBT), тиристоров с изолированным затвором (IGCT) или транзисторов с инжекционным затвором (IEGT). Эти транзисторы или тиристоры ведут себя как переключатели, которые включаются и выключаются для создания выходного сигнала широтно-импульсной модуляции (ШИМ), который регулирует частоту и напряжение двигателя.
Преимущества VSI
• Простая схема
• Может использоваться в приложениях, требующих нескольких двигателей
• Не зависит от нагрузки
Недостатки VSI
• Генерация больших гармоник мощности в источнике питания
• Зубчатая передача двигателя, когда выходная мощность ШИМ ниже 6 Гц
• Безрегенеративный режим
• Низкий коэффициент мощности
Широтно-импульсная модуляция (ШИМ)
Частотно-регулируемый привод с широтно-импульсной модуляцией (ШИМ) является одним из наиболее часто используемых контроллеров и зарекомендовал себя как хорошо работающий с двигателями мощностью от 1/2 до 500 л.с.Большинство частотно-регулируемых приводов с ШИМ рассчитаны на работу в трехфазном режиме 230 В или 460 В и обеспечивают выходные частоты в диапазоне 2–400 Гц. Как и VSI VFD, PWM VFD использует выпрямитель на диодном мосту для преобразования входящего переменного напряжения в постоянное. В звене постоянного тока используются конденсаторы большой емкости для устранения пульсаций, возникающих после выпрямителя, и создания стабильного напряжения на шине постоянного тока. Шестиступенчатый инверторный каскад этого драйвера использует IGBT высокой мощности, которые включаются и выключаются для регулирования частоты и напряжения двигателя. Эти транзисторы управляются микропроцессором или ИС двигателя, который контролирует различные аспекты привода, чтобы обеспечить правильную последовательность.В результате на двигатель выводится сигнал синусоидальной формы. Так как же включение и выключение транзистора помогает создать синусоидальный выходной сигнал? Изменяя ширину импульса напряжения, вы получаете среднюю мощность, которая представляет собой напряжение, подаваемое на двигатель. Частота, подаваемая на двигатель, определяется количеством переходов из положительного положения в отрицательное в секунду.
Преимущество ШИМ
• Отсутствие зубчатого зацепления двигателя
• КПД от 92% до 96%
• Превосходный коэффициент входной мощности благодаря фиксированному напряжению шины постоянного тока
• Низкая начальная стоимость
• Может использоваться в приложениях, требующих нескольких двигателей
Недостатки ШИМ
• Безрегенеративный режим
• Высокочастотное переключение может вызвать нагрев двигателя и пробой изоляции
Как выбрать двигатель переменного тока
Чтобы выбрать подходящий двигатель переменного тока для конкретного применения, необходимо определить основные характеристики.Рассчитайте требуемый момент нагрузки и рабочую скорость. Помните, что асинхронные и реверсивные двигатели нельзя регулировать; они требуют редуктора. Если это необходимо, выберите подходящее передаточное число. Затем определите частоту и напряжение питания двигателя.
Преимущества и недостатки
Преимущества двигателя переменного тока
— Низкая стоимость
— Длительный срок службы
— Высокая эффективность и надежность
— Простая конструкция
— Высокий пусковой момент (индукция)
— Отсутствие скольжения (синхронное)
Недостатки двигателя переменного тока
— Частота вызывает проскальзывания вращения (индукция)
— Необходим пусковой выключатель (индукция)
Поиск и устранение неисправностей двигателя переменного тока
ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ: Техническая помощь в отношении продуктовой линейки двигателей переменного тока, а также всех продуктов, производимых или распространяемых Anaheim Automation, предоставляется бесплатно.Эта помощь предлагается, чтобы помочь клиенту в выборе продуктов Anaheim Automation для конкретного применения. Во всех случаях ответственность за определение пригодности индивидуального двигателя переменного тока для конкретной конструкции системы лежит исключительно на заказчике. Несмотря на то, что прилагаются все усилия, чтобы дать надежные рекомендации относительно линейки продуктов AC Motor, а также других продуктов для управления движением, а также для точного предоставления технических данных и иллюстраций, такие советы и документы предназначены только для справки и могут быть изменены без предварительного уведомления.
Для устранения неполадок в системе двигателя и контроллера переменного тока могут быть предприняты следующие шаги:
Шаг 1. Проверьте запах двигателя. При появлении запаха гари немедленно замените двигатель.
Шаг 2: Проверьте входное напряжение двигателя. Убедитесь, что провода не повреждены и подключен надлежащий источник питания.
Шаг 3. Прислушайтесь к громкой вибрации или скрипу. Такие шумы могут указывать на повреждение или износ подшипников. Если возможно, смажьте подшипники, в противном случае замените двигатель полностью.
Шаг 4: Проверить на перегрев. С помощью сжатого воздуха очистите двигатель от мусора, дайте ему остыть и перезапустите.
Шаг 5: Двигатели переменного тока, которые пытаются запуститься, но выходят из строя, могут быть признаком плохого пускового конденсатора. Проверьте наличие каких-либо признаков утечки масла и замените конденсатор, если это так.
Шаг 6: Убедитесь, что приложение, в котором вращается двигатель, не заблокировано. Для этого отсоедините механизм и попробуйте запустить двигатель самостоятельно.
Сколько стоят изделия с электродвигателями переменного тока?
Двигатель переменного тока может быть разумным экономичным решением для ваших требований. Конструкционные материалы и конструкция двигателя делают системы двигателей переменного тока доступным решением. Двигатель переменного тока работает с вращающимся магнитным полем и не использует щеток. Это позволяет снизить стоимость двигателя и исключает компонент, который может со временем изнашиваться. Для работы двигателей переменного тока не требуется драйвер.Это экономит начальные затраты на установку. Сегодняшние производственные процессы делают производство двигателей переменного тока проще и быстрее, чем когда-либо. Статор изготовлен из тонких пластин, которые можно прессовать или штамповать на станке с ЧПУ. Многие другие детали можно быстро изготовить и усовершенствовать, сэкономив время и деньги! Anaheim Automation предлагает на выбор полную линейку продукции для двигателей переменного тока.
Физические свойства двигателя переменного тока
Обычно двигатель переменного тока состоит из двух основных компонентов: статора и ротора.Статор — это неподвижная часть двигателя, состоящая из нескольких тонких пластин, намотанных изолированным проводом, образующих сердечник.
Ротор соединен с выходным валом изнутри. Наиболее распространенным типом ротора, используемого в двигателях переменного тока, является ротор с короткозамкнутым ротором, названный в честь его сходства с колесами для упражнений на грызунах.
Статор устанавливается внутри корпуса двигателя, ротор установлен внутри, а между ними имеется зазор, отделяющий их от соприкосновения. Кожух представляет собой корпус двигателя, содержащий два подшипниковых узла.
Формулы для двигателя переменного тока
Синхронная скорость:
Частота:
Количество полюсов:
Мощность в лошадиных силах:
Скольжение двигателя: 4
Глоссарий двигателей переменного тока
Двигатель переменного тока — Электродвигатель, приводимый в действие переменным током, а не постоянным.
Переменный ток — Электрический заряд, который часто меняет направление (противоположно постоянному току, с зарядом только в одном направлении).
Центробежный переключатель — Электрический переключатель, который регулирует скорость вращения вала, работающий за счет центробежной силы, создаваемой самим валом.
Передаточное число — Передаточное число, при котором скорость двигателя уменьшается редуктором. Скорость на выходном валу равна 1 передаточному отношению x скорость двигателя.
Инвертор — Устройство, преобразующее постоянный ток в переменный. Реверс выпрямителя.
Асинхронный двигатель — Может упоминаться как асинхронный двигатель; Тип двигателя переменного тока, в котором электромагнитная индукция питает ротор. Для создания крутящего момента требуется скольжение.
Скорость холостого хода — Обычно ниже синхронной скорости, это скорость, когда двигатель не несет нагрузки.
Номинальная скорость — Скорость двигателя при номинальной выходной мощности.Обычно самая востребованная скорость.
Выпрямитель — Устройство, преобразующее переменный ток в постоянный в двигателе. Они могут использоваться в качестве компонента источника питания или могут обнаруживать радиосигналы. Обычно выпрямители могут состоять из твердотельных диодов, ртутных дуговых клапанов или других веществ. Реверс инвертора.
Выпрямление — Процесс преобразования переменного тока в постоянный с помощью выпрямителя в двигателе переменного тока.
Асинхронный двигатель с разделенной фазой — Двигатели, которые могут создавать больший пусковой крутящий момент за счет использования центробежного переключателя в сочетании со специальной пусковой обмоткой.
Крутящий момент при остановке — Максимальный крутящий момент, с которым двигатель может работать, при определенном напряжении и частоте. Превышение этого количества приведет к остановке двигателя.
Стартовый крутящий момент — крутящий момент, который мгновенно создается при запуске двигателя. Двигатель не будет работать, если нагрузка трения превышает крутящий момент.
Статический момент трения — Когда двигатель останавливается, например, тормозом, это выходной крутящий момент, необходимый для удержания нагрузки при остановке двигателя.
Синхронный двигатель — В отличие от асинхронного двигателя, он может создавать крутящий момент с синхронной скоростью без скольжения.
Синхронная скорость — Обозначается скоростью в минуту, это внутренний фактор, определяемый количеством полюсов и частотой сети.
Привод с регулируемой скоростью — Оборудование, используемое для управления частотой электроэнергии, подаваемой на двигатель переменного тока, с целью управления его скоростью вращения.
Блок-схема для систем, в которых используется двигатель переменного тока
Срок службы двигателя переменного тока
Двигатели переменного токаAnaheim Automation обычно имеют срок службы около 10 000 часов работы, если двигатели работают в надлежащих условиях и в соответствии со спецификациями.
Требуемое обслуживание двигателя переменного тока
Профилактическое обслуживание — ключ к долговечной системе электродвигателя переменного тока.Следует проводить плановую проверку. Всегда проверяйте двигатель переменного тока на предмет загрязнения и коррозии. Грязь и мусор могут закупорить воздушные каналы и уменьшить поток воздуха, что в конечном итоге приведет к сокращению срока службы изоляции и возможному отказу двигателя. Если мусор не виден явно, убедитесь, что поток воздуха постоянный и не слабый. Это также может указывать на засорение. Во влажной, влажной или влажной среде проверьте клеммы в распределительной коробке на предмет коррозии и при необходимости отремонтируйте.
Прислушайтесь к чрезмерному шуму или вибрации и почувствуйте чрезмерное нагревание.Это может указывать на необходимость смазки подшипников. Примечание: Будьте осторожны при смазке подшипников, так как чрезмерная смазка может привести к загрязнению и засорению потоком воздуха маслом. Обязательно найдите и удалите источник тепла для двигателя, чтобы избежать отказа системы.
Примечание: Будьте осторожны при смазке подшипников, так как чрезмерная смазка может привести к загрязнению и засорению потоком воздуха маслом. Обязательно найдите и удалите источник тепла для двигателя, чтобы избежать отказа системы.
Электропроводка двигателя переменного тока
Следующая информация предназначена в качестве общего руководства для электромонтажа линейки двигателей переменного тока Anaheim Automation. Имейте в виду, что при прокладке силовой и сигнальной проводки на машине или системе излучаемый шум от близлежащих реле, трансформаторов и других электронных устройств может индуцироваться в двигателе переменного тока и сигналах энкодера, входных / выходных коммуникациях и других чувствительных низковольтных устройствах. сигналы. Это может вызвать сбои в системе.
ПРЕДУПРЕЖДЕНИЕ — В системе двигателя переменного тока может присутствовать опасное напряжение, способное вызвать травму или смерть. Соблюдайте особую осторожность при обращении, подключении, тестировании и регулировке во время установки, настройки, настройки и эксплуатации. Не делайте чрезмерных корректировок или изменений параметров системы двигателя переменного тока, которые могут вызвать механическую вибрацию и привести к поломке и / или потерям. После того, как система электродвигателя переменного тока подключена, не запускайте ее путем прямого включения / выключения источника питания. Частое включение / выключение питания приведет к быстрому старению компонентов системы, что сократит срок службы системы электродвигателя переменного тока.
Строго соблюдать следующие правила:
• Следуйте схеме подключения к каждому двигателю переменного тока и / или контроллеру.
• Прокладывайте силовые кабели высокого напряжения отдельно от силовых кабелей низкого напряжения.
• Отделите входную силовую проводку и силовые кабели двигателя переменного тока от проводки управления и кабелей обратной связи двигателя. Сохраняйте это разделение на всем протяжении провода.
• Используйте экранированный кабель для силовой проводки и обеспечьте заземленный зажим на 360 градусов к стене корпуса.Оставьте на вспомогательной панели место для изгибов проводов.
• Сделайте все кабельные трассы как можно короче.
• Обеспечьте достаточный воздушный поток
• Сохраняйте окружающую среду как можно более чистой
ПРИМЕЧАНИЕ: Кабели заводского изготовления рекомендуются для использования в наших системах двигателей переменного тока. Эти кабели приобретаются отдельно и предназначены для минимизации электромагнитных помех. Эти кабели рекомендуется использовать вместо кабелей, изготовленных заказчиком, чтобы оптимизировать работу системы и обеспечить дополнительную безопасность для системы электродвигателя переменного тока, а также для пользователя.
ПРЕДУПРЕЖДЕНИЕ — Во избежание поражения электрическим током выполните все монтажные и электромонтажные работы двигателя переменного тока перед подачей питания. После подачи питания на соединительные клеммы может присутствовать напряжение.
Монтаж двигателя переменного тока
Следующая информация предназначена в качестве общего руководства по установке и монтажу системы электродвигателя переменного тока. ПРЕДУПРЕЖДЕНИЕ — В системе двигателя переменного тока может присутствовать опасное напряжение, способное вызвать травму или смерть.Соблюдайте особую осторожность при обращении, тестировании и регулировке во время установки, настройки и эксплуатации. При установке и монтаже очень важно учитывать проводку двигателя переменного тока. Субпанели, устанавливаемые внутри корпуса для монтажа компонентов системы, должны иметь плоскую жесткую поверхность, защищенную от ударов, вибрации, влаги, масла, паров или пыли. Помните, что двигатель переменного тока выделяет тепло во время работы; поэтому при проектировании компоновки системы следует учитывать рассеивание тепла.Размер корпуса не должен превышать максимально допустимую температуру окружающей среды. Рекомендуется устанавливать двигатель переменного тока в положение, обеспечивающее достаточный воздушный поток. Электродвигатель переменного тока должен быть устойчиво закреплен и надежно закреплен.
ПРИМЕЧАНИЕ: Между электродвигателем переменного тока и любыми другими устройствами, установленными в системе / электрической панели или шкафу, должно быть не менее 10 мм.
Чтобы соответствовать требованиям UL и CE, система электродвигателя переменного тока должна быть заземлена в заземленном проводящем корпусе, обеспечивающем защиту, как определено в стандарте EN 60529 (IEC 529) до IP55, таким образом, чтобы они были недоступны для оператора или неквалифицированного человека. .Как и любую движущуюся часть системы, двигатель переменного тока следует держать вне досягаемости оператора. Корпус NEMA 4X превосходит эти требования, обеспечивая степень защиты IP66. Чтобы улучшить соединение между шиной питания и дополнительной панелью, сконструируйте дополнительную панель из оцинкованной (не содержащей краски) стали. Кроме того, настоятельно рекомендуется защитить систему электродвигателя переменного тока от электрических помех. Шум от сигнальных проводов может вызвать механическую вибрацию и неисправности.
Экологические аспекты двигателя переменного тока
Следующие меры по охране окружающей среды и безопасности должны соблюдаться на всех этапах эксплуатации, обслуживания и ремонта системы электродвигателя переменного тока.Несоблюдение этих мер предосторожности нарушает стандарты безопасности при проектировании, производстве и предполагаемом использовании двигателя переменного тока. Обратите внимание, что даже правильно построенная система электродвигателя переменного тока, неправильно установленная и эксплуатируемая, может быть опасной. Пользователь должен соблюдать меры предосторожности в отношении нагрузки и условий эксплуатации. В конечном итоге заказчик несет ответственность за правильный выбор, установку и работу двигателя переменного тока и / или регулятора скорости.
Атмосфера, в которой используется двигатель переменного тока, должна способствовать соблюдению общих правил работы с электрическим / электронным оборудованием.Не эксплуатируйте систему электродвигателя переменного тока в присутствии легковоспламеняющихся газов, пыли, масла, пара или влаги. При использовании вне помещений двигатель переменного тока должен быть защищен от атмосферных воздействий соответствующей крышкой, обеспечивая при этом достаточный поток воздуха и охлаждение. Влага может вызвать опасность поражения электрическим током и / или вызвать поломку системы. Следует уделять должное внимание недопущению попадания любых жидкостей и паров. Свяжитесь с заводом-изготовителем, если для вашего приложения требуются определенные степени защиты IP. Разумно устанавливать двигатель переменного тока в среде, свободной от конденсации, электрических шумов, вибрации и ударов.
Кроме того, предпочтительно работать с системой электродвигателя переменного тока в нестатической защитной среде. Открытые цепи всегда должны быть надлежащим образом ограждены и / или закрыты для предотвращения несанкционированного контакта человека с цепями под напряжением. Запрещается выполнять какие-либо работы при включенном питании.
НЕ подключайте и не отключайте питание при включенном питании. После выключения питания подождите не менее 5 минут, прежде чем проводить инспекционные работы в системе двигателя переменного тока, потому что даже после отключения питания в конденсаторах внутренней цепи системы двигателя переменного тока будет оставаться некоторая электрическая энергия.
Спланируйте установку двигателя переменного тока в конструкции системы, свободной от мусора, такого как металлический мусор от резки, сверления, нарезания резьбы и сварки, или любого другого постороннего материала, который может контактировать с схемами системы. Если не предотвратить попадание мусора в систему двигателя переменного тока, это может привести к повреждению и / или поражению электрическим током.
История двигателя переменного тока
Изобретение двигателя переменного тока
Асинхронные двигатели переменного тока используются в отрасли уже более 20 лет.Идея двигателя переменного тока возникла у Николы Теслы в 1880-х годах. Никола Тесла заявил, что двигателям не нужны щетки для переключения ротора. Он сказал, что они могут быть вызваны вращающимся магнитным полем. Никола Тесла обнаружил использование переменного тока, который индуцирует вращающиеся магнитные поля. Тесла подал патент США номер 416194 на работу над двигателем переменного тока. Этот тип двигателя сегодня мы называем асинхронным двигателем переменного тока.
Развитие двигателя переменного тока
Двигатель переменного тока сделал себе имя благодаря простой конструкции, простоте использования, прочной конструкции и рентабельности для множества различных применений.Достижения в области технологий позволили производителям развить идею Telsa и обеспечили большую гибкость в регулировании скорости асинхронного двигателя переменного тока. От простого фазового управления до более надежных систем с обратной связью, использующих векторно-ориентированное управление полем; Двигатель переменного тока усовершенствовался за последние сто двадцать лет.
Принадлежности для двигателей переменного тока
Для двигателей переменного тока существует широкий выбор принадлежностей. Доступные аксессуары включают тормоз, сцепление, вентилятор, разъем и кабели. Для получения более подробной информации и дополнительных сведений см. Страницу «Аксессуары» Anaheim Automation.
Тормоза двигателя переменного тока представляют собой систему 24 В постоянного тока. Эти тормоза идеально подходят для любых удерживающих устройств, которые вы можете использовать с электродвигателем переменного тока. Тормоза электродвигателя переменного тока имеют низковольтную конструкцию для приложений, которые подвержены разряду батареи, потере энергии или длинной проводке.
Муфта двигателя переменного тока используется для управления крутящим моментом, прилагаемым к нагрузке. Муфту двигателя переменного тока также можно использовать для увеличения скорости нагрузки с высоким моментом инерции.Муфты идеально подходят для использования с электродвигателем переменного тока, когда вы хотите точно контролировать крутящий момент или медленно прикладывать мощность. Муфты электродвигателя переменного тока также помогают предотвратить резкие скачки тока.
Вентиляторы двигателей переменного тока используются для охлаждения двигателей. Обычно они не встречаются в небольших двигателях, потому что они не нужны, но чаще встречаются в более крупных асинхронных двигателях переменного тока из-за тепловыделения. Есть два типа вентиляторов, которые используются для двигателя переменного тока. Типы бывают внутренние и внешние вентиляторы. Вентиляторы электродвигателей переменного тока идеально подходят для использования, когда возникает проблема перегрева.
Кабели двигателя переменного тока могут быть изготовлены по индивидуальному заказу с поставляемым разъемом двигателя переменного тока в соответствии с заданными спецификациями. Кабели также можно приобрести в компании Anaheim Automation.
Если двигатели переменного тока не идеальны для вашего применения, вы можете рассмотреть бесщеточные двигатели постоянного тока, щеточные двигатели постоянного тока, сервоприводы или шаговые двигатели и их совместимые драйверы / контроллеры. Наряду с двигателями переменного тока Anaheim Automation предлагает коробки передач и регуляторы скорости. Дополнительные продукты Anaheim Automation предлагает: энкодеры, HMI, муфты, кабели и соединители, линейные направляющие.
Настройка двигателя переменного тока
Anaheim Automation была основана в 1966 году как производитель систем управления перемещением «под ключ». Его упор на исследования и разработки обеспечил постоянное внедрение передовых продуктов управления движением, таких как линейка продуктов AC Motor. Сегодня Anaheim Automation занимает высокое место среди ведущих производителей и дистрибьюторов продукции для управления движением, и это положение усиливается ее отличной репутацией в области качественной продукции по конкурентоспособным ценам.Линия продуктов AC Motor не является исключением из целей компании.
Anaheim Automation предлагает широкий выбор стандартных двигателей переменного тока. Иногда OEM-заказчики со средним и большим количеством требований предпочитают иметь двигатель переменного тока, который настраивается или модифицируется в соответствии с их точными требованиями к конструкции. Иногда настройка настолько проста, как модификация вала, тормоз, масляное уплотнение для степени защиты IP65, установочные размеры, цвета проводов или этикетка. В других случаях заказчик может потребовать, чтобы двигатель переменного тока соответствовал идеальным характеристикам, таким как скорость, крутящий момент и / или напряжение.Для получения более подробной информации обсудите требования к вашему приложению с инженером по автоматизации в Анахайме.
Двигатель переменного тока Anaheim Automation
Инженерыценят то, что линейка двигателей переменного тока Anaheim Automation может удовлетворить их стремление к творчеству, гибкости и эффективности системы. Покупатели ценят простоту «универсального магазина» и экономию затрат на индивидуальную конструкцию двигателя переменного тока, в то время как инженеры довольны тем, что Anaheim Automation уделяет особое внимание их конкретным системным требованиям.
Стандартная линейка двигателей переменного тока Anaheim Automation представляет собой экономичное решение, поскольку они известны своей прочной конструкцией и отличными характеристиками. Значительный рост продаж компании явился результатом целенаправленного проектирования, дружелюбного обслуживания клиентов и профессиональной поддержки приложений, что часто превосходит ожидания клиентов в отношении выполнения их индивидуальных требований. Хотя значительная часть продаж двигателей переменного тока Anaheim Automation связана с особыми, индивидуальными требованиями или требованиями частной марки, компания гордится своей стандартной складской базой, расположенной в Анахайме, Калифорния, США.Чтобы сделать индивидуальную настройку двигателя переменного тока доступной, требуется минимальное количество и / или плата за непериодическое проектирование (NRE). Свяжитесь с заводом-изготовителем для получения подробной информации, если вам потребуется специальный двигатель переменного тока в конструкции вашей системы управления движением.
Все продажи индивидуализированного или модифицированного двигателя переменного тока не подлежат отмене и возврату, и для каждого запроса клиент должен подписывать соглашение NCNR. Все продажи, включая индивидуальный двигатель переменного тока, осуществляются в соответствии со стандартными положениями и условиями Anaheim Automation и заменяют любые другие явно выраженные или подразумеваемые условия, включая, помимо прочего, любые подразумеваемые гарантии.
Anaheim Automation заказывает линейку продуктов AC Motor разнообразно: компании, эксплуатирующие или проектирующие автоматизированное оборудование или процессы, которые включают в себя пищевую, косметическую или медицинскую упаковку, маркировку или требования защиты от несанкционированного вскрытия, сборку, конвейер, погрузочно-разгрузочные работы, робототехнику, специальную киносъемку и т. Д. проекционные эффекты, медицинская диагностика, устройства контроля и безопасности, управление потоком насосов, изготовление металла (станки с ЧПУ) и модернизация оборудования. Многие OEM-заказчики требуют, чтобы мы присвоили двигателю переменного тока «частную марку», чтобы их клиенты оставались верными им при обслуживании, замене и ремонте.
Тест двигателя переменного тока
Q: Какие три основных типа электродвигателей переменного тока предлагает Anaheim Automation?
A: Индукционные, синхронные и промышленные
Q: Каковы компоненты частотно-регулируемого привода?
A: Частотно-регулируемый привод включает двигатель переменного тока, контроллер и интерфейс оператора.
В: Какой двигатель обычно используется в частотно-регулируемом приводе?
A: Трехфазный асинхронный двигатель
В: Каковы основные компоненты двигателя переменного тока?
A: Стационарный статор, который находится снаружи и имеет катушки, на которые подается переменный ток, и внутренний ротор, прикрепленный к выходному валу.
В: Почему необходимо подключать конденсатор к асинхронному двигателю переменного тока?
A: Любой двигатель ACP-M, считающийся однофазным асинхронным двигателем, является двигателем с конденсаторным приводом. Следовательно, для его запуска необходимо создать вращающееся магнитное поле. Конденсаторы создают источник питания с фазовым сдвигом, который необходим для создания необходимого вращательного магнитного поля. С другой стороны, трехфазные двигатели всегда подают питание с разными фазами, поэтому им не нужны конденсаторы.
В: Что подразумевается под реверсивным двигателем, рассчитанным на 30 минут?
A: Двигатель рассчитан на оптимальную работу не более 30 минут. Если работать постоянно, двигатель перегорит.
Часто задаваемые вопросы по двигателям переменного тока:
В: Почему следует выбрать трехфазный двигатель вместо однофазного?
A: Однофазные двигатели переменного тока мощностью более 10 л.с. (7,5 кВт) обычно не так распространены. Трехфазные двигатели менее вибрируют, что продлевает срок их службы по сравнению с однофазными двигателями той же мощности, используемыми в тех же условиях.
В: В чем разница между частотно-регулируемым приводом и частотно-регулируемым приводом?
A: Приводы с переменной частотой (VFD) обычно относятся только к приводам переменного тока, в то время как приводы с регулируемой скоростью (VSD) могут относиться либо к приводу переменного тока, либо к приводу постоянного тока. VFD управляет скоростью двигателя переменного тока, изменяя частоту двигателя. С другой стороны, преобразователи частоты изменяют напряжение для управления двигателем постоянного тока.
Q: Могу ли я изменить направление вращения асинхронного двигателя переменного тока, если я подключил его, как показано в каталоге, например, ACP-M-4IK25N-AU?
A: Да, можно.Однако перед переключением направления убедитесь, что двигатель полностью остановлен. Если требуется немедленное реверсирование, реверсивный двигатель лучше подходит для данной области применения; например ACP-M-4RK25N-AU.
Q: Можно ли изменить скорость асинхронных двигателей переменного тока и реверсивных двигателей?
A: Частота источника питания определяет скорость однофазных (переменного тока) асинхронных и реверсивных двигателей. Если ваше приложение требует изменения скорости, рекомендуется использовать двигатель с регулировкой скорости.
В: Будет ли временное хранение моего асинхронного двигателя переменного тока при температуре от 0 ° F до -20 ° F создавать какие-либо проблемы?
A: Резкие перепады температуры могут привести к конденсации влаги внутри двигателя. В этом случае компоненты могут заржаветь, что значительно сократит срок службы. Постарайтесь избежать образования конденсата.
В: Это плохо, если мой асинхронный двигатель переменного тока сильно нагревается?
A: При преобразовании электрической энергии во вращательное движение внутри двигателя выделяется тепло, что делает его горячим.Температура двигателя переменного тока равна повышению температуры, вызванному потерями в двигателе, плюс температура окружающей среды. Если температура окружающей среды составляет 85 ° F, а внутренние потери в двигателе составляют 90 ° F (32 ° C), поверхность двигателя будет 175 ° F (79 ° C). Это не типично для маленького мотора.
В: Почему некоторые редукторы электродвигателя переменного тока выводят выходной сигнал противоположно двигателю, а другие — в том же направлении?
A: Редукторы снижают скорость двигателя от 1/3 до 1/180 (для асинхронных двигателей переменного тока.) Это снижение скорости является результатом использования нескольких передач; количество передач в зависимости от величины снижения скорости. Однако вращение последней шестерни определяет направление выходного вала.
В: Повлияют ли на асинхронный двигатель переменного тока большие колебания напряжения источника питания?
A: Напряжение источника питания влияет на крутящий момент, создаваемый двигателем. Крутящий момент примерно в два раза больше напряжения источника питания. Таким образом, при использовании двигателей с большими колебаниями напряжения питания важно помнить, что создаваемый крутящий момент будет изменяться.
Регулировка скорости трехфазного асинхронного двигателя
Трехфазный асинхронный двигатель в основном представляет собой двигатель с постоянной скоростью, поэтому контролировать его скорость довольно сложно. Управление скоростью асинхронного двигателя осуществляется за счет снижения КПД и низкого коэффициента электрической мощности. Прежде чем обсуждать способы управления скоростью трехфазного асинхронного двигателя , необходимо знать основные формулы скорости и крутящего момента трехфазного асинхронного двигателя, поскольку методы управления скоростью зависят от этих формул.
Синхронная скорость
Где f = частота, а P — количество полюсов
Скорость асинхронного двигателя определяется как,
Где
Н — скорость ротора асинхронного двигателя,
Н s — синхронная скорость,
S — скольжение.
Крутящий момент, создаваемый трехфазным асинхронным двигателем, равен:
Когда ротор находится в состоянии скольжения в состоянии покоя, s равно единице.
Итак, уравнение крутящего момента:
Где
E 2 — ЭДС ротора
Н с — синхронная скорость
R 2 — сопротивление ротора
X 2 — индуктивное сопротивление ротора
Скорость асинхронного двигателя изменяется как со стороны статора, так и со стороны ротора.Управление скоростью трехфазного асинхронного двигателя со стороны статора дополнительно классифицируется как:
- Управление напряжением / частотой или регулирование частоты.
- Изменение количества полюсов статора.
- Управляющее напряжение питания.
- Добавление реостата в цепь статора.
Регуляторы скорости трехфазного асинхронного двигателя со стороны ротора далее классифицируются как:
- Добавление внешнего сопротивления со стороны ротора.
- Каскадный метод управления.
- Ввод ЭДС частоты скольжения в сторону ротора.
Управление скоростью со стороны статора
Управление U / f или управление частотой
Когда трехфазное питание подается на трехфазный асинхронный двигатель, создается вращающееся магнитное поле, которое вращается с синхронной скоростью, заданной параметром
In three ЭДС фазного асинхронного двигателя индуцируется индукцией, аналогичной индукции трансформатора, которая определяется по формуле
, где K — постоянная обмотки, T — количество витков на фазу, а f — частота.Теперь, если мы изменим частоту, синхронная скорость изменится, но с уменьшением частоты поток будет увеличиваться, и это изменение значения потока вызовет насыщение сердечников ротора и статора, что в дальнейшем приведет к увеличению тока холостого хода двигателя. Таким образом, важно поддерживать постоянный поток φ, и это возможно только при изменении напряжения. то есть, если мы уменьшаем частоту, поток увеличивается, но в то же время, если мы уменьшаем поток напряжения, он также уменьшается, не вызывая изменения потока, и, следовательно, он остается постоянным.Итак, здесь мы сохраняем отношение V / f постоянным. Отсюда его название — метод V / f. Для управления скоростью трехфазного асинхронного двигателя методом V / f мы должны подавать переменное напряжение и частоту, которые легко получить с помощью преобразователя и набора инверторов.Управляющее напряжение питания
Крутящий момент, создаваемый при работе трехфазного асинхронного двигателя, задается
В области малого скольжения (sX) 2 очень и очень мал по сравнению с R 2 .Значит, им можно пренебречь. Таким образом, крутящий момент становится
Поскольку сопротивление ротора R 2 является постоянным, уравнение крутящего момента дополнительно сокращается до
Мы знаем, что ЭДС, индуцированная ротором E 2 V. Итак, T ∝ sV 2 .
Из приведенного выше уравнения видно, что при уменьшении напряжения питания момент также будет уменьшаться. Но для обеспечения той же нагрузки крутящий момент должен оставаться неизменным, и это возможно только в том случае, если мы увеличим скольжение, и если скольжение увеличивается, двигатель будет работать с пониженной скоростью.Этот метод управления скоростью используется редко, потому что небольшое изменение скорости требует большого снижения напряжения, и, следовательно, ток, потребляемый двигателем, увеличивается, что вызывает перегрев асинхронного двигателя.Изменение количества полюсов статора:
Полюса статора можно изменить двумя способами.
Метод множественной намотки статора.
Метод полюсной амплитудной модуляции (PAM)
Метод множественной обмотки статора
В этом методе управления скоростью трехфазного асинхронного двигателя мы обеспечиваем две отдельные обмотки в статоре.Эти две обмотки статора электрически изолированы друг от друга и намотаны на два разного числа полюсов. При использовании переключающего устройства питание подается только на одну обмотку, и, следовательно, возможно регулирование скорости. Недостатки этого метода в том, что плавное регулирование скорости невозможно. Этот метод более дорогостоящий и менее эффективный, поскольку требуются две разные обмотки статора. Этот метод управления скоростью может применяться только к двигателям с короткозамкнутым ротором.
Метод полюсной амплитудной модуляции (PAM)
В этом методе управления скоростью трехфазного асинхронного двигателя исходная синусоидальная волна MMF модулируется другой синусоидальной волной MMF, имеющей другое количество полюсов.
Пусть f 1 (θ) будет исходной миллиметровой волной асинхронного двигателя, скорость которого необходимо контролировать.
f 2 (θ) — волна ММЧ модуляции.
P 1 — количество полюсов асинхронного двигателя, скорость которого необходимо регулировать.
P 2 — количество полюсов волны модуляции.
После модуляции результирующая волна mmf
Итак, мы получаем результирующую волну mmf
Следовательно, результирующая волна mmf будет иметь два разных числа полюсов
Следовательно, изменяя количество полюсов, мы можем легко изменить скорость трехфазного асинхронного двигателя .
Добавление реостата в цепь статора
В этом методе управления скоростью трехфазного асинхронного двигателя реостат добавляется в цепь статора из-за падения этого напряжения. В случае трехфазного асинхронного двигателя создаваемый крутящий момент задается T ∝ SV 2 2 . При уменьшении напряжения питания уменьшится и крутящий момент. Но для обеспечения той же нагрузки крутящий момент должен оставаться неизменным, и это возможно только в том случае, если мы увеличим скольжение и если двигатель с увеличением скольжения будет работать на пониженной скорости.
Управление скоростью со стороны ротора
Добавление внешнего сопротивления на стороне ротора
В этом методе управления скоростью трехфазного асинхронного двигателя внешнее сопротивление добавляется на стороне ротора. Уравнение крутящего момента для трехфазного асинхронного двигателя:
Трехфазный асинхронный двигатель работает в области с низким скольжением. В области низкого проскальзывания член (sX) 2 становится очень маленьким по сравнению с R 2 . Значит, им можно пренебречь.а также E 2 постоянно. Таким образом, уравнение крутящего момента после упрощения выглядит следующим образом:
Теперь, если мы увеличиваем сопротивление ротора, крутящий момент R 2 уменьшается, но для обеспечения той же нагрузки крутящий момент должен оставаться постоянным. Таким образом, мы увеличиваем скольжение, что в дальнейшем приведет к снижению скорости вращения ротора. Таким образом, добавляя дополнительное сопротивление в цепь ротора, мы можем уменьшить скорость трехфазного асинхронного двигателя. Основным преимуществом этого метода является то, что с добавлением внешнего сопротивления пусковой момент увеличивается, но этот метод управления скоростью трехфазного асинхронного двигателя также имеет некоторые недостатки:- Скорость выше нормального значения невозможна.
- Большое изменение скорости требует большого значения сопротивления, и если такое большое значение сопротивления добавлено в схему, это вызовет большие потери в меди и, следовательно, снижение эффективности.
- Наличие сопротивления приводит к большим потерям.
- Этот метод нельзя использовать для асинхронного двигателя с короткозамкнутым ротором.
Метод каскадного управления
В этом методе управления скоростью трехфазного асинхронного двигателя два трехфазных асинхронных двигателя соединены на общем валу и, следовательно, называются каскадным двигателем.Один двигатель называется основным двигателем, а другой двигатель — вспомогательным. Трехфазное питание подается на статор основного двигателя, в то время как вспомогательный двигатель получает частоту скольжения от контактного кольца основного двигателя.
Пусть N S1 будет синхронной скоростью главного двигателя.
N S2 — синхронная скорость вспомогательного двигателя.
P 1 — количество полюсов главного двигателя.
P 2 — количество полюсов вспомогательного двигателя.
F — частота питания.
F 1 — частота ЭДС ротора главного двигателя.
Н — это скорость установки, она остается одинаковой как для основного, так и для вспомогательного двигателя, поскольку оба двигателя установлены на общем валу.
S 1 — скольжение главного двигателя.
Вспомогательный двигатель питается с той же частотой, что и основной двигатель, т.е.
Теперь введите значение
Теперь без нагрузки скорость вспомогательного ротора почти такая же, как его синхронная скорость i.e N = N S2
Теперь измените приведенное выше уравнение и найдите значение N, мы получим
Этот каскадный набор из двух двигателей теперь будет работать на новой скорости с количеством полюсов (P 1 + P 2 ). В описанном выше методе крутящий момент, создаваемый основным и вспомогательным двигателями, будет действовать в одном направлении, что приведет к количеству полюсов (P 1 + P 2 ). Такой тип каскадирования называется накопительным каскадом. Существует еще один тип каскадирования, при котором крутящий момент, создаваемый основным двигателем, противоположен направлению вращения вспомогательного двигателя.Такой тип каскадирования называется дифференциальным каскадированием; в результате скорость соответствует количеству полюсов (P 1 — P 2 ).
В этом методе управления скоростью трехфазного асинхронного двигателя можно получить четыре различных скорости.- Когда работает только основной асинхронный двигатель, скорость соответствует.
- Когда работает только вспомогательный асинхронный двигатель, скорость соответствует.
- Когда выполняется кумулятивное каскадирование, полный набор работает со скоростью.
- Когда выполняется дифференциальное каскадирование, полный набор работает со скоростью.
Ввод ЭДС частоты скольжения в сторону ротора
Когда управление скоростью трехфазного асинхронного двигателя осуществляется путем добавления сопротивления в цепи ротора, называемой некоторой частью мощности, мощность скольжения теряется как I 2 R потери . Поэтому эффективность трехфазного асинхронного двигателя снижается при использовании этого метода регулирования скорости. Эти потери мощности скольжения могут быть восстановлены и возвращены для повышения общей эффективности трехфазного асинхронного двигателя, и эта схема восстановления мощности называется схемой восстановления мощности скольжения, и это достигается путем подключения внешнего источника ЭДС частоты скольжения. к цепи ротора.Инжектированная ЭДС может либо противодействовать ЭДС, индуцированной ротором, либо способствовать ЭДС, индуцированной ротором. Если он противодействует ЭДС, индуцированной ротором, общее сопротивление ротора увеличивается, и, следовательно, скорость уменьшается, а если инжектируемая ЭДС помогает ЭДС главного ротора, общая уменьшается и, следовательно, увеличивается скорость. Следовательно, вводя в цепь ротора наведенную ЭДС, можно легко управлять скоростью. Основное преимущество этого типа управления скоростью трехфазного асинхронного двигателя заключается в том, что можно регулировать скорость в широком диапазоне, будь то скорость выше нормальной или ниже нормальной.
Что такое регулирование скорости асинхронного двигателя?
— Объявление —
Управление скоростью асинхронного двигателя. Асинхронный двигатель — это двигатель с постоянной скоростью, что в практическом смысле означает, что изменение скорости двигателя приблизительно мало по сравнению с общим уровнем нагрузки. Хотя скорость шунтирующей системы постоянного тока может быть слишком просто изменена с соответствующей эффективностью, падение скорости асинхронных двигателей может вызвать значительную потерю эффективности и снизить коэффициент мощности.Поскольку асинхронные двигатели широко используются в различных приложениях, регулирование скорости асинхронного двигателя является важным фактором. Итак, ниже в этом посте обсуждаются различные методы контроля скорости.
Введение в управление скоростью асинхронного двигателяВ нашей среде для общих целей используются несколько типов двигателей, от бытовых устройств до машинных систем в промышленных приложениях. В настоящее время электродвигатель является незаменимым и жизненно важным источником энергии во многих отраслях промышленности.Характеристики и функции, необходимые для этих двигателей, слишком широки.
Если вы рассматриваете проблему управления скоростью двигателей, доступных на рынке, шаговые и сервосистемы контролируют их скорость с шагом импульса, тогда как бесщеточные двигатели постоянного тока и асинхронные двигатели определяют скорость с помощью дополнительного резистора или источника постоянного напряжения. Например, трехфазная индукционная система — это, по сути, двигатель с фиксированной скоростью. Так что следить за его скоростью относительно сложно. Однако управление скоростью асинхронного двигателя используется для решения проблем снижения эффективности и повышения коэффициента электрической мощности.Схема управления скоростью асинхронного двигателя
(Ссылка: circuitglobe.com )В этом сообщении представлены принцип управления скоростью, структура и характеристики различных методов, которые могут относительно просто определять скорость, используя определенные схемы. Посетите здесь, чтобы подробно изучить управление скоростью асинхронного двигателя. Скорость асинхронного двигателя может быть исследована со стороны ротора и статора.
Управление скоростью асинхронного двигателя на основе статора можно разделить на следующие категории:
- Контроль напряжения / частоты или регулятор частоты
- Изменение значений полюсов статора.
- Контроль напряжения питания.
- Добавление переменного реостата в систему статора
Управление скоростью индукционной системы в зависимости от стороны ротора классифицируется как:
- Использование дополнительного сопротивления на секции ротора
- Способ управления каскадом
- Ввод ЭДС определенной частоты скольжения в секция ротора
Согласно формуле крутящего момента асинхронного двигателя,
T = \ frac {{K} _ { 1} s {E} _ {2} ^ {2} {R} _ {2}} {\ sqrt {({R} _ {2} ^ {2} + {(s {X} _ {2}) } ^ {2})}} = \ frac {3} {2 \ pi {N} _ {s}} \ frac {s {E} _ {2} ^ {2} {R} _ {2}} { \ sqrt {({R} _ {2} ^ {2} + {(s {X} _ {2})} ^ {2})}}
Сопротивление ротора R 2 фиксировано, и если проскальзывание значение (я) довольно мало, член (sX 2 ) 2 также мал t что его можно снять.Таким образом, T может быть связано с sE 2 2 , где E 2 — ЭДС, индуцированная в роторе, а E 2 ∝ V.
Следовательно, T можно оценить на основе (sV 2 ), Это означает, что при уменьшении необходимого напряжения конечный крутящий момент падает. Следовательно, скольжение увеличивается, чтобы обеспечить тот же момент нагрузки с уменьшением напряжения, и, как результат, скорость уменьшается. Этот метод слишком прост и эффективен, но используется редко, поскольку для относительно небольшого изменения скорости требуется большое изменение выходного напряжения.
Другими словами, большое изменение конечного напряжения вызовет большое изменение плотности потока и нарушит магнитные состояния системы.
Путем изменения приложенной частотыСинхронная скорость движущегося магнитного поля в асинхронном двигателе может быть рассчитана по формуле
{N} _ {s} = \ frac {120f} {P} (об / мин)
где f — частота системы, а P — количество полюсов статора.Синхронная скорость меняется с изменением частоты системы.
Реальная скорость асинхронного двигателя задается следующим уравнением:
N = {N} _ {s} (1-s)
Хотя этот метод обычно не используется, его можно использовать там, где двигатель поддерживается внешним генератором (так что частота может быть просто изменена изменением скорости главного двигателя). Ток двигателя на более низкой частоте может увеличиваться в зависимости от значения реактивного сопротивления.И если частота повышается сверх стандартного значения, максимальный крутящий момент уменьшается, а скорость увеличивается.
В асинхронном двигателе ЭДС представлена индукцией, как в трансформаторе, которая задается формулой
E \ quad или \ quad V \ quad = \ quad 4.44 \ phi KTf \ quad или \ quad \ phi = \ frac { V} {4.44KTf}
В этом уравнении K — коэффициент обмотки, f — частота, а T — количество оборотов на фазу. Теперь, если мы изменим частоту, синхронная скорость также изменится, но с уменьшением частотного потока, и это изменение потока вызовет состояние насыщения в сердечниках ротора и статора.Следовательно, очень важно поддерживать постоянный поток, и это возможно только в том случае, если мы изменим напряжение. Таким образом, соотношение V / f должно оставаться постоянным. Это метод V / f. Мы должны подавать изменяемое напряжение и частоту для управления скоростью асинхронного двигателя методом V / f, используя инвертор и преобразователь.
Постоянное регулирование скорости вращения асинхронного двигателяЭто наиболее распространенное решение для управления скоростью асинхронного двигателя. Подобно описанному выше методу, если частота системы снижается при сохранении номинального напряжения источника, поток воздушного зазора будет насыщаться.Это вызовет дополнительный ток в статоре и искажение магнитного потока. Таким образом, напряжение статора должно уменьшаться с увеличением частоты, чтобы магнитный поток оставался постоянным.
Величина магнитного потока статора связана с напряжением статора и частотой системы. Таким образом, если скорость напряжения и частоты поддерживаются постоянными, магнитный поток также остается фиксированным. Развиваемый крутящий момент остается относительно постоянным, если V / F остается неизменным. Это решение обеспечивает большую эффективность во время выполнения. Таким образом, несколько типов скоростных приводов применяют режим постоянного напряжения / частоты (или переменную частоту на основе метода переменного напряжения) для управления скоростью асинхронного двигателя.Наряду с широким контролем скорости это решение также обеспечивает возможность плавного пуска.
Изменение количества полюсов статораПолюса статора можно изменять и изменять двумя способами, включая множественную системную обмотку (MSW) и модуляцию амплитуды полюса (PAM).
Метод множественной обмотки статораМы поставляем две разделенные обмотки для этого метода управления скоростью асинхронного двигателя в статоре. Эти две конкретные обмотки электрически разделены друг от друга и имеют два различных числа полюсов.Применение конфигурации переключения на одной обмотке может обеспечить возможность регулирования скорости. Это решение имеет ряд недостатков, в том числе отсутствие плавного регулирования скорости. Кроме того, этот способ слишком дорог и менее эффективен из-за использования двух разных обмоток.
Наконец, этот метод можно использовать только для двигателей с короткозамкнутым ротором. Можно видеть, что рабочая скорость может быть изменена изменением полюсов статора из приведенной выше формулы синхронной скорости. Таким образом, этот метод обычно используется для асинхронных двигателей с короткозамкнутым ротором, поскольку ротор этого типа самовосстанавливается для любого числа полюсов.Изменение полюсов статора обеспечивается двумя или более специальными обмотками статора, изолированными для различного количества полюсов в одних и тех же секциях.
Например, система снабжена двумя 3-фазными обмотками, одна на 6 полюсов, а другая на 8 полюсов, чтобы обеспечить частоту 60 Гц
- i) можно рассчитать синхронную скорость по 6-полюсным обмоткам, N с = 120 * 60/6 = 1200 об / мин
- ii) можно рассчитать синхронную скорость по 8-полюсным обмоткам, Н с = 120 * 60/8 = 900 об / мин
Первичная синусоидальная волна mmf чередуется с другой конкретной волной mmf, включая другое количество полюсов в этом методе управления скоростью асинхронного двигателя.
Предположим, что f 1 (θ) — это основная волна mmf асинхронного двигателя, скорость которой необходимо определить, f 2 (θ) — волна mmf модуляции, P 1 — количество полюсов системы. скорость которого необходимо контролировать, а P 2 — количество полюсов вторичной волны.
{f} _ {1} (\ theta) = {F} _ {1} sin \ frac {{P} _ {1} \ theta} {2}
{f} _ {2} (\ theta) = {F} _ {2} sin \ frac {{P} _ {2} \ theta} {2}
Итак, мы можем получить модулирующую результирующую волну mmf как:
{F } _ {r} (\ theta) = {F} _ {1} {F} _ {2} sin \ frac {{P} _ {1} \ theta} {2} sin \ frac {{P} _ { 2} \ theta} {2}
Применяя синусоидальную формулу, мы наконец получим результирующую волну mmf как:
{F} _ {r} (\ theta) = {F} _ {1} {F} _ {2} \ frac {cos \ frac {({P} _ {1} — {P} _ {2}) \ theta} {2} -cos \ frac {({P} _ {1} + {P} _ {2}) \ theta} {2}} {2}
Это означает, что результирующая волна mmf будет включать два различных числа полюсов, т.е.е;
{P} _ {11} = {P} _ {1} — {P} _ {2} \ quad и \ quad {P} _ {12} = {P} _ {1} + {P } _ {2}
Следовательно, по изменению числа полюсов мы можем просто изменить скорость и отрегулировать управление скоростью асинхронного двигателя.
Управление скоростью асинхронного двигателя со стороны ротора Управление реостатом ротораЭтот метод очень похож на управление шунтирующим двигателем постоянного тока с использованием реостата якоря.
Управление реостатом ротора (Ссылка: electric4u.com )Однако это решение возможно только для асинхронных двигателей с контактным кольцом и требует внешнего сопротивления в роторе, что невозможно для других двигателей.
Каскадный режимВ этом методе управления скоростью асинхронного двигателя используются два двигателя. Оба двигателя установлены на одном валу, поэтому оба работают с одинаковой скоростью. Один двигатель поддерживается трехфазным источником, а другой двигатель питается от наведенной ЭДС от первого двигателя с токосъемными кольцами.Их конфигурация представлена на следующей диаграмме.
Каскадная работа асинхронных двигателей (Ссылка: electricaleasy.com )Если двигатель A предполагается в качестве основного двигателя, а двигатель B — в качестве вспомогательной системы, мы можем определить другие параметры следующим образом:
N s1 : частота системы A, N с2 : частота двигателя B, P 1 : количество полюсов статора системы A, P 2 : количество полюсов статора системы B, N: скорость системы и одинакова для обоих двигателей, и f: частота источника питания.
Теперь мы можем определить скольжение двигателя A как:
{S} _ {1} = \ frac {{N} _ {S1} -N} {{N} _ {S1}}
Если частота ЭДС, создаваемая ротором в системе A, представлена как f1 = S 1 f, вспомогательная секция двигателя B поддерживается ЭДС, создаваемой в роторе, поэтому мы можем рассчитать скорость вторичной системы как :
{N} _ {S2} = \ frac {120 {f} _ {1}} {{P} _ {2}} = \ frac {120 {S} _ {f1}} {{P } _ {2}}
Теперь мы можем поместить значение S 1 следующим образом и получить окончательное уравнение
{S} _ {1} = \ frac {{N} _ {S1} — {N}} {{N} _ {S1}}
Итак;
{N} _ {S2} = \ frac {120f ({N} _ {S1} -N)} {{P} _ {2} {N} _ {S1}}
При загрузке равна нулю, скорость вспомогательной части ротора равна синхронной скорости и N = N с2 .Итак, из последних уравнений можно получить, что
{N} = \ frac {120f} {{{P} _ {1} + P} _ {2}}
. конкретные скорости могут быть представлены следующим образом:
- a) когда работает только система A, соответствующая скорость = N с1 = 120f / P 1
- b) когда работает только система B, соответствующая скорость = N s2 = 120f / P 2
- c) Когда применяется метод коммутативного каскадирования, скорость системы = N = 120f / (P 1 + P 2 )
- d) При использовании метода дифференциального каскадирования , скорость системы = N = 120f (P 1 — P 2 )
В этом методе управление скоростью асинхронного двигателя осуществляется путем подачи определенного напряжения на схеме ротора.Введенное напряжение (ЭДС) должно иметь частоту, равную частоте скольжения. Однако нет никаких ограничений для фазы этой ЭДС.