Устройство холодильный агрегат: Устройство холодильного оборудования – Знакомство c устройством и работой холодильных установок

Содержание

Устройство холодильного оборудования

Сведения об основных принципах устройства холодильного оборудования помогут Вам использовать его возможности наиболее полно, при этом сохранив его работоспособность на долгое время.

Устройство наибольшего количества холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются — компрессор, испаритель, конденсатор и регулятор потока (терморегулирующий вентиль или капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) и высокое давление, порядка 20-23 атм.

Охлаждение в холодильной машине обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре. Парообразный хладагент всасывается компрессором, и подается в конденсатор, давление хладагента повышается до 15-20 атм., а его температура повышается до 70-90?С.

Проходя через конденсатор, горячий парообразный хладагент охлаждается и конденсируется, т. е. переходит в жидкую фазу. Конденсатор может быть либо воздушным, либо с водяным охлаждением — в зависимости от типа холодильной системы.

На выходе из конденсатора хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно 4-7?С. При этом температура конденсации примерно на 10-20?С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается — часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости. Жидкость кипит в испарителе, забирая тепло у окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость в нем полностью улетучилась. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения — происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента, и в компрессор не попадает жидкость.

Следует отметить, что в случае попадания жидкого хладагента в компрессор — так называемого гидравлического удара — возможны повреждения и поломки клапанов и других деталей компрессора. Для конденсаторов с воздушным охлаждением величина перегрева составляет 5-8?С. Перегретый пар выходит из испарителя, и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот. Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Опишем устройство отдельных агрегатов, узлов и деталей холодильного оборудования:

АГРЕГАТ

Холодильный агрегат состоит из следующих основных деталей и узлов: компрессора, ресивера, конденсатора, испарителя, терморегулирующего вентиля (ТРВ), осушительного патрона.

Компрессор

Холодильные агрегаты выпускаются на базе герметичных, экранированных, полугерметичных и сальниковых компрессоров. По своему конструктивному исполнению компрессоры, используемые в холодильных агрегатах, делятся на две основные категории: поршневые и ротационные, спиральные, винтовые.

Принципиальное отличие ротационных, спиральных и винтовых компрессоров от поршневых заключается в том, что всасывание и сжатие хладагента осуществляется не за счет возвратно-поступательного движения поршней в цилиндрах, а за счет вращательного движения пластин, спиралей и винтов.

В герметичных компрессорах электродвигатель и компрессор расположены в едином герметичном корпусе. Такие компрессоры широко используются в холодильных машинах малой и средней мощностей и в бытовых кондиционерах. Преимуществом герметичных агрегатов является их относительно невысокая стоимость и меньший уровень шума. Недостатком является невозможность ремонта компрессора даже при незначительных повреждениях, например, при выходе из строя клапана.

В экранированных компрессорах статор электродвигателя вынесен из фреономасляной среды. Агрегаты данного типа менее чувствительны к наличию влаги в холодильном контуре и, что немаловажно, позволяют все работы по монтажу и замене статора электродвигателя компрессора при его сгорании производить на месте эксплуатации, не

нарушая герметичности всей системы.

В полугерметичных компрессорах электродвигатель и компрессор расположены в едином разборном корпусе. Эти компрессоры производятся различной мощности, что позволяет использовать их в агрегатах средней и большой мощности. Преимуществом является возможность ремонта и надежность в работе, недостатком — высокая по сравнению с герметичными компрессорами цена, повышенная шумность и необходимость технического обслуживания.

В сальниковых компрессорах электродвигатель расположен снаружи. Вал компрессора через сальники выведен за пределы корпуса и приводятся в движение электродвигателем с помощью ременной передачи. Такая конструкция способствует повышенной утечке хладагента через сальниковые уплотнения и требует регулярного технического обслуживания.

В настоящее время агрегаты на базе сальниковых компрессоров для торгового оборудования практически не выпускаются. Преимуществ в конструкциях с сальниковыми компрессорами на данный момент нет, ремонт подобных холодильных машин отличается невысокой надежностью.

Конденсатор

Конденсатор представляет собой теплообменный аппарат, который передает тепловую энергию хладагента окружающей среде. В холодильных агрегатах для торгового оборудования чаще всего применяют конденсаторы воздушного охлаждения. По сравнению с конденсаторами водяного охлаждения, они экономичнее в работе и проще в эксплуатации.

Конденсатор может быть смонтирован на раме агрегата или быть установленным отдельно от него. Преимущество выносного конденсатора заключается в том, что он менее требователен к температуре воздуха в машинном отделении и практически не требует дополнительной вентиляции в машинном отделении.

Как правило, воздушный конденсатор для холодильных или морозильных камер устанавливается на открытом воздухе. Но, несмотря на преимущество выносного конденсатора, при работе холодильной установки в зимний период есть определенные проблемы:

  • возможность повреждения компрессора при пуске;
  • опасность попадания жидкого хладагента в компрессор;
  • обмерзание теплообменника при длительной работе;
  • уменьшение холодопроизводительности.

Для устранения этих причин используется дополнительный комплект автоматики: реле давления или регулятор скорости вращения электродвигателя, дифференциальный клапан, обратный клапан и регулятор давления конденсации.

Ресивер

Ресивер – резервуар, служащий для сбора жидкого хладагента с целью обеспечения его равномерного поступления к терморегулирующему вентилю и в испаритель. В малых хладоновых машинах ресивер предназначен для сбора хладагента во время ремонта машины, а также для охлаждения газа и отделения капель масла и влаги.

Испаритель

Испаритель— это аппарат, в котором жидкий хладагент кипит при низком давлении, отводя тепло от охлаждаемых объектов (продуктов). Чем ниже давление, поддерживаемое в испарителе, тем ниже температура кипящего хладагента. Температуру кипения, как правило, поддерживают на 10—15°С ниже температуры воздуха в камере. Температура воздуха в камере зависит от вида охлаждаемого продукта. Испаритель может быть расположен непосредственно в охлаждаемом объеме (камере, шкафе) или находиться за его пределами.

В соответствии с этим по назначению различают испарители для непосредственного охлаждения среды и испарители для охлаждения промежуточного хладоносителя (вода, рассол, воздух, и др.). Конструкция испарителя зависит от вида охлаждающей среды, необходимой холодопроизводительности, свойств самого хладагента. Как правило, это пластинчатые теплообменники с медными или алюминиевыми трубками и ребрами из

алюминия, меди или оцинкованной стали.

Терморегулирующий вентиль

Терморегулирующий вентиль (ТРВ)устанавливается в магистраль нагнетания перед испарителем и обеспечивает заполнение испарителя жидким хладагентом в оптимальных пределах. Избыток хладагента в испарителе может привести попаданию в компрессор жидкой фазы хладагента, что приведёт к поломке компрессора. Недостаток хладагента в испарителе резко снижает эффективность работы испарителя.

Осушительный патрон

Осушительные патроны предназначены для очистки циркулирующего по системе холодильного агрегата хладагента от механических частиц и влаги. Часто осушительные патроны используют для понижения кислотности среды внутри системы холодильного агрегата. Осушительные патроны могут устанавливаться как на магистрали нагнетания, так и на стороне всасывания.

ВОЗДУХООХЛАДИТЕЛЬ

Воздухоохладитель — аппарат для охлаждения воздуха внутри охлаждаемого объема. Состоит из испарителя и вентилятора (вентиляторов). Вентилятор прогоняет охлаждаемый воздух через испаритель и направляет на охлаждаемые продукты.

МОНОБЛОК

Машина холодильная моноблочная (моноблок) предназначена для создания искусственного холода в торговом холодильном оборудовании. Особенностью моноблока является то, что он не требует монтажа отдельных узлов на месте эксплуатации, а просто монтируется на холодильной камере. В отличие от сплит-систем, моноблок обладает меньшей стоимостью при одинаковых параметрах.

ТЕРМОСТАТ

Это устройство для отключения и включения компрессора, с целью поддержания определенной температуры в охлаждаемом объеме. Электронные термостаты основаны на принципе термопары, где электронное устройство — в зависимости от сопротивления температурного датчика — управляет временем работы компрессора.

Электромеханические термостаты работают на принципе расширения сильфонной гармошки, заполненной хладагентом. При охлаждении давление внутри сильфона понижается, сильфонная гармошка сжимается и контакты, через которые питается компрессор, размыкаются. При нагревании все происходит в обратной последовательности.

Принципиальная схема работы термостата

ХЛАДАГЕНТЫ

Хладагенты — это рабочие вещества паровых холодильных машин, с помощью которых обеспечивается получение низких температур.

Хладон-12 (R-12)имеет химическую формулу CHF2C12 (дифтордихлорметан). Он представляет собой газообразное бесцветное вещество со слабым специфическим запахом, который начинает ощущаться при объемном содержании его паров в воздухе свыше 20%. Хладон-12 обладает хорошими термодинамическими свойствами

Хладон-22 (R-22), или дифтормонохлорметан (CHF2C1), так же как и хладон-12, обладает хорошими термодинамическими и эксплуатационными свойствами. Отличается он более низкой температурой кипения и более высокой теплотой парообразования. Объемная холодопроизводительность Хладона-22 примерно в 1,6 раза больше, чем Хладона-12.

Знакомство c устройством и работой холодильных установок

Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.

На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации. К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта. Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.

Как работает холодильная машина

Для получения холода используется свойство холодильного агента корректировать собственную температуру кипения при изменении давления. Чтобы превратить жидкость в пар, к ней подводится определенное количество теплоты. Аналогично конденсация парообразной среды наблюдается при отборе тепла. На этих простых правилах и основывается принцип работы холодильной установки.

Это оборудование включает в себя четыре узла:
  • компрессор
  • конденсатор
  • терморегулирующий вентиль
  • испаритель

Между собой все эти узлы соединяются в замкнутый технологический цикл при помощи трубопроводной обвязки. По этому контуру подается холодильный агент. Это вещество, наделенное способностью кипеть при низких отрицательных температурах. Этот параметр зависит от давления парообразного хладагента в трубках испарителя. Более низкое давление соответствует низкой температуре кипения. Процесс парообразования будет сопровождаться отнятием тепла от той окружающей среды, в которую помещено теплообменное оборудование, что сопровождается ее охлаждением.

При кипении образуются пары хладагента. Они поступают на линию всасывания компрессора, сжимаются им и поступают в теплообменник-конденсатор. Степень сжатия зависит от температуры конденсации. В данном технологическом процессе наблюдается повышение температуры и давления рабочего продукта. Компрессором создают такие выходные параметры, при которых становится возможным переход пара в жидкую среду. Существуют специальные таблицы и диаграммы для определения давления, соответствующего определенной температуре. Это относится к процессу кипения и конденсации паров рабочей среды.

Конденсатор – это теплообменник, в котором горячие пары хладагента охлаждаются до температуры конденсации и переходят из пара в жидкость. Это происходит путем отбора от теплообменника тепла окружающим воздухом. Процесс реализуется при помощи естественной или же искусственной вентиляции. Второй вариант зачастую применяется в промышленных холодильных машинах.

После конденсатора жидкая рабочая среда поступает в терморегулирующий вентиль (дроссель). При его срабатывании давление и температура понижается рабочих параметров испарителя. Технологический процесс вновь идет по кругу. Чтобы получить холод необходимо подобрать температуру кипения хладагента, ниже параметров охлаждаемой среды.

На рисунке представлена схема простейшей установки, рассмотрев которую можно наглядно представить принцип работы холодильной машины. Из обозначений:
  • «И» — испаритель
  • «К» -компрессор
  • «КС» — конденсатор
  • «Д» — дроссельный вентиль

Стрелочками указано направление технологического процесса.

Помимо перечисленных основных узлов, холодильная машина оснащается приборами автоматики, фильтрами, осушителями и иными устройствами. Благодаря им установка максимально автоматизируется, обеспечивая эффективную работу с минимальным контролем со стороны человека.

В качестве холодильного агента сегодня в основном используются различные фреоны. Часть из них постепенно выводится из употребления ввиду негативного воздействия на окружающую среду. Доказано, что некоторые фреоны разрушают озоновый слой. Им на смену пришли новые, безопасные продукты, такие как R134а, R417а и пропан. Аммиак применяется лишь в масштабных промышленных установках.

Теоретический и реальный цикл холодильной установки

На этом рисунке представлен теоретический цикл простейшей холодильной установки. Видно, что в испарителе происходит не только непосредственно испарение, но и перегрев пара. А в конденсаторе пар превращается в жидкость и несколько переохлаждается. Это необходимо в целях повышения энергоэффективности технологического процесса.

Левая часть кривой – это жидкость в состоянии насыщения, а правая – насыщенный пар. То, что между ними – паро-жидкостная смесь. На линии D-A` происходит изменение теплосодержания холодильного агента, сопровождающееся выделением тепла. А вот отрезок В-С` наоборот, указывает на выделение холода в процессе кипения рабочей среды в трубках испарителя.

Реальный рабочий цикл отличается от теоретического ввиду наличия потерь давления на трубопроводной обвязке компрессора, а также на его клапанах.

Чтобы компенсировать данные потери работа сжатия должна быть увеличена, что снизит эффективности цикла. Данный параметр определяется отношением холодильной мощности, выделяемой в испарителе к мощности, потребляемой компрессором и электрической сети. Эффективность работы установки – это сравнительный параметр. Он не указывает непосредственно на производительность холодильника. Если данный параметр 3,3, это будет указывать, что на единицу электроэнергии, потребляемой установкой, приходится 3,3 единицы произведенного ею холода. Чем больше этот показатель, тем выше эффективность установки.

Устройство холодильной машины | Техническая библиотека ПромВентХолод

Охлаждение различных объектов – продуктов питания, воды, других жидкостей, воздуха, технических газов и др. до температур ниже температуры окружающей среды происходит с помощью холодильных машин различных типов. Холодильная машина по большому счету не производит холод, она является лишь своеобразным насосом, который переносит теплоту от менее нагретых тел к более нагретым. Основан же процесс охлаждения на постоянном повторении т.н. обратного термодинамического или другими словами холодильного цикла. В самом распространенном парокомпрессионном холодильном цикле перенос теплоты происходит при фазовых превращениях хладагента – его испарении (кипении) и конденсации за счет потребления подведенной извне энергии. 

Устройство холодильного контура.png

Основными элементами холодильной машины, с помощью которых реализуется ее рабочий цикл, являются:

  • компрессор – элемент холодильного цикла, обеспечивающий повышение давления хладагента и его циркуляцию в контуре холодильной машины;
  • дросселирующее устройство (капиллярная трубка, терморегулирующий вентиль) служит регулирования количества хладагента, попадающего в испаритель в зависимости от перегрева на испарителе.
  • испаритель (охладитель) – теплообменник, в котором происходит кипение хладагента (с поглощением тепла) и непосредственно сам процесс охлаждения;
  • конденсатор – теплообменник, в котором в результате фазового перехода хладагента из газообразного состояния в жидкое, отведенная теплота сбрасывается в окружающую среду.
Устройство холодильного контура.png

При этом необходимо наличие в холодильной машине других вспомогательных элементов, – электромагнитные (соленоидные) вентили, контрольно-измерительные приборы, смотровые стекла, фильтры-осушители и т.д. Все элементы соединены между собой в герметичный внутренний контур с помощью трубопроводов с теплоизоляцией. Контур холодильной машины заполняется хладагентом в необходимом количестве. Основной энергетической характеристикой холодильной машины является холодильный коэффициент, который определяется отношением количества тепла, отведенного от охлаждаемого источника, к затраченной энергии.

Холодильные машины в зависимости от принципов работы и применяемого хладагента бывают нескольких типов. Наиболее распространенные парокомпрессионные, пароэжекторные, абсорбционные, воздушные и термоэлектрические.

Хладагент

Баллоны с фреоном

Хладагент – рабочее вещество холодильного цикла, основной характеристикой которого является низкая температура кипения. В качестве хладагентов чаще всего применяют различные углеводородные соединения, которые могут содержать атомы хлора, фтора или брома. Также хладагентом могут быть аммиак, углекислый газ, пропан и т.д. Реже в качестве хладагента применяют воздух. Всего известно около сотни типов хладагентов, но изготавливается промышленным способом и широко применяется в холодильной, криогенной технике, кондиционировании воздуха и других отраслях всего около 40. Это R12, R22, R134A, R407C, R404A, R410A, R717, R507 и другие. Основная область применения хладагентов – это холодильная и химическая промышленность. Кроме того, некоторые фреоны используют в качестве пропеллентов при производстве различной продукции в аэрозольной упаковке; вспенивателей при производстве полиуретановых и теплоизолирующих изделий; растворителей; а также в качестве веществ, тормозящих реакцию горения, для систем пожаротушения различных объектов повышенной опасности – тепловых и атомных электростанций, гражданских морских судов, боевых кораблей и подводных лодок.

Терморегулирующий вентиль (ТРВ)

ТРВ принцип работы

Терморегулирующий вентиль (ТРВ) – один из основных компонентов холодильных машин, известен как наиболее распространенный элемент для дросселирования и точного регулирования подачи хладагента в испаритель. ТРВ использует в качестве регулятора расхода хладагента клапан игольчатого типа, примыкающий к основанию тарельчатой формы. Количество и расход хладагента определяется проходным сечением ТРВ и зависит от температуры на выходе из испарителя. При изменении температуры хладагента на выходе из испарителя, давление внутри этой системы меняется. При изменении давления меняется проходное сечение ТРВ и, соответственно, меняется расход хладагента. 

Термосистема заполнена на заводе-изготовителе точно определенным количеством того же хладагента, который является рабочим веществом данной холодильной машины. Задача ТРВ – дросселирование и регулирование расхода хладагента на входе в испаритель таким образом, чтобы в нем наиболее эффективно проходил процесс охлаждения. При этом хладагент должен полностью перейти в парообразное состояние. Это необходимо для надежной работы компрессора и исключения его работы т.н. «влажным» ходом (т.е. сжатие жидкости). Термобаллон крепится на трубопровод между испарителем и компрессором, причем в месте крепления необходимо обеспечить надежный термический контакт и теплоизоляцию от воздействия температуры окружающей среды. Последние 15-20 лет в холодильной технике стали получать широкое распространение электронные ТРВ. Они отличаются тем, что у них отсутствует выносная термосистема, а ее роль играет терморезистор, закрепленный на трубопроводе за испарителем, связанный кабелем с микропроцессорным контролером, который в свою очередь управляет электронным ТРВ и вообще всеми рабочими процессами холодильной машины.

Соленоидный вентиль

Соленоидный вентиль

Соленоидный вентиль служит для двухпозиционного регулирования («открыто-закрыто») подачи хладагента в испаритель холодильной машины либо для открытия-закрытия от внешнего сигнала определенных участков трубопроводов. При отсутствии питания на катушке тарелка клапана под воздействием специальной пружины удерживает соленоидный вентиль закрытым. При подаче питания сердечник электромагнита, соединенный  штоком с тарелкой, преодолевает усилие пружины, втягивается в катушку, тем самым приподнимая тарелку и открывая проходное сечение вентиля для подачи хладагента.

Смотровое стекло

Смотровое стекло

Смотровое стекло в холодильной машине предназначено для определения:

  1. состояния хладагента;
  2. наличие влаги в хладагенте, которое определяется цветом индикатора.
Отправить запрос

Смотровое стекло обычно монтируют в трубопроводе на выходе из накопительного ресивера. Конструктивно смотровое стекло представляет собой металлический герметичный корпус с окном из прозрачного стекла. Если при работе холодильной машины в окне наблюдается поток жидкости с отдельными пузырями парообразного хладагента, то это может свидетельствовать о недостаточной заправке или других неисправностях в ее функционировании. Может устанавливаться и второе смотровое стекло на другом конце указанного выше трубопровода, в непосредственной близости от регулятора расхода, которым может быть соленоидный вентиль, ТРВ или капиллярная трубка. Цвет индикатора показывает наличие или отсутствие влаги в холодильном контуре.

Фильтр-осушитель

Фильтр-осушитель

Фильтр-осушитель или цеолитовый патрон еще один важный элемент контура холодильных машин. Он необходим для удаления влаги и механических загрязнений из хладагента, тем самым защищая от засорения ТРВ. Обычно он монтируется с помощью паяных или штуцерных соединений непосредственно в трубопровод между конденсатором и ТРВ (соленоидным вентилем, капиллярной трубкой). Чаще всего конструктивно представляет собой отрезок медной трубы диаметром 16…30 и длиной 90…170 мм, закатанный с обеих сторон и с присоединительными патрубками. Внутри по краям установлены две металлические фильтрующие сетки, между которыми расположен гранулированный (1,5…3,0 мм) адсорбент, обычно это синтетический цеолит. Это т.н. разовый фильтр-осушитель, но существуют многоразовые конструкции фильтров с разборным корпусом и резьбовыми трубопроводными соединениями, требующими только время от времени замены внутреннего цеолитового картриджа. Замена разового фильтра- осушителя или картриджа необходима после каждого вскрытия внутреннего контура холодильной машины. Существуют одно-направленные фильтры, предназначенные для работы в системах «только холод» и дву-направленные, используемые в агрегатах «тепло-холод».

Ресивер

Ресивер фреоновый

Ресивер – герметичный цилиндрический накопительный бак различной емкости, изготовленный из стального листа, и служащий для сбора жидкого хладагента и его равномерной подачи к регулятору расхода (ТРВ, капиллярная трубка) и в испаритель. Существуют ресиверы как вертикального, так и горизонтального типа. Различают линейные, дренажные, циркуляционные и защитные ресиверы. Линейный ресивер устанавливается с помощью паяных соединений в трубопровод между конденсатором и ТРВ и выполняет следующие функции:

  • обеспечивает непрерывную и бесперебойную работу холодильной машины при различных тепловых нагрузках;
  • является гидравлическим затвором, препятствующим попаданию пара хладагента в ТРВ;
  • выполняет функцию масло- и воздухоотделителя;
  • освобождает трубы конденсатора от жидкого хладагента.

Дренажные ресиверы служат для сбора и хранение всего количества заправленного хладагента на время ремонтных и сервисных работ, связанных с разгерметизацией внутреннего контура холодильной машины. 

Циркуляционные ресиверы применяют в насосно-циркуляционных схемах подачи жидкого хладагента в испаритель для обеспечения непрерывной работы насоса и монтируют в трубопровод после испарителя в точку с самой низкой отметкой по высоте для свободного слива в него жидкости.

Защитные ресиверы предназначены для безнасосных схем подачи фреона в испаритель, их устанавливают совместно с отделителями жидкости во всасывающий трубопровод между испарителем и компрессором. Они служат для защиты компрессора от возможной работы «влажным» ходом.

Регулятор давления

Регулятор давления

Регулятор давления – автоматически управляемый регулирующий клапан, применяемый для снижения либо поддержания давления хладагента путем изменения гидравлического сопротивления потоку проходящего через него жидкого хладагента. Конструктивно состоит из трех основных элементов: регулирующего клапана, его исполнительного механизма и измерительного элемента. Исполнительный механизм непосредственно воздействует на тарелку клапана, изменяя или закрывая проходное сечение. Измерительный элемент сравнивает текущее и заданное значение давления хладагента и формирует управляющий сигнал для исполнительного механизма регулирующего клапана. В холодильной технике существуют регуляторы низкого давления, чаще называемые прессостатами. Они управляют давлением кипения в испарителе, их устанавливают во всасывающий трубопровод за испарителем. Регуляторы высокого давления называют маноконтроллерами. Их чаще всего применяют в холодильных машинах с воздушным охлаждением конденсатора для поддержания минимально необходимого давления конденсации при понижении температуры наружного воздуха в переходный и холодный период года, обеспечивая тем самым т.н. зимнее регулирование. Маноконтроллер устанавливают в нагнетательный трубопровод между компрессором и конденсатором.

Отправить запрос

Специалисты рекомендуют

Вернуться

Устройство и принцип работы холодильника

В результате ознакомления с данной статьей вы получите исчерпывающую информацию относительно принципа работы холодильника и элементов, из которых он состоит.

Устройство бытового холодильника и принцип его работы

Устройство холодильника компрессорного типа

Наиболее востребованными для применения в быту являются холодильники компрессорного типа. Обычно такой прибор для охлаждения продуктов питания выполнен в виде изотермического шкафа, в котором находится электрическое оборудование.

Модели компрессорного типа состоят их следующих элементов

Устройство холодильника

1. Мотор-компрессор.

2. Конденсатор.

3. Фильтр осушитель.

4. Капиллярная трубка.

5. Испаритель.

6. Терморегулятор.

7. Датчик температуры.

8. Лампа освещения холодильного отделения.

9. Кнопка включения освещения.

10. Пускозащитное реле.

Корпус

Материал, из которого изготавливается несущая конструкция, должен обладать повышенной жесткостью. Если в производстве используется листовая сталь, ее толщина, как правило, составляет 0,6-1 мм. Однако в настоящее время все больше отдается предпочтение ударопрочному пластику, что позволяет свести к минимуму расход дорогостоящего металла. В то же время такой холодильник гораздо меньше весит.

Дверь

Перекрывающие проем наружная и внутренняя панели представляют собой единую конструкцию, внутри которой находится теплоизоляционный материал. Удержание двери в закрытом положении происходит за счет магнитных затворов, которые в свое время пришли на смену механическим деталям куркового типа.

Дверь холодильника

Уплотнители дверей

Необходимую герметичность обеспечивает расположенный по периметру уплотнительный профиль, который находится на внутренней панели. В него вмонтирован магнитный элемент, отвечающий в устройстве холодильника за плотное прилегание двери к поверхности корпуса.

Уплотнитель
Уплотнитель двери холодильника.

В качестве сырья для изготовления магнитной ленты используется барий в сочетании с различными смолами, позволяющими добиться требуемой эластичности. В момент прижатия происходит растягивание профиля уплотнителя. При этом дверь открывается достаточно легко, требуя минимальных усилий.

Внутренние полки и шкафы

Внутри холодильника располагаются шкафы, которые могут быть изготовлены как из листовой стали, на которую наносится белая силикатно-титановая краска, так и из ударопрочного пластика.

Используемый для пластмассовых камер со съемными полками материал способен противостоять механическим воздействиям, а также абсолютно устойчив к фреону. Кроме того, элементы, сделанные из АБС-пластика, отлично подходят для декорирования поверхностей.

Полки холодильника

Что касается низкотемпературных отделений холодильной установки, в частности морозильника, для их обустройства применяется алюминий или нержавеющая сталь. При этом стальные камеры считаются не только более долговечными, но и отвечающими требованиям гигиены. Однако за счет их веса значительно увеличивается общая масса оборудования.

Преимущества пластиковых элементов, в свою очередь, заключаются в низком коэффициенте теплопроводности, а также умеренном весе изделий. Существенным минусом является их недолговечность. Такие камеры достаточно быстро утрачивают свой первоначальный внешний вид. По своим показателям прочности они значительно уступают внутренним деталям, сделанным из стали.

Мотор-компрессор

Основной элемент холодильной установки компрессионного типа располагается, как правило, в нижней задней части прибора. Компрессор приводится в действие посредством работы электрического двигателя, в результате чего создается необходимое давление на том или ином участке системы.

Компрессор
Мотор-компрессор холодильника.

Происходит это за счет перемещения хладагента по мере того, как работает холодильник. Таким образом, лишнее тепло переносится из внутренней камеры наружу. Современные модели холодильников бытового назначения могут быть оснащены как одним, так и двумя компрессорами.

Конденсатор

Данная деталь обычно имеет форму змеевика, и предназначена для преобразования фреона из газообразного состояния в жидкое. В результате данного процесса тепловая энергия перемещается в окружающую среду. Для более эффективного отвода избыточного тепла металлическая трубка крепится к ребристой поверхности.

Конденсатор
Конденсатор холодильника.

Поступающий в нее хладагент остывает, достигая комнатной температуры, после чего жидкость движется в направлении капилляра. Отведение тепла от конденсатора в большинстве современных моделей холодильников осуществляется посредством конвекции.

Капилляр

Хладагент, движущийся по направлению к испарителю, проходит через узкую трубку, в результате чего понижается его давление. В итоге на определенном этапе фреон достигает точки кипения, после чего происходит процесс его испарения.

Испаритель

Данный элемент действует по принципу противоположности конденсатору – то есть, жидкий хладагент преобразуется в газ и начинает поглощать тепловую энергию, выделяя холод. Таким образом, происходит снижение температуры воздуха внутри камеры, в результате чего охлаждаются также находящиеся в ней продукты.

Деталь эта выполнена в виде трубки, которая соединяется с металлической пластиной. Испаритель может находиться непосредственно в камере и быть совмещенным с ее корпусом. В других случаях его встраивают в стенку холодильника.

Испаритель
Испаритель холодильника.

Фильтр-осушитель

Традиционно в схеме работы холодильника компрессионного типа задействована медная трубка, установленная непосредственно в конденсаторе или вблизи него, и отвечающая за очищение хладагента от всевозможных загрязнений, которые образуются в процессе эксплуатации прибора.

Это позволяет предотвратить засорение капилляра, в результате чего проходящая по нему жидкость при столкновении с препятствием может замерзнуть.

Фильтр осушитель
Фильтр-осушитель.

Докипатель

На участке системы между испарителем и компрессором расположена специальная емкость, изготовленная из алюминия либо меди. Она необходима для принудительного закипания фреона, часть которого в результате недостаточного испарения могла остаться в жидком состоянии. Без этого добиться надлежащей работы компрессора будет невозможно, поскольку он способен обеспечивать перекачку исключительно газообразного продукта.

Более того, всасывание жидкости даже в небольшом количестве может привести к выходу его из строя. В большинстве моделей докипатель находится внутри устройства, преимущественно в морозильной камере. Связано это с тем, что в процессе дополнительного вскипания хладагента повторно происходит поглощение тепловой энергии.

Терморегулятор

Установленный в холодильной камере датчик контролирует температуру, которая должна сохраняться в пределах определенного коридора. В момент ее предельного повышения посредством терморегулятора происходит замыкание электрической цепи, в результате чего в работу включается компрессор, охлаждающий воздух внутри камеры.

Как только температура опускается до заданного значения, цепь размыкается, и, соответственно, компрессор перестает работать.

Защитное пусковое реле

Это еще один элемент в устройстве бытового холодильника, без которого не обходится ни один подобный прибор. За счет срабатывания реле осуществляется запуск двигателя компрессора в момент замыкания электрической цепи, за которое отвечает терморегулятор. Также благодаря защитно-пусковому устройству происходит своевременное отключение мотора, что исключает вероятность перегрева.

Принцип работы холодильника компрессорного типа

Понижение температуры воздуха внутри камер осуществляется за счет изменения агрегатного состояния используемого в системе хладагента, который непрерывно движется по замкнутому контуру.

В процессе циркуляции происходят:

  • охлаждение и сжижение поступающего в конденсатор фреона;
  • расширение холодильного агента;
  • испарение образовавшихся газов;
  • нагревание и сжатие хладагента.

Принцип работы холодильника - схема

Каждый из перечисленных процессов происходит на определенном этапе. Посредством компрессора осуществляется выкачивание паров, образовавшихся внутри испарителя. С помощью нагнетательной трубки они перемещаются в конденсатор, после чего охлаждаются и преобразуются в жидкость.

Очищенный фильтрационным элементом фреон направляется в капилляр, где до нужного уровня понижается его давление, прежде чем хладагент попадет в испаритель.

Дальнейший принцип работы холодильника заключается в преобразовании кипящего фреона в пар. При этом конструкция испарителя продумана таким образом, чтобы обеспечить полное испарение находящейся внутри жидкости. На стадии парообразования происходит поглощение тепловой энергии, в результате чего снижается температура внутри холодильной камеры. В свою очередь, холодильный агент снова перемещается в компрессор.

Данный повторяемый цикл может быть прерван терморегулятором, при срабатывании которого двигатель компрессора останавливается. По истечении определенного периода повышающаяся внутри камеры температура достигнет допустимого предела, после чего посредством терморегулятора мотор будет снова запущен.

В современных моделях двухкамерных холодильников устанавливается два испарителя, каждый из которых отвечает за охлаждение отдельной части конструкции. При этом хладагент начнет поступать в камеру холодильного отделения не раньше, чем температура внутри морозильника достигнет необходимого значения.

Инверторный компрессор: особенности работы и устройства

Двигатель обычного компрессора работает, периодически, то включаясь на полную мощность, то снова выключаясь, инверторный работает постоянно, но с разной интенсивностью.

В результате двигатель испытывает постоянные повышенные нагрузки, которые происходят при его запуске.

Использование в устройстве холодильника инверторной установки позволило устранить данный недостаток. Основным отличием такой системы является постоянная работа мотора, скорость вращения которого в определенный момент снижается. Таким образом, циркуляция хладагента не прекращается полностью, но значительно замедляется.

При этом уровень температуры внутри камеры поддерживается в пределах заданного значения. Подобный режим позволяет увеличить рабочий ресурс отдельных элементов оборудования, и, вместе с тем, экономить на потреблении электроэнергии. На остальные характеристики устройства данный параметр никак не влияет.

Отличие инверторных и неинверторных компрессоров наглядно показано в ролике:

Принцип работы холодильника - схема

Особенности устройства и работы холодильников с системой NO Frost

Главным недостатком обычных бытовых холодильников считается регулярное замерзание влаги, которая попадает в камеру и остается на стенках испарителя. В результате образовавшийся иней препятствует охлаждению воздуха внутри камеры. Нарушается нормальный процесс охлаждения.

Фреон продолжает циркулировать в системе, однако снижается его способность поглощать тепловую энергию.

При появлении в морозильной камере толстого слоя снежной шубы пользователь сталкивается сразу с двумя проблемами:

1. Находящиеся внутри продукты питания подвергаются меньшему охлаждению.

2. Двигатель компрессора испытывает повышенную нагрузку, так как вынужден работать непрерывно, поскольку терморегулятор не срабатывает в условиях повышенной температуры. В данном случае детали механизма изнашиваются значительно быстрее.

Именно поэтому при эксплуатации холодильников, оснащенных капельными испарителями, приходится периодически прибегать к их принудительному размораживанию.

При использовании системы No Frost замерзание влаги не происходит. Соответственно, схема работы холодильника данного типа не предполагает регулярных разморозок.

Система No Frost состоит из:

  • электрического ТЭНа;
  • встроенного в конструкцию таймера;
  • вентилятора, способствующего поглощению тепла;
  • специальных трубок, посредством которых осуществляется отвод талой воды.

Размещенный в морозильной камере испаритель представляет собой достаточно компактный радиатор, который может быть установлен практически в любом месте. Для более эффективного поглощения образующейся внутри морозильника тепловой энергии задействован вентилятор.

Вентилятор системы No Frost
Вентилятор системы No Frost.

Находясь непосредственно за испарителем, он обеспечивает постоянное движение воздуха в необходимом направлении. Таким образом, продукты питания пребывают под постоянным воздействием воздушного потока, благодаря чему идеально охлаждаются.

В то же время на стенках испарителя скапливается конденсат, в результате чего постепенно происходит образование инея. Однако за счет таймера, которым оснащена система No Frost, в определенный момент запускается ТЭН и происходит процесс оттаивания.

При включенном ТЭНе слой снежной шубы заметно уменьшается, а оттаявшая вода перемещается по трубкам, заполняя поддон, расположенный вне холодильной камеры. В дальнейшем происходит естественное испарение влаги, которая поступает в воздух помещения.

Преимущественно устройство холодильника бытового назначения предполагает наличие системы No Frost исключительно для морозильника.

Но существуют также современные модели, в которых она установлена, в том числе, в холодильной камере.

Такие приборы гораздо меньше нуждаются в систематическом уходе. Единственным неудобством, связанным с их эксплуатацией, можно считать достаточно быстрое высыхание находящихся в камере продуктов питания.

Это связано как с непрерывной циркуляцией воздуха в системе, так и с практически непрекращающимся процессом выведения избытков влаги.

No frost в холодильнике и в морозильной камере

 

Особенности устройства и работы холодильников с системой «плачущий» испаритель

Избавится от лишней влаги, скапливающейся внутри камеры, можно не только при помощи системы No Frost. Достаточно простая, но не менее эффективная конструкция под названием «плачущий» испаритель на сегодняшний день устанавливается даже в бюджетных моделях бытовых холодильников. При этом она значительно экономнее, по сравнению с вышеописанной системой.

В данном случае испаритель скрыт под задней стенкой камеры. При включении компрессора запускается процесс охлаждения, в результате чего на ней появляется конденсат, образуя слой инея. Однако после отключения компрессора стенка начинает нагреваться. Соответственно, иней постепенно тает.

Испаритель холодильника с капельной системой разморозки
Конденсатор открытого типа капельной системы разморозки холодильника. В большинстве моделей конденсатор скрыт за пластиковой стенкой.

Своим названием данная система обязана способу стекания оттаявшей воды, которая капельками перемещается по стенке, попадая через дренажное отверстие в шланг. Тот же, в свою очередь, подсоединен к емкости, которая, как правило, крепится к корпусу компрессора.

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

принцип и схема работы холодильного оборудования разных типов

Домашний уют современного человека невозможно представить без холодильника. Он предназначен для длительного хранения продуктов. По подсчетам ученых, каждый член семьи открывает дверцу до 40 раз в сутки. Мы заглядываем вовнутрь даже не задумываясь, как работает наш холодильник.

В нашей статье мы подробно рассмотрим устройство и принцип действия различных холодильников.

Как устроен холодильник

Любой современный холодильник состоит из следующих основных агрегатов:

  1. Двигатель.
  2. Конденсатор.
  3. Испаритель.
  4. Капиллярная трубка.
  5. Осушительный фильтр.
  6. Докипатель.
Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов

Схема работы холодильника

Электродвигатель

Двигатель является основным узлом бытового прибора. Предназначен для циркуляции охлаждающей жидкости (фреона) по трубкам.

Двигатель состоит из двух агрегатов:

  • электромотор;
  • компрессор.

Электромотор преобразует электрический ток в механическую энергию. Агрегат состоит из двух частей – ротора и статора.

Корпус статора устроен из нескольких медных катушек. Ротор имеет вид стального вала. Ротор соединен с поршневой системой двигателя.

При подключении двигателя к сети питания в катушках возникает электромагнитная индукция. Она является причиной возникновения крутящего момента. Центробежная сила приводит ротор во вращательное движение.

А знаете ли Вы, что на долю холодильника приходится 10 % всей потребленной электроэнергии. Открытая дверца прибора увеличивает потребление электричества в несколько раз.

При вращении ротора двигателя происходит линейное перемещение поршня. Передняя стенка поршня сжимает и разряжает рабочую жидкость до рабочего состояния.

Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов

Положение двигателя холодильника

В современных охлаждающих установках электродвигатель находится внутри компрессора. Такое расположение преграждает газу путь для самопроизвольной утечки.

Для уменьшения вибраций двигатель находится на пружинистой металлической подвеске. Пружина может находится снаружи или внутри устройства. В современных агрегатах пружина находится внутри корпуса двигателя. Это позволяет эффективно гасить вибрации при работе аппарата.

Конденсатор

Представляет собой змеевидный трубопровод диаметром до 5 миллиметров. Предназначен для отвода тепла от рабочей жидкости в окружающую среду. Конденсатор располагается на задней наружной поверхности прибора.

Испаритель

Представляет систему тонких трубок. Предназначен для испарения рабочей жидкости и охлаждения окружающего пространства. Располагается внутри или снаружи морозильника.

Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов

Устройство компрессора

Капиллярная трубка

Предназначена для снижения давления газа. Имеет диаметр от 1,5 до 3 миллиметров. Расположена на участке между испарителем и конденсатором.

Фильтр-осушитель

Предназначен для очистки рабочего газа от влаги. Имеет вид медной трубки диаметром от 10 до 20 мм. Концы трубки вытянуты и герметично впаяны с капиллярную трубку и конденсатор.

Внимание! Фильтр-осушитель имеет односторонний принцип работы. Устройство не предназначено для работы на обратном режиме. При неправильной установке фильтра возможен выход установки из строя.

Внутри трубки находится цеолит — минеральный наполнитель с высокопористой структурой. На обоих концах трубки установлены заграждающие сетки.

Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов

Фильтр-осушитель

Со стороны конденсатора установлена металлическая сеточка с размерами ячеек до 2 мм. Со стороны капиллярной трубки установлена синтетическая сетка. Размеры ячеек такой сетки составляют десятые доли миллиметра.

Докипатель

Представляет собой металлическую емкость. Устанавливается на участке между испарителем и входом компрессора. Предназначен для доведения фреона до кипения с последующим испарением.

Служит защитой двигателя от попадания жидкости. Попадание рабочей жидкости может привести к выходу его из строя.

Как работает холодильник

Главный принцип работы любого холодильника основан на выполнении двух рабочих операций:

  1. Вывод тепловой энергии из устройства в окружающее пространство.
  2. Концентрация холода внутри корпуса прибора.

Для отбора тепла применяется хладагент под названием фреон. Это газообразное вещество на основе этана, фтора и хлора. Фреон обладает уникальной возможностью переходить из газообразного состояния в жидкое и обратно. Переход из одного состояние в другое происходит при изменении давления.

Работа системы охлаждения заключается в следующем. Компрессор засасывает фреон вовнутрь. Внутри устройства работает электромотор. Двигатель приводит в движение поршень. При движении поршня происходит сжатие газа.

Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов

Принципиальная схема работы холодильника

Процесс сжатия газа делится на два этапа. На первом этапе происходит возвратное движение поршня. При смещении поршня открывается впускной клапан. Через открытое отверстие фреон поступает в газовую камеру.

На втором этапе поршень смещается в обратном направлении. При обратном движении поршень сжимает газ. Сжатый фреон давит на пластину выходного клапана. В камере резко повышается давление. При увеличении давления происходит нагрев газа до температуры 100° C. Выпускной клапан открывается и выпускает газ наружу.

Нагретый фреон из камеры поступает во внешний теплообменник (конденсатор). По пути следования по конденсатору фреон отдает тепло наружу. В конечной точке конденсатора температура газа уменьшается до 55° C.

А знаете ли Вы, что самые первые холодильники в качестве хладагента использовали диоксид серы? Такие приборы были очень опасны по причине высокой вероятности разгерметизации системы.

В процессе теплопередачи происходит конденсация газа. Фреон из газообразного состояния превращается в жидкость.

Из конденсатора жидкий фреон поступает в фильтр-осушитель. Здесь происходит поглощение влаги специальным сорбентом. Из фильтра газообразный фреон поступает в капиллярную трубку.

Капиллярная трубка играет роль своеобразной пробки (препятствия). На входе в трубку давление газа понижается. Хладагент превращается в жидкость. Из капиллярной трубки фреон поступает на испаритель. При падении давления происходит испарение фреона. Вместе с давлением падает и температура газа. В момент поступления в испаритель температура фреона составляет – 23° С.

Фреон проходит по теплообменнику внутри холодильной камеры. Охлажденный газ снимает тепло с внутренней поверхности трубок испарителя. При отдаче тепла происходит охлаждение внутреннего пространства холодильной камеры.

После испарителя фреон засасывается в компрессор. Замкнутый цикл повторяется.

Основные типы охлаждающих систем

По принципу действия различают следующие типы холодильников:

  • компрессионные;
  • адсорбционные;
  • термоэлектрические;
  • пароэжекторные.

В компрессионных агрегатах движение хладагента осуществляется за счет изменения давления в системе. Регулирование давления рабочей жидкости осуществляет компрессор. Охладительные системы с компрессором являются самым распространенным типом охлаждающих устройств.

В абсорбционных установках движение хладагента происходит за счет его нагревания от нагревательной системы. В качестве рабочей смеси используется аммиак. Недостатком системы является высокая опасность и сложность обслуживания. Данный тип бытовых приборов является устаревшим и на сегодняшний день снят с производства.

А знаете ли Вы, что самый первый холодильник был выпущен американской компанией General Electric в далеком 1911 году. Устройство было выполнено из дерева. В качестве хладагента использовался диоксид серы.

Главный принцип действия термоэлектрических холодильников основан на поглощении тепла при взаимодействии двух проводников во время прохождения по ним электрического тока. Данный принцип известен как Эффект Пельтье. Достоинством аппарата является высокая надежность и долговечность. Недостатком является высокая стоимость полупроводниковых систем.

В пароэжекторных установках используется вода. Роль двигательной установки выполняет эжектор. Рабочая жидкость попадает в испаритель. Здесь происходит вскипание жидкости с образованием водяного пара. При теплообразовании температура воды резко снижается.

Охлажденная вода используется для охлаждения продуктов. Водяной пар отводится эжектором на конденсатор. В конденсаторе водяной пар охлаждается, превращается в конденсат и вновь поступает на испаритель. Достоинством таких установок является их простота устройства, безопасность, экологичность. Недостатком пароэжекторной системы является значительный расход воды и электроэнергии на ее нагрев.

Принцип работы абсорбционных холодильников

Работа абсорбционных устройств основана на циркуляции и испарении жидкого хладагента. В качестве хладагента применяется аммиак. Роль абсорбента (поглотителя) выполняет аммиачный раствор на водной основе.

Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов

Схема работы абсорбционного устройства

В охлаждающую систему аппарата добавляются водород и хромат натрия. Водород предназначен для регулирования давления системы. Хромат натрия защищает внутренние стенки трубок от коррозии.

А знаете ли Вы, что старые советские холодильники в качестве охлаждающей смеси используют фреон R12 на основе хлора. Главным недостатком является его разрушительное действие на озоновый слой Земли.

При подключении к сети питания в генераторе-кипятильнике происходит нагрев рабочей жидкости. Рабочей смесью выступает водный раствор аммиака. Раствор аммиака находится в специальном резервуаре.

Нагрев хладагента приводит к испарению аммиака. Пары аммиака поступают в конденсатор. Здесь аммиак конденсируется и превращается в жидкость.

Сжиженный аммиак поступает в испаритель. Отсюда жидкий аммиак смешивается с водородом. Разность давлений двух веществ приводит к испарению аммиака. Процесс испарения сопровождается выделением тепла и охлаждением аммиака до -4° С. Вместе с аммиаком происходит охлаждение испарителя.

Охлажденный испаритель забирает тепло окружающего пространства. После испарения аммиак поступает в адсорбер. В адсорбере находится чистая вода. Здесь аммиак смешивается с водой. Аммиачный раствор поступает в резервуар. Раствор аммиака из резервуара поступает в генератор-кипятильник и замкнутый цикл повторяется.

В качестве заменителя аммиака могут использоваться водные растворы ацетона, бромистого лития, ацетилена.

Достоинством абсорбционных приборов является бесшумность работы агрегатов.

Принцип работы саморазмораживающегося холодильника

Процесс разморозки в установках с саморазмораживающейся системой происходит автоматически.

Существуют два типа саморазмораживающихся систем:

  1. Капельная.
  2. Ветреная (No frost).

В аппаратах с капельной системой испаритель находится на задней стенке аппарата. Во время работы аппарата на задней стенке образуется иней. При оттаивании иней стекает по специальным желобам в нижнюю часть прибора. Нагретый до высокой температуры компрессор испаряет жидкость.

В установках с ветряной системой холодный воздух от испарителя на задней стенке задувается специальным вентилятором внутрь корпуса. Во время цикла оттаивания иней стекает по желобкам в специальное отверстие.

Промышленные холодильники

Промышленные аппараты отличаются от бытовых устройств мощностью установки и размерами охлаждающих камер. Мощность двигателя оборудования достигает нескольких десятков киловатт. Рабочая температура морозильных камер находится в диапазоне от + 5 до – 50° C.

А знаете ли Вы, что самый большой промышленный холодильник занимает 24 км2 площади. Находится этого гигант в Женеве (Швейцария) и служит для научных целей при работе адронного коллайдера.

Промышленные установки предназначены для охлаждения и глубокой заморозки большого количества продуктов. Объем морозильных камер составляет от 5 до 5000 тонн. Используются на заготовительных и перерабатывающих предприятиях.

Принцип работы инверторного холодильника

Инверторные компрессоры предназначены для аккумуляции и преобразования постоянного тока в переменный ток с напряжением 220 В. Принцип работы основан на возможности плавного регулирования оборотов вала двигателя.

Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов

Устройство инверторного двигателя

При включении инвертор быстро набирает необходимое число оборотов для создания необходимой температуры внутри корпуса. На момент достижения заданных параметров устройство переходит в режим ожидания. Как только температура внутри корпуса повышается, срабатывает датчик температуры и скорость оборотов двигателя увеличивается.

Устройство термостата холодильника

Терморегулятор предназначен для поддержания заданной температуры внутри системы. Устройство герметично впаяно с одного конца капиллярной трубки. Другим концом капиллярная трубка подсоединяется к испарителю.

Основным элементом устройства терморегулятора любого холодильника является термореле. Конструкция термореле состоит сильфона и силового рычага.

Устройство терморегулятора

Сильфоном называют гофрированную пружину, в кольцах которой находится фреон. В зависимости от температуры фреона, пружина сжимается или растягивается. При понижении температуры хладагента пружина сжимается.

А знаете ли Вы, что современные бытовые холодильники используют фреон R600a на основе изобутана. Этот хладагент не разрушает озоновый слой планеты и не вызывает парниковый эффект.

Под воздействием сжатия рычаг замыкает контакты и подключает компрессор к работе. При повышении температуры происходит растягивание пружины. Силовой рычаг размыкает цепь и мотор выключается.

Холодильник без электричества – правда или вымысел?

Житель Нигерии Мохаммед Ба Абба в 2003 году получил патент на холодильник без электричества. Устройство представляет собой глиняные горшки разной величины. Сосуды сложены друг в друга по принципу русской «матрешки».

Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов

Холодильник без электричества

Пространство между горшками заполняют влажным песком. В качестве крышки используется влажная ткань. Под действием жаркого воздуха влага из песка испаряется. Испарение воды приводит к снижению температуры внутри сосудов. Это позволяет длительное время хранить продукты на жарком климате без использования электроэнергии.

Знание устройства и принципа работы холодильника позволит выполнить несложный ремонт устройства своими руками. Если система настроена правильно, значит прибор будет работать долгие годы. При более сложных неисправностях следует обратиться к специалистам сервисных центров.

Холодильный агрегат — Википедия

Материал из Википедии — свободной энциклопедии

Холодильный агрегат

Холодильный агрегат — это составная часть холодильной установки, содержащая компрессор, нагнетательный трубопровод, конденсатор вместе с приводом компрессора (обычно это электродвигатель), часто объединяют в один компактный агрегат.

Такой агрегат называют холодильным или компрессорно-конденсаторным агрегатом, так как его функция в системе заключается в сжатии, охлаждении пара и его конденсации.

Холодильные агрегаты часто классифицируются в зависимости от охлаждающей среды, используемой для конденсации хладагента. Холодильный агрегат, в котором в качестве охлаждающей среды применяют воздух, называют агрегатом с воздушным охлаждением, а если охлаждающей средой является вода, — агрегатом с водным охлаждением.

Компрессорно-конденсаторные агрегаты небольшой производительности (150 Вт — 30 кВт) часто оборудованы герметичными компрессорами со встроенными электродвигателями. Компрессор имеет непосредственный привод, то есть общий вал с ротором электродвигателя, который размещен в герметичном сварном стальном кожухе.

Подобные холодильные агрегаты используют в небольших кондиционерах, сплит-системах, торговых холодильных шкафах и почти во всех домашних холодильниках.

  • Холодильный агрегат (a. cooling plant, refrigerator; н. Kalteanlage, Kuhlanlage; ф. installation frigorifique, installation de refrigeration; и. agregado frigorifico, argegado refrigerante) / Горная энциклопедия. — М.: Советская энциклопедия. Под редакцией Е. А. Козловского. 1984—1991.
  • Холодильный агрегат / В. Л. Цирлин, Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Холодильный компрессор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 апреля 2018; проверки требуют 6 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 апреля 2018; проверки требуют 6 правок.

Холодильный компрессор — компрессор, предназначенный для сжатия и перемещения паров хладагента в холодильных установках. При сжатии паров происходит повышение не только давления, но и температуры. После компрессора сжатый холодильный агент поступает в конденсатор, где сжатый газ охлаждается и превращается в жидкость (по типу охлаждения конденсаторы делятся на воздушные и водяные), жидкость затем через дроссельное устройство поступает в испаритель (при этом её давление и температура снижается), где она кипит, переходит в состояние газа, тем самым забирая тепло из окружающего пространства. После этого пары хладагента поступают снова в компрессор для повторения цикла.

Наиболее популярные типы компрессоров — поршневые, ротационные, спиральные, винтовые и центробежные (турбокомпрессоры).

Чаще всего в бытовых холодильниках и холодильных установках для пищевой промышленности используются поршневые компрессоры. Число поршней варьируется от 1 для бытовых устройств до 12 для крупных стационарных компрессоров. Также поршневые компрессоры могут быть одно- и многоступенчатыми (обычно 2-ступенчатыми). В них холодильный агент, сжатый в цилиндрах первой ступени, охлаждается и поступает в цилиндры второй ступени. Другой распространённый тип компрессоров — винтовые. В них сжатие холодильного агента осуществляется в полости, образуемой либо между вращающимися роторами, либо между ротором и корпусом. Винтовые компрессоры обладают большей холодопроизводительностью по сравнению с поршневыми компрессорами при сопоставимых размерах.

Ротационные компрессоры используются, преимущественно, в бытовых кондиционерах. Спиральные компрессоры используют в холодильной технике для пищевой промышленности, однако большинство их применяется в системах кондиционирования.

Центробежные компрессоры (турбокомпрессоры) используются для крупных систем кондиционирования.

Герметичный мотор-компрессор бытового холодильника

Поскольку для нормальной работы низкотемпературных холодильных машин недопустимо присутствие даже малейших следов воды в хладагенте, а рабочие давления, производимые компрессором, могут достигать 20 кгс/см² для фреонов и даже 30-35 кгс/см² для аммиака, важнейшим требованием, предъявляемым к холодильным компрессорам является герметичность. Для обеспечения её холодильный компрессор бытовых холодильных установок (таких как кондиционеры воздуха и холодильники) вместе с электродвигателем заключают в герметичный кожух, выводя наружу только герметизированные электрические выводы. Для смазки холодильных компрессоров применяются только специальные холодильные масла.

Автомобильные холодильные компрессоры для кондиционирования воздуха чаще всего делаются с приводом от общего с генератором ремня, шкив такого компрессора имеет в себе электрическую муфту позволяющую отключать компрессор когда он не нужен. Обычно используется схема с косой шайбой и 5-7 поршнями. Для грузовиков и автобусов, имеющих мощные генераторы тока, также иногда делается электрический привод вращения вала от отдельного электродвигателя. Передвижные рефрижераторы могут иметь привод компрессора и от отдельного собственного ДВС.

Холодильный компрессор от бытового холодильника можно также использовать в качестве воздушного для различных целей[1].

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*