Варистор как проверить мультиметром: Как проверить варистор мультиметром: пошаговая инструкция

Содержание

Проверка варистора на исправность мультиметром и без тестера

Электроника чувствительна к качеству электропитания. При скачках напряжения в сети компоненты выходят из строя. Чтобы снизить вероятность такого исхода – используют варисторы. Это компоненты с нелинейным сопротивлением, которое в нормальном состоянии очень большое, а под воздействием импульса высокого напряжения резко снижается. В результате устройство поглощает всю энергию импульса. В этой статье мы расскажем, как проверить варистор на исправность и отличить сгоревший от целого.

Причины неисправности

Варисторы устанавливают параллельно защищаемой цепи, а последовательно с ним ставят предохранитель. Это нужно для того, чтобы, когда варистор сгорит, при слишком сильном импульсе перенапряжения сгорел предохранитель, а не дорожки печатной платы.

Единственной причиной выхода из строя варистора является резкий и сильный скачок напряжения в сети. Если энергия этого скачка большая, чем может рассеять варистор – он выйдет из строя. Максимальная рассеиваемая энергия зависит от габаритов компонента. Они отличаются диаметром и толщиной, то есть, чем они больше – тем больше энергии способен рассеять варистор.

Скачки напряжения могут возникать при авариях на ЛЭП, во время грозы, при коммутации мощных приборов, особенно индуктивной нагрузки.

Способы проверки

Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже – так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.

Если элемент сгорел и маркировку прочесть невозможно – посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.

Есть три способа проверить варистор быстро и просто:

  1. Визуальный осмотр.
  2. Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
  3. Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.

Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией – элемент сгорает. Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.

Можно визуально проверить варистор на работоспособность – на нем не должно быть трещин, как на фото:

Следующий способ – проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.

Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов.

Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое – он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.

На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации – в нем наверняка есть и прозвонка.

Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.

Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.

На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев. Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра. Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.

Материалы по теме:

Проверка варистора: нахождение неисправности мультиметром

Ремонт и диагностика неисправностей радиоэлектронных устройств происходит путём нахождения вышедших из строя элементов с последующей их заменой. Визуально определить, какая радиодеталь неисправна, часто не представляется возможным, поэтому для выявления поломок используют измерительные приборы — тестеры. С их помощью проверить варистор обычно не составляет труда.

Назначение и характеристики

Варистор — это электронный прибор, имеющий два контакта и обладающий нелинейно-симметричной вольт-амперной характеристикой. Термин «варистор» произошёл от латинских слов variable — «изменяемый» и resisto — «резистор». По своей сути он является полупроводниковым резистором, способным изменять своё сопротивление в зависимости от приложенного к его выводам напряжения.

Изготавливаются такого типа резисторы путём спекания при высокой температуре полупроводника и связующего материала. В качестве полупроводника используется карбид кремния, находящийся в порошкообразном состоянии, или оксид цинка, а связующего вещества — стекло, лак, смола. Полученный после спекания элемент подвергается металлизации с дальнейшим формированием выводов. По своей конструкции приборы выполняются в форме, похожей на диск, таблетку, цилиндр, или плёночного вида.

Обладая свойством резко уменьшать своё сопротивление при возникновении на его выводах определённого напряжения, варистор применяется в электронных схемах в качестве защитного элемента. При возникновении броска напряжения определённой величины полупроводниковый прибор мгновенно снижает своё внутреннее сопротивление до десятков Ом, тем самым практически закорачивая цепь, не давая импульсу повредить остальные элементы схемы. Поэтому важным параметром варистора является значение напряжения, при котором наступает пробой устройства.

Принцип работы элемента подразумевает его включение параллельно цепи питания. После его срабатывания и уменьшения напряжения на входе он самовосстанавливается до первоначального значения. Из-за малой инерционности это происходит мгновенно.

Основные параметры

Перед тем как проверить варистор на исправность, необходимо понимать не только принцип его действия, но и знать, какими характеристиками он обладает. Как и любой электронный элемент, варистор имеет ряд характеристик, которые позволяют его использовать в различных схемах. Основным параметром является вольт-амперная характеристика (ВАХ). Она наглядно показывает, как меняется ток при той или иной величине напряжения. Изучая ВАХ, можно увидеть что варистор, обладая симметрично-двунаправленной характеристикой, работает как в прямой, так и обратной зоне синусоиды, напоминая стабилитрон.

Кроме ВАХ, при исследовании варистора отмечаются следующие характеристики:

  • Um — наибольшее допустимое рабочее напряжение для тока переменной или постоянной величины.
  • P — мощность, которую может рассеять на себе элемент без ухудшения своих параметров.
  • W — допустимая энергия в джоулях, которую может поглотить радиоэлемент при воздействии одиночного импульса.
  • Ipp — наибольшее значение импульсного тока, для которого определена форма импульса.
  • Co — ёмкость, значение которой измеряется у варистора в нормальном состоянии.

Но на практике особое внимание уделяется в основном параметру Um. Эта характеристика показывает уровень напряжения, при котором происходит пробой элемента и начинает течь ток.

Виды устройств

Разнообразие встречаемых видов варисторов обусловлено тем, что производители стремятся в первую очередь повысить их быстродействие. Поэтому и используются SMD технологии безвыводного монтажа, что позволяет добиваться малого времени срабатывания при скачке входного напряжения. Типовое время срабатывания элементов с выводами находится в пределе 15−25 наносекунд, а SMD — 0,5 наносекунд.

Существует класс низковольтных варисторов и высоковольтных. Первые выпускаются с рабочим напряжением до двухсот вольт и силой тока до одного ампера. Вторые же имеют рабочее напряжение до двадцати киловольт. Маломощные элементы используются в качестве защиты от скачка напряжения, возникающего в бытовой сети, а мощные применяются на трансформаторных подстанциях и в системах защиты от грозы.

Маркировка элементов

Независимо от производителя существует стандарт маркировки варисторов. На сам элемент принято наносить цифробуквенный код, в котором зашифровываются основные параметры. Например, для дискового типа это обозначение выглядит как S6K210, где:

  • S — материал, из которого изготовлен варистор;
  • 6 — диаметр корпуса элемента, указывается в миллиметрах;
  • K — величина допуска отклонения;
  • 210 — значение рабочего напряжения, выраженное в вольтах.

Для планарного типа используется такая же маркировка, только первыми буквами ставится CN, обозначающая тип изделия.

На схемах радиоэлемент графически обозначается как перечёркнутый прямоугольник. На перечёркивающей палочке делается полочка, над которой ставится буква U. Подписывается на схемах элемент латинскими буквами RU.

Методы проверки мультиметром

Для проверки варистора, впрочем, как и любого другого радиоэлемента, проще всего использовать специально разработанные для этого приборы. В качестве таких устройств используются мультиметры. Основной параметр, который можно им померить — это внутреннее сопротивление элемента. Но перед тем как непосредственно приступить к проверке варистора, следует подготовиться.

Кроме мультиметра, понадобится:

  • паяльник;
  • припой;
  • флюс;
  • даташит.

Измерение сопротивления элемента можно проводить и без его выпаивания из схемы, но для получения достоверных данных следует отсоединить от платы хотя бы один его вывод. Вся подготовка сводится к тому, что полупроводниковый элемент сначала визуально осматривается на отсутствие: расколов, почернений, трещин. Если сразу видно лопнувший корпус, то проверку можно дальше не проводить. Такой варистор явно неисправен.

Паяльник, флюс и припой понадобится для того, чтобы отпаять один из выводов элемента или даже снять его целиком, а после проверки при необходимости запаять обратно. Даташит на элемент представляет собой официальный документ, выпускаемый производителем. В нём указываются все основные данные и характеристики.

Даташит используется для того, чтобы точно знать, какое рабочее сопротивление в состоянии покоя у радиодетали. Если при замере мультиметром сопротивление варистора не отличается более чем на 10%, то он считается исправным. Если сопротивление значительно меньше указанного в даташите, то его понадобится заменить. Важно отметить, что в обычном состоянии сопротивление варистора достигает нескольких сотен мегаом, поэтому и тестер должен иметь возможность измерять в этом пределе.

Измерения стрелочным прибором

Такое устройство считается аналоговым. В его конструкции используется электромеханическая головка. Она представляет собой рамку, помещаемую в магнитное поле. В зависимости от силы тока стрелка в рамке отклоняется, останавливаясь в определённом положении. Диапазон отклонения стрелки проградуирован числами, согласно которым и вычисляется сопротивление.

Перед тем как приступить к проверке варистора, стрелочный мультиметр понадобится настроить. Для этого выполняется его калибровка. Её суть сводится к выставлению нулевого положения стрелки путём вращения специальной ручки при замыкании щупов друг с другом.

Для этого кнопкой переключения выбирается режим работы, соответствующий значку «Ω», а галетный переключатель устанавливается на самый большой предел измерения сопротивления тестером. Чаще всего он обозначается как «х100», что соответствует мегаомам. Измерение сопротивления происходит от установленного в устройстве источника питания (батарейки). Поэтому, если выставить стрелку в ноль не получается, то батарейку понадобится заменить.

Проводя непосредственно измерения, одним щупом тестера дотрагиваются до одного вывода варистора, а другим — до другого. В итоге возможно три исхода:

  1. Стрелка отклонится до нуля или покажет сопротивление в районе килоомов. Делается вывод о неисправности элемента (пробой).
  2. Результат измерений лежит в пределах сотни мегаом. Такое показание указывает на исправность варистора.
  3. При прикасании к выводам радиоэлемента стрелка никак на это не реагирует. Возможные причины в следующем: диапазона работы прибора не хватает для измерения величины сопротивления варистора, неисправен прибор, неисправен радиоэлемент (обрыв).

Цифровой тестер

Используя цифровой мультиметр, проверить варистор на работоспособность будет немного проще, чем аналоговым. Это связано с тем, что цифровой тестер в своей конструкции имеет жк-дисплей, на котором наглядно отображается измеренное сопротивление.

В основе работы тестера такого тип лежит аналого-цифровой преобразователь, принцип работы которого построен на сравнение измеряемого сигнала с опорным. Следует отметить, что, если при включении тестера на экране высвечивается значок мигающей батарейки, то элемент питания понадобится заменить. Порядок измерения сопротивления варистора можно представить в виде следующих действий:

  1. Переключателем устанавливается максимальный предел измерения сопротивления. Обычно этот предел указывается числом и буквой. Если написаны просто числа, то единица измерения — Ом, буква K после числа обозначает килоом, буква M — мегаом.
  2. Щупы фиксируются на двух выводах варистора, а обратные концы проводов со штекерами вставляются в гнёзда тестера, обозначенные Ω и СОМ. Так как полярность приложенного сигнала к варистору значения не имеет, то и неважно, какой провод подключается к тому или иному выводу элемента. Хотя принято, что в разъём СОМ вставляется шнур чёрного цвета.
  3. Устройство включается путём нажатия на тестере кнопки ON/OFF.
  4. Если на индикаторе высвечивается единица, то это обозначает, что выбран малый предел измерений.
  5. Если на экране отображаются цифры отличные от единицы, то это и есть величина измеряемого сопротивления.

При трактовке результата измерений следует учитывать ещё и допуск. Каждый радиоэлемент имеет свой показатель допуска. Например, если допуск составляет 10 процентов, а внутреннее сопротивление варистора указано как 100 МОм, то полученные результаты должны находиться в пределах от 90 до 110 МОм. Если выявляется, что измеренное сопротивление элемента находится ниже или выше этого диапазона, то его можно считать неисправным.

Применение реостата

Проверить варистор возможно не только путем измерения его внутреннего импеданса. Внутреннее значение сопротивления может соответствовать заявленной величине, но при этом пороговое напряжение варистора будет неверным. Для проверки значения пробоя используется мультиметр с лабораторным автотрансформатором или реостатом.

В тестовой схеме к одному из выводов варистора подключается подвижный контакт реостата, а к другому — плавкий предохранитель. Щупы мультиметра фиксируются параллельно выводам полупроводникового элемента, а он сам переключается в режим измерения напряжений. На свободную пару контактов подаётся разность потенциалов, величина которой превышает значение пробоя компонента.

С помощью движимого контакта реостата плавно изменяется напряжение до момента срабатывания варистора. Этот момент определяется по вольтметру. Первоначально показания мультиметра будут расти, а после резко сбросятся до нуля. При этом предохранитель перегорит. Максимальное зафиксированное ненулевое значение и будет являться пороговым напряжением.

Важно отметить, что при измерении, особенно с помощью реостата, возможно поражение организма электрическим током. Поэтому нельзя забывать о технике безопасности, следует неуклонно её соблюдать.

Как проверить варистор мультиметром или подобрать ему аналог?

Каждая радиодеталь в электрической схеме имеет свое предназначение. Одни меняют параметры, другие являются сигнализаторами состояния или исполнителями команд.

Есть радиоэлементы, отвечающие за безопасность и защиту (речь идет не о банальных предохранителях). Например, варистор, который резко меняет свои характеристики при скачках напряжения.

Это свойство используется в системах защиты блоков питания и коммутационных устройств. Кроме того, он используется в качестве простейшего фильтра импульсного напряжения. Деталь недорогая, но достаточно эффективная.

Если ваш удлинитель или электроприбор не выполняет свою функцию после скачка напряжения, не торопитесь вникать в устройство схемы. Иногда достаточно знать, как проверить варистор мультиметром.

Что это за элемент, и как он работает?

Варисторами называют разновидность резисторов, выполненных из полупроводника.

Обозначение на схеме

Особенность этого элемента – скачкообразное изменение сопротивления при определенных значениях напряжения. То есть, до заданного значения, сопротивление варистора удерживается в стабильном состоянии. После превышения вольтажа, сопротивление стремительно уменьшается и стремится к нулю.

Как видно на графике вольт амперной характеристики, сила тока, протекающего через варистор, стабильна в заданном диапазоне напряжения. При его повышении, ток резко возрастает. Это происходит именно по причине лавинообразного снижения сопротивления.

Чтобы знать, как проверить варистор на исправность мультиметром, рассмотрим его устройство.

В керамическом слое расположены кристаллы оксида цинка. В зависимости от их концентрации, при достижении определенного напряжения на соединительных выводах, меняется сопротивление керамического слоя, и протекающая через него сила тока.

Как работает виристор, наглядный пример — видео

Разумеется, есть так называемый порог живучести: величина тока, помноженная на время прохождения. При достижении критического значения, деталь термически разрушается, и цепь будет разомкнута. От этого значения зависит работоспособность варистора: то есть, способность выдерживать скачки напряжения.

Например, варистор K275:

Он может работать в цепях до 450 вольт, и срабатывает при достижении напряжения 275 вольт. Способность поглощать энергию 151 Дж, позволяет взять на себя ток 8000 ампер в течении нескольких миллисекунд. Затем деталь выходит из строя.

Применение варисторов в схемах защиты

Исходя из свойств элемента, логично применять его в цепях обхода основной электросхемы. При повышении питающего напряжения, варистор выступит в роли своеобразного шунта.

При импульсном (несколько миллисекунд) скачке напряжения, основной ток пройдет в обход схемы. При восстановлении параметров – электропитание цепи мгновенно возобновится.

Однако, есть существует риск продолжительного повышения вольтажа, защита работать не будет. Поэтому в цепь питания с варистором, устанавливают размыкающее устройство: предохранитель либо автоматический выключатель.

Простейший пример – варистор подключается параллельно питанию в удлинителе с защитой. При скачке напряжения, элемент фактически формирует короткое замыкание, и срабатывает защитный автомат.

Чаще всего в подобных схемах применяются варисторы типа TVR 14561.

Как проверить работоспособность варистора?

Мы уже знаем, что варистор – по сути сопротивление. Стало быть, его можно проверить тестером. Простейший способ – замер сопротивления. Необходимо выпаять деталь из схемы, и проверить сопротивление в различных диапазонах измерения.

Важно! Щупы прибора прижимаются непосредственно к ножкам элемента, иначе на точность измерения будет влиять сопротивление ваших пальцев.


Сопротивление должно быть бесконечно большим – это свидетельствует об исправности варистора. Если схема не имеет дополнительного сопротивления в цепи подключения, можно проверить варистор мультиметром не выпаивая.

Например, в том же удлинителе. Только не забудьте выдернуть вилку из розетки, и отключить все потребители, включенные в удлинитель.

При необходимости точного измерения параметров, необходимо собрать схему из не слишком требовательного потребителя (например, мощной лампы накаливания) и предохранителя.

Под нагрузкой понимаем ту самую лампу.

Как проверить S14 K275 этим методом?

Мы знаем, что напряжение срабатывания составляет 275 вольт. При подаче напряжения 220 вольт, схема работает в рабочем режиме: варистор имеет бесконечное сопротивление, ток протекает по основной цепи, лампа горит.

Подаем на вход повышенное напряжение (например, 400 вольт). Варистор переходит в режим защиты (сопротивление резко снижается, ток протекает через него), перегорает предохранитель, лампа гаснет.
Вывод: варистор исправен.

Обратите внимание

Перед тем, как проверить варистор на исправность, необходимо его осмотреть. При получении избыточной нагрузки, корпус детали термически разрушается.

Как проверить варистор на плате?

Если деталь входит в состав сложной электросхемы, точно определить параметры сопротивления будет невозможно. Параллельно варистору есть масса сопротивлений, которые будут искажать показания прибора.

Необходимо точно знать, какие элементы подключены в параллель, и каковы их параметры. После этого производится расчет параллельных и последовательных сопротивлений, и делается математическая поправка.

Однако этот способ настолько сложен (в плане вычислений), что радиолюбители его никогда не практикуют. Если вы не хотите нарушать целостность монтажной платы, достаточно выпаять хотя бы одну ножку варистора.

После чего вы подключаете мультиметр к детали, и выполняете проверку стандартным способом. Справедливости ради отметим, что сгоревший варистор почти всегда разрушается, или имеет следы обугливания.

Эта деталь не относится к разряду дорогих: стоимость простого варистора находится в диапазоне 7р – 50р. Так что, если есть подозрение на неисправность, можно просто заменить элемент.

Как заменить варистор на плате или подобрать аналог — видео

About sposport

View all posts by sposport

Загрузка…

Как проверить варистор мультиметром — [ Статья ]

Содержание статьи

Варистор является разновидностью полупроводникового резистора с функцией предохранителя защищаемой цепи. Принцип работы варистора основан на резком и быстром уменьшении его электрического сопротивления при повышении напряжения на контактах. Отсюда следует параллельный способ подключения прибора к тому участку схемы, который необходимо шунтировать.

В штатном режиме варистор бездействует – он необходим при пиковых всплесках напряжения, которое может вывести из строя защищаемую схему. Рост разницы потенциалов приводит к протеканию тока через варистор, избыточная энергия выделяется прибором в тепловом виде. Внешне типичный варистор выглядит как таблетка с двумя усиками-выводами и похож на конденсатор, отличаясь от него по нанесенной маркировке.

Основные параметры и маркировка варисторов

Данный тип полупроводниковых приборов выпускается в двух разновидностях. Низковольтные варисторы срабатывают на напряжение в диапазоне от 3 до 200 Вольт, они применяются в бытовой аппаратуре. Высоковольтные способны реагировать на напряжение до 20 000 Вольт и используются в промышленности.

По маркировке прибора можно понять не только его назначение (и отличить от конденсатора), но и получить представление об основных характеристиках.

Например, варистор с надписью 20d421k имеет диаметр 20 миллиметров, пороговое напряжение открытия в 420 Вольт, а буква k обозначает допустимое отклонение данного напряжения, равное 10 %. То есть этот прибор может сработать уже при подаче 378 Вольт на его контакты (420 – 42).

На электрических схемах варистор обозначается аббревиатурой znrX, где X – количество приборов на данном участке схемы.

Проверка варистора – осмотр, омметр и мультиметр

При срабатывании данного полупроводникового прибора происходит значительное выделение тепла и варистор может сгореть. Это происходит при большом значении пикового напряжения, при его длительной подаче либо при сочетании обоих факторов.

Способов проверки варистора на дальнейшую работоспособность существует несколько:

  • Внешний осмотр. Его не стоит отвергать, так как многие современные схемы плотно упакованы, и нарушение целостности внешней оболочки прибора легко не заметить. Любые трещины, вспучивания или потемнения на корпусе варистора сигнализируют о его выходе из строя.
  • Прозвон с помощью мультиметра. Достоверно проверить варистор на исправность мультиметром прямо на плате невозможно — придется выпаивать как минимум один контакт. Важно провести измерение в обоих направлениях, поменяв щупы местами друг с другом. Селектор режимов мультиметра необходимо установить на ячейку «проверка диодов», обычно рядом с ней нарисован символ диода и значок акустической индикации. Целый варистор не прозванивается ввиду своего значительного сопротивления.
  • Измерение омметром либо мегаомметром. Следует установить омметр на максимальное значение, в большинстве бытовых приборов таковым является 2 МегаОма. На шкале они могут быт обозначены как 2000К или 2M. В теории измеренное сопротивление должно быть бесконечным, на практике омметр может показать значение сопротивления исправного варистора в 1,5…2 МегаОма. Если прозванивать варистор мегаомметром, важно установить правильное значение напряжения на его выводах. В мощных измерительных приборах оно может быть выше, чем пороговое напряжение открытия варистора. Проще говоря, полупроводниковый предохранитель можно сжечь в процессе проверки.

На практике использование мультиметра для диагностики исправности варисторов встречается не столь часто, так как в большинстве случаев достаточно внешнего осмотра. При замене сгоревшего предохранителя следует обратить внимание на технические характеристики его предшественника, иначе новый варистор выйдет из строя значительно быстрее либо не выполнит свою шунтирующую функцию и допустит повреждение целого электронного блока.


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


как проверить мультиметром и расшифровать результат

Варистор представлен полупроводниковым резистором с нелинейно зависящей от прилагаемого напряжения проводимостью.

Как правильно установить варистор, как проверить мультиметром этот прибор и грамотно определить, а затем устранить неполадки в таком элементе – вопросы, наиболее часто встречающиеся при эксплуатации устройства защиты или шунта.

Принцип измерения

Чтобы определиться с принципом измерения, необходимо учесть основные параметры и характеристики стандартного варистора, которые представлены:
  • Un, или классификационным напряжением, как правило, измеряемым при токовых показателях на уровне 1 мA. Данный параметр принято считать условным и определять согласно маркировке, нанесенной на корпус элемента.
  • Um, или предельно допустимыми показателями среднеквадратичного, так называемого действующего напряжения переменного типа.
  • Um=, или предельно допустимыми показателями уровня задействованного постоянного напряжения.
  • Р, или номинальными показателями среднестатистической рассеиваемой мощности. Именно такой уровень мощности способен рассеиваться при помощи варистора в процессе эксплуатации. Правило действует при условии сохранения выставленных предварительно параметров и основных пределов.
  • W, или максимально допустимыми показателями поглощаемой энергии, измеряемой джоулями (Дж), под воздействием единичных импульсов.
  • Iрр, или максимальными показателями токовых импульсов при наличии времени нарастания или длительности импульса в пределах 8/20 мкc.
  • Со, или емкостью, измеряемой в закрытом положении. Данное значение в процессе эксплуатации напрямую будет зависеть от прилагаемого напряжения. Однако при прохождении высокой токовой нагрузки показатель падает до отметки «ноль».
  • W, или периодом воздействия перегрузки при максимальных показателях мощности, обозначаемой Pт в условиях низкого риска повреждения варистора.

Уровень рабочего напряжения варистора подбирается в соответствии с предельно допустимыми показателями рассеивающей энергии и максимальным параметром амплитуды напряжения. Ориентировочные расчеты в этом случае выполняются при уровне переменного напряжения не более Uвх <= 0,6Un и при постоянном напряжении — Uвх < 0,85Un.

Схема проверки варистора мультиметром

Конструкция варистора представлена парой металлических дисковидных электродов, оксидноцинковыми вкраплениями, синтетической полупроводниковой оболочкой, а также керамическим изолятором и выводами.

Нормальный режим работы предполагает наличие высокого сопротивления в устройстве. При превышении номинального напряжения происходит лавинный эффект, а также отмечается сильное падение сопротивления и возрастание токовой нагрузки. Таким образом, показатели напряжения на варисторе остаются прежними, и происходит работа устройства в параметрах стабилитрона.

Для правильного выбора защитного элемента и с целью предотвращения перегрузки в цепях эксплуатируемого электронного прибора очень важно учитывать показатели входного сопротивления источника и уровень мощности импульсов, которые возникают на стадии переходных процессов.

Измерение сопротивления

Варистор относится к категории важных электронных компонентов, предназначенных для защиты дорогостоящих современных устройств от поломки в результате скачков напряжения.

Варисторы, получившие слишком сильный электрический толчок, могут оставаться на низких показателях сопротивления и потребуют проведения проверки.

Процесс измерения уровня сопротивления не отличается особой сложностью. С этой целью необходимо подготовить паяльник с мощностью в пределах 15-35 Вт, канифоль и припой, набор стандартных и крестовых отвёрток, а также плоскогубцы с длинным носиком и мультиметр.

Работы по измерению показателей сопротивления и тестирования варистора могут выполняться двумя основными способами.

Хотите узнать, как проверить диод мультиметром? Читайте подробную инструкцию на нашем сайте.

Схемы последовательного и параллельного подключения ламп представлены тут.

Замена патрона в люстре – достаточно простое мероприятие, которое под силу любому непрофессионалу. Подробно о том, как это сделать, вы узнаете из этой статьи.

Проверка при отсутствии спецификации

Если отсутствует спецификация производителя, то первый вариант проверки является более предпочтительным. При таком способе проверки прибор отключается от электрической сети питания, после чего при помощи отвертки вскрывается его корпус и определяется место расположения предохранителя.

После визуального осмотра предохранитель извлекается и тестируется. Перегоревший или пришедший в негодность предохранитель подлежит замене.

Только после проверки предохранителя определяется расположение и работоспособность варистора, который чаще всего является ярко окрашенным в красный, синий или жёлтый цвет диском небольших размеров.

Как правило, варистор бывает зафиксирован на предохранительном держателе. Сначала необходимо произвести визуальный осмотр устройства и исключить наличие поверхностных оплавлений, деформаций или подпалин.

Варистор в блоке питания АТХ

После осмотра выполняется отсоединение одного из проводов, который нагревается при помощи паяльника до расплавления припоя. Затем удаляется припой, а варистор извлекается из схемы посредством плоскогубцев. Проверка элемента осуществляется посредством измерения уровня его сопротивления:

  • включенный мультиметр переводится в положение регулятора, позволяющего определить показатели сопротивления;
  • щупы мультиметра фиксируются на концах варистора;
  • производится измерение уровня сопротивления элемента.

Отсутствие тестирования варистора после замены пришедшего в негодность предохранителя в условиях перепада напряжения вполне может спровоцировать разрушение основных элементов электронного устройства.

Неисправный варистор, выявленный в процессе тестирования мультиметром, следует заменить новым устройством с аналогичной маркировкой.

Проверка при наличии спецификации

Другим распространённым способом проверки варистора является тестирование элемента согласно спецификации производителя, которая представлена испытательной инструкцией и стандартной схемой устройства.

При маркировке варистора после литеры «СН», обозначающей сопротивление нелинейного типа, указывается цифровое обозначение, которым определяются конструктивные особенности и вид материала тестируемого элемента.

Числовым обозначением, дополненным символом «В±…%», определяется уровень предельного напряжения и допуск.

Важно помнить, что исправность тестируемого при помощи мультиметра варистора может быть определена только приблизительно, в соответствии с величиной измеренных показателей и уровнем сопротивления.

Расшифровка результата

В процессе визуального осмотра или тестирования мультиметром удаётся определиться с работоспособностью варистора, а также принять решение о необходимости замены такого элемента в приборе.

Показатели замеряемого сопротивления перегоревшего варистора всегда превышают 100 Ом.

В этом случае удаляются свинцовые остатки, после чего от схемы аккуратно отсоединяется сам варистор.

Извлеченный элемент заменяется новым, с аналогичными параметрами. Тестируемые мультиметром элементы, обладающие сопротивлением более 1 млн Ом, замене не подлежат.

Процесс монтажа люстры зависит от типа прибора. Прежде чем выяснить, как собрать люстру, нужно разобраться с конструкцией прибора.

Схема энергосберегающей лампы и типы ламп вы найдете в этом материале.

Видео на тему

Разумеется, есть так называемый порог живучести: величина тока, помноженная на время прохождения. При достижении критического значения, деталь термически разрушается, и цепь будет разомкнута. От этого значения зависит работоспособность варистора: то есть, способность выдерживать скачки напряжения.

Например, варистор K275:

Он может работать в цепях до 450 вольт, и срабатывает при достижении напряжения 275 вольт. Способность поглощать энергию 151 Дж, позволяет взять на себя ток 8000 ампер в течении нескольких миллисекунд. Затем деталь выходит из строя.

Применение варисторов в схемах защиты

Исходя из свойств элемента, логично применять его в цепях обхода основной электросхемы. При повышении питающего напряжения, варистор выступит в роли своеобразного шунта.

При импульсном (несколько миллисекунд) скачке напряжения, основной ток пройдет в обход схемы. При восстановлении параметров – электропитание цепи мгновенно возобновится.

Однако, есть существует риск продолжительного повышения вольтажа, защита работать не будет. Поэтому в цепь питания с варистором, устанавливают размыкающее устройство: предохранитель либо автоматический выключатель.

Простейший пример – варистор подключается параллельно питанию в удлинителе с защитой. При скачке напряжения, элемент фактически формирует короткое замыкание, и срабатывает защитный автомат.

Чаще всего в подобных схемах применяются варисторы типа TVR 14561.

Как проверить работоспособность варистора?

Мы уже знаем, что варистор – по сути сопротивление. Стало быть, его можно проверить тестером. Простейший способ – замер сопротивления. Необходимо выпаять деталь из схемы, и проверить сопротивление в различных диапазонах измерения.

Важно! Щупы прибора прижимаются непосредственно к ножкам элемента, иначе на точность измерения будет влиять сопротивление ваших пальцев.


Сопротивление должно быть бесконечно большим – это свидетельствует об исправности варистора. Если схема не имеет дополнительного сопротивления в цепи подключения, можно проверить варистор мультиметром не выпаивая.

Например, в том же удлинителе. Только не забудьте выдернуть вилку из розетки, и отключить все потребители, включенные в удлинитель.

При необходимости точного измерения параметров, необходимо собрать схему из не слишком требовательного потребителя (например, мощной лампы накаливания) и предохранителя.

Под нагрузкой понимаем ту самую лампу.

Как проверить S14 K275 этим методом?

Мы знаем, что напряжение срабатывания составляет 275 вольт. При подаче напряжения 220 вольт, схема работает в рабочем режиме: варистор имеет бесконечное сопротивление, ток протекает по основной цепи, лампа горит.

Подаем на вход повышенное напряжение (например, 400 вольт). Варистор переходит в режим защиты (сопротивление резко снижается, ток протекает через него), перегорает предохранитель, лампа гаснет.
Вывод: варистор исправен.

Обратите внимание

Перед тем, как проверить варистор на исправность, необходимо его осмотреть. При получении избыточной нагрузки, корпус детали термически разрушается.

Как проверить варистор на плате?

Если деталь входит в состав сложной электросхемы, точно определить параметры сопротивления будет невозможно. Параллельно варистору есть масса сопротивлений, которые будут искажать показания прибора.

Необходимо точно знать, какие элементы подключены в параллель, и каковы их параметры. После этого производится расчет параллельных и последовательных сопротивлений, и делается математическая поправка.

Однако этот способ настолько сложен (в плане вычислений), что радиолюбители его никогда не практикуют. Если вы не хотите нарушать целостность монтажной платы, достаточно выпаять хотя бы одну ножку варистора.

После чего вы подключаете мультиметр к детали, и выполняете проверку стандартным способом. Справедливости ради отметим, что сгоревший варистор почти всегда разрушается, или имеет следы обугливания.

Эта деталь не относится к разряду дорогих: стоимость простого варистора находится в диапазоне 7р – 50р. Так что, если есть подозрение на неисправность, можно просто заменить элемент.

Как заменить варистор на плате или подобрать аналог — видео

About sposport

View all posts by sposport

Загрузка…

Как проверить варистор мультиметром — [ Статья ]

Содержание статьи

Варистор является разновидностью полупроводникового резистора с функцией предохранителя защищаемой цепи. Принцип работы варистора основан на резком и быстром уменьшении его электрического сопротивления при повышении напряжения на контактах. Отсюда следует параллельный способ подключения прибора к тому участку схемы, который необходимо шунтировать.

В штатном режиме варистор бездействует – он необходим при пиковых всплесках напряжения, которое может вывести из строя защищаемую схему. Рост разницы потенциалов приводит к протеканию тока через варистор, избыточная энергия выделяется прибором в тепловом виде. Внешне типичный варистор выглядит как таблетка с двумя усиками-выводами и похож на конденсатор, отличаясь от него по нанесенной маркировке.

Основные параметры и маркировка варисторов

Данный тип полупроводниковых приборов выпускается в двух разновидностях. Низковольтные варисторы срабатывают на напряжение в диапазоне от 3 до 200 Вольт, они применяются в бытовой аппаратуре. Высоковольтные способны реагировать на напряжение до 20 000 Вольт и используются в промышленности.

По маркировке прибора можно понять не только его назначение (и отличить от конденсатора), но и получить представление об основных характеристиках.

Например, варистор с надписью 20d421k имеет диаметр 20 миллиметров, пороговое напряжение открытия в 420 Вольт, а буква k обозначает допустимое отклонение данного напряжения, равное 10 %. То есть этот прибор может сработать уже при подаче 378 Вольт на его контакты (420 – 42).

На электрических схемах варистор обозначается аббревиатурой znrX, где X – количество приборов на данном участке схемы.

Проверка варистора – осмотр, омметр и мультиметр

При срабатывании данного полупроводникового прибора происходит значительное выделение тепла и варистор может сгореть. Это происходит при большом значении пикового напряжения, при его длительной подаче либо при сочетании обоих факторов.

Способов проверки варистора на дальнейшую работоспособность существует несколько:

  • Внешний осмотр. Его не стоит отвергать, так как многие современные схемы плотно упакованы, и нарушение целостности внешней оболочки прибора легко не заметить. Любые трещины, вспучивания или потемнения на корпусе варистора сигнализируют о его выходе из строя.
  • Прозвон с помощью мультиметра. Достоверно проверить варистор на исправность мультиметром прямо на плате невозможно — придется выпаивать как минимум один контакт. Важно провести измерение в обоих направлениях, поменяв щупы местами друг с другом. Селектор режимов мультиметра необходимо установить на ячейку «проверка диодов», обычно рядом с ней нарисован символ диода и значок акустической индикации. Целый варистор не прозванивается ввиду своего значительного сопротивления.
  • Измерение омметром либо мегаомметром. Следует установить омметр на максимальное значение, в большинстве бытовых приборов таковым является 2 МегаОма. На шкале они могут быт обозначены как 2000К или 2M. В теории измеренное сопротивление должно быть бесконечным, на практике омметр может показать значение сопротивления исправного варистора в 1,5…2 МегаОма. Если прозванивать варистор мегаомметром, важно установить правильное значение напряжения на его выводах. В мощных измерительных приборах оно может быть выше, чем пороговое напряжение открытия варистора. Проще говоря, полупроводниковый предохранитель можно сжечь в процессе проверки.

На практике использование мультиметра для диагностики исправности варисторов встречается не столь часто, так как в большинстве случаев достаточно внешнего осмотра. При замене сгоревшего предохранителя следует обратить внимание на технические характеристики его предшественника, иначе новый варистор выйдет из строя значительно быстрее либо не выполнит свою шунтирующую функцию и допустит повреждение целого электронного блока.


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


как проверить мультиметром и расшифровать результат

Варистор представлен полупроводниковым резистором с нелинейно зависящей от прилагаемого напряжения проводимостью.

Как правильно установить варистор, как проверить мультиметром этот прибор и грамотно определить, а затем устранить неполадки в таком элементе – вопросы, наиболее часто встречающиеся при эксплуатации устройства защиты или шунта.

Принцип измерения

Чтобы определиться с принципом измерения, необходимо учесть основные параметры и характеристики стандартного варистора, которые представлены:
  • Un, или классификационным напряжением, как правило, измеряемым при токовых показателях на уровне 1 мA. Данный параметр принято считать условным и определять согласно маркировке, нанесенной на корпус элемента.
  • Um, или предельно допустимыми показателями среднеквадратичного, так называемого действующего напряжения переменного типа.
  • Um=, или предельно допустимыми показателями уровня задействованного постоянного напряжения.
  • Р, или номинальными показателями среднестатистической рассеиваемой мощности. Именно такой уровень мощности способен рассеиваться при помощи варистора в процессе эксплуатации. Правило действует при условии сохранения выставленных предварительно параметров и основных пределов.
  • W, или максимально допустимыми показателями поглощаемой энергии, измеряемой джоулями (Дж), под воздействием единичных импульсов.
  • Iрр, или максимальными показателями токовых импульсов при наличии времени нарастания или длительности импульса в пределах 8/20 мкc.
  • Со, или емкостью, измеряемой в закрытом положении. Данное значение в процессе эксплуатации напрямую будет зависеть от прилагаемого напряжения. Однако при прохождении высокой токовой нагрузки показатель падает до отметки «ноль».
  • W, или периодом воздействия перегрузки при максимальных показателях мощности, обозначаемой Pт в условиях низкого риска повреждения варистора.

Уровень рабочего напряжения варистора подбирается в соответствии с предельно допустимыми показателями рассеивающей энергии и максимальным параметром амплитуды напряжения. Ориентировочные расчеты в этом случае выполняются при уровне переменного напряжения не более Uвх <= 0,6Un и при постоянном напряжении — Uвх < 0,85Un.

Схема проверки варистора мультиметром

Конструкция варистора представлена парой металлических дисковидных электродов, оксидноцинковыми вкраплениями, синтетической полупроводниковой оболочкой, а также керамическим изолятором и выводами.

Нормальный режим работы предполагает наличие высокого сопротивления в устройстве. При превышении номинального напряжения происходит лавинный эффект, а также отмечается сильное падение сопротивления и возрастание токовой нагрузки. Таким образом, показатели напряжения на варисторе остаются прежними, и происходит работа устройства в параметрах стабилитрона.

Для правильного выбора защитного элемента и с целью предотвращения перегрузки в цепях эксплуатируемого электронного прибора очень важно учитывать показатели входного сопротивления источника и уровень мощности импульсов, которые возникают на стадии переходных процессов.

Измерение сопротивления

Варистор относится к категории важных электронных компонентов, предназначенных для защиты дорогостоящих современных устройств от поломки в результате скачков напряжения.

Варисторы, получившие слишком сильный электрический толчок, могут оставаться на низких показателях сопротивления и потребуют проведения проверки.

Процесс измерения уровня сопротивления не отличается особой сложностью. С этой целью необходимо подготовить паяльник с мощностью в пределах 15-35 Вт, канифоль и припой, набор стандартных и крестовых отвёрток, а также плоскогубцы с длинным носиком и мультиметр.

Работы по измерению показателей сопротивления и тестирования варистора могут выполняться двумя основными способами.

Хотите узнать, как проверить диод мультиметром? Читайте подробную инструкцию на нашем сайте.

Схемы последовательного и параллельного подключения ламп представлены тут.

Замена патрона в люстре – достаточно простое мероприятие, которое под силу любому непрофессионалу. Подробно о том, как это сделать, вы узнаете из этой статьи.

Проверка при отсутствии спецификации

Если отсутствует спецификация производителя, то первый вариант проверки является более предпочтительным. При таком способе проверки прибор отключается от электрической сети питания, после чего при помощи отвертки вскрывается его корпус и определяется место расположения предохранителя.

После визуального осмотра предохранитель извлекается и тестируется. Перегоревший или пришедший в негодность предохранитель подлежит замене.

Только после проверки предохранителя определяется расположение и работоспособность варистора, который чаще всего является ярко окрашенным в красный, синий или жёлтый цвет диском небольших размеров.

Как правило, варистор бывает зафиксирован на предохранительном держателе. Сначала необходимо произвести визуальный осмотр устройства и исключить наличие поверхностных оплавлений, деформаций или подпалин.

Варистор в блоке питания АТХ

После осмотра выполняется отсоединение одного из проводов, который нагревается при помощи паяльника до расплавления припоя. Затем удаляется припой, а варистор извлекается из схемы посредством плоскогубцев. Проверка элемента осуществляется посредством измерения уровня его сопротивления:

  • включенный мультиметр переводится в положение регулятора, позволяющего определить показатели сопротивления;
  • щупы мультиметра фиксируются на концах варистора;
  • производится измерение уровня сопротивления элемента.

Отсутствие тестирования варистора после замены пришедшего в негодность предохранителя в условиях перепада напряжения вполне может спровоцировать разрушение основных элементов электронного устройства.

Неисправный варистор, выявленный в процессе тестирования мультиметром, следует заменить новым устройством с аналогичной маркировкой.

Проверка при наличии спецификации

Другим распространённым способом проверки варистора является тестирование элемента согласно спецификации производителя, которая представлена испытательной инструкцией и стандартной схемой устройства.

При маркировке варистора после литеры «СН», обозначающей сопротивление нелинейного типа, указывается цифровое обозначение, которым определяются конструктивные особенности и вид материала тестируемого элемента.

Числовым обозначением, дополненным символом «В±…%», определяется уровень предельного напряжения и допуск.

Важно помнить, что исправность тестируемого при помощи мультиметра варистора может быть определена только приблизительно, в соответствии с величиной измеренных показателей и уровнем сопротивления.

Расшифровка результата

В процессе визуального осмотра или тестирования мультиметром удаётся определиться с работоспособностью варистора, а также принять решение о необходимости замены такого элемента в приборе.

Показатели замеряемого сопротивления перегоревшего варистора всегда превышают 100 Ом.

В этом случае удаляются свинцовые остатки, после чего от схемы аккуратно отсоединяется сам варистор.

Извлеченный элемент заменяется новым, с аналогичными параметрами. Тестируемые мультиметром элементы, обладающие сопротивлением более 1 млн Ом, замене не подлежат.

Процесс монтажа люстры зависит от типа прибора. Прежде чем выяснить, как собрать люстру, нужно разобраться с конструкцией прибора.

Схема энергосберегающей лампы и типы ламп вы найдете в этом материале.

Видео на тему

Как проверить варистор мультиметром: инструкция

Как гласит вездесущая Википедия — варистор — это резистор, сопротивление которого способно изменяться в зависимости от входящего на него напряжения, обладает нелинейной характеристикой и имеет два вывода. Может резко уменьшать сопротивление в случае увеличения величины подаваемого на него напряжения.  В нашей статье, мы расскажем, как использовать мультиметр в проверке варистора, если есть подозрения, что он вышел из строя.

Свойства варистора

Основное свойство варистора заключается в его особенности сокращать своё собственное сопротивление в зависимости от поступающего на него напряжения. Чем выше подаётся напряжение, тем более меньшим сопротивлением он начинает обладать.  Варисторы подключаются в электрическую плату параллельно защищаемому устройству, в штатном режиме варистор работает при номинальном напряжении того устройства, которое он защищает.

В обычном режиме электричество проходящее сквозь варистор ничтожно мало, и поэтому он в подобных условиях выполняет роль изолятора.

Если возникает резкий скачок электричества варистор из-за нелинейной своей характеристики мгновенно сокращает значение своего сопротивления до десятых долей Ома и снимает нагрузку с общей сети, защищая ее, излучая теплом излишек полученной энергии. В подобных ситуациях сквозь варистор может мгновенно проходить напряжение силой в тысячи ампер.

Варистор совершенно безынерционный прибор, как только увеличивается напряжение в сети, в нём тотчас же падает его сопротивление.

Принцип действия и применение

Варисторы, это особый вид резисторов, главное свойство которых, способность менять свое напряжение в диапазоне от тысячи мега Ом, до нескольких десятков  Ом при подаче через них тока, сила которого выше их пороговой величины.

Благодаря параллельному включению их в цепь, в случае резкого скачка напряжения весь ток проходит сквозь варисторы, минуя основную цепь прибора.

Точно, как и газоразрядник, варистор прибор многократного использования, только он намного быстрее возвращает свое первоначальное значение сопротивления падения напряжения.

После изучения теоретических основ, можно заняться тестированием

Проведение проверки варистора мультиметром

Для проведения этой уникальнейшей операции, нам необходимы следующие приспособления:

  • Первым делом, конечно же отвертка (обычно требуется фигурная). Чтобы пробраться до платы, необходимо вскрыть корпус устройства, а тут как известно без неё не обойтись.
  • Требуется запастись будет еще и щёткой.  Она нужна будет, чтобы очистить плату от накопившейся пыли. Из практики уже известно, что в блоках питания всегда ее скапливается очень много, особенно если устройство оснащено собственным охлаждением (вентилятором), характерный пример, – блок питания компьютера.
  • Важная вещь в подобной процедуре — паяльник. Без него никак. Нужно отпаять и обратно припаять варистор. Как правило внутри силовых блоков большие дорожки на платах и совершенно нет мелких деталей, поэтому можете смело пользоваться паяльником до 75 Вт.
  • Канифоль и припой (наверное, наиболее необходимое. Припаять обратно деталь без них не получится).
  • Мультиметр (электронный или аналоговый), чтобы иметь возможность замерить сопротивление.

Как только весь инструментарий будет готов, можно приступать к операции. Главное придерживайтесь схемы и все получится как нужно:

  1.  Вскрываем устройство. Детально рассказать, как это сделать сложновато, ведь конструкции разных приборов разнятся между собой. В любом случае, всю эту техническую информацию Вы можете найти в паспорте устройства, в интернете (на различных тематических форумах и сайтах).
  2. Как только доберётесь до печатной платы, постарайтесь очистить её от пыли. Работайте как можно более аккуратно, чтобы не нанести вред радиодеталям. Отмечены случаи, когда излишнее усердие наносило больше вреда, чем пользы, так как щетина на щетке царапала тот или иной компонент схемы.
  3. Когда с пылью будет покончено, найдите варистор. Его отличает настолько специфический вид, что перепутать его невозможно.
  4. Найдя на плате варистор, прежде всего тщательно осмотрите его. Если видны трещинки, какие-либо сколы, либо другие механические повреждения корпуса, то это уже говорит о неисправности.
  5. Если были обнаружена какие-либо нарушения целостности корпуса, то выпаиваем повреждённый элемент, а вместо него ставим точно такой же или аналогичный. Найти замену Вы можете самостоятельно, ориентируясь на указанную на варисторе информацию, либо обратитесь к специалисту.
  6. Если при тщательном зрительном осмотре видимых повреждений не обнаружено, то следует пустить в ход мультиметр, конечно предварительно будет необходимо выпаять деталь с платы. Цепляем щупы мультиметра к нашей детали и выставляем режим замера максимального сопротивления.
  7. Щупы тестера прижимаем к ножкам варистора и замеряем сопротивление. В идеале мультиметр должен показать высокие значения до бесконечности. Если перед Вами другое значение, то это говорит о неисправности варистора и его необходимо заменить.
  8. Во время измерений, внимательно следите, чтобы не коснуться руками щупов мультиметра. Иначе он будет показывать сопротивление вашего тела. Если есть необходимость заменяем варистор и собираем корпус устройства обратно.

Измерение сопротивления и проверка варистора, может быть осуществлена двумя способами.

Вариант 1

Первоначально проводим визуальный осмотр. Для этого отключаем аппарат от питания, вскрываем корпус и определяем где находится предохранитель. Далее извлекаем его и проверяем.  Если предохранитель перегорел или негоден, то он заменяется. И только когда мы проверили предохранитель и заменили, переходим к нахождению и тестированию варистора. Его сложно не заметить, так как он выкрашен обычно в красные, синие или жёлтые цвета. Это маленький дискообразный элемент. Обычно крепится на предохраняющем держателе.

Далее отсоединяем любой из проводов, для этого нагреваем его паяльником и извлекаем варистор с платы при помощи плоскогубцев.

Сама проверка основана на замере показателя сопротивления: включаем тестер, переводим его в позицию замера сопротивления; фиксируем жала щупов на выводах варистора.  Далее проводится замер.

Вариант 2

Другой способ берет за основу данные из инструкции или спецификации устройства для определения показателей нормальной работы варистора. За символом «CH», которым обозначается нелинейное сопротивление, указано значение, которое производитель заложил в конструкцию или которые свойственны тому материалу, из которого изготовлен варистор. Значения, сопровождаемые маркировкой «B±…%», показывают уровень предельного сопротивления и допуск.

Если для элемента не предоставлена спецификация, наиболее подходящим будет именно первый вариант.

Трактовка результатов

Проведя наружный осмотр и проверку мультиметром, мы можем определиться с исправностью детали либо убедиться в необходимости его замены. Сопротивление неисправного варистора как правило выше 100 Ом. Если в результате тестирования прибор показывает свыше 1 миллиона Ом, то такой варистор замене не подлежит.

Как проверить варистор мультиметром?

Проверка варистора с помощью тестера или мультиметра – это полезный навык для радиолюбителей и людей, которые сами с руками и любят заняться ремонтом сломанной техники самостоятельно. Речь об этом пойдет в данной статье. Для чего предназначен варистор и что он делает, достаточно подробно расписано в данной статье – статья о варисторе.

Но немного вспомним: варистор предназначен для защиты переменных либо постоянных цепей от перенапряжения. Он стоит параллельно защищаемой цепи и в обычном состоянии имеет высокое сопротивление. При достижении порогового напряжения, которое зависит от марки варистора, у него понижается сопротивление с очень большого, до очень маленького. Варистор поглощает это перенапряжение и рассеивает его в атмосфере в виде тепла. Тем самым он удаляет из схемы излишек энергии, тем самым защищает цепь от выхода из строя.

Теперь приступим к проверке. Перед тем как использовать тестер осмотрите внимательно радиоэлемент. Возможно на нем будут следы подгорания, сколы или он вовсе разломался. Внимательный осмотр избавит вас от лишнего труда, хоть проверка с помощью прибора не занимает много усилий, но все же. Так же варистор может терять свои свойства в течении времени, от внешних условий и в процессе старения – на это тоже стоит обратить внимание.

Проверка по сопротивлению

Перед проверкой нам нужно выпаять один из выводов варистора, делает это для того, чтобы предотвратить утечку тока по другим элементам цепи, что сделает наши измерения не верными, а результат будет ложным.

Теперь переключим наш мультиметр в режим измерения сопротивления на максимальное значение и измерим сопротивление варистора. Если тестер показывает единицу, либо очень высокое сопротивление(МоМы) – то варистор исправен. Но если там низкое сопротивление, то такой радиоэлемент использовать не стоит, иначе в аварийном режиме может сгореть вся схема.

Проверка по ёмкости

Если ваш прибор обладает такой функций как проверка емкости, то вы можете попробовать второй метод проверки исправности варистора, но для этого нужно иметь справочник. У каждого варистора есть своя емкость. Смотрим указанную для вашей модели и сравниваем справочное значение в реальным. Если емкость примерно такая (не стоит забывать о отклонениях), как указана в описании, то варистор тоже исправен.

Заключение

Мы разобрали два варианта как прозвонить варистор с помощью тестера. Кроме мультиметра можно использовать приборы для измерения сопротивления или емкости. Как видно, ничего сложного в этом нет.

Следующая

ПрактикаКак проверить диодный мост мультиметром?

Как проверить варистор

Варистор — это электронный компонент, который действует как амортизатор, защищая дорогие устройства от вредных скачков напряжения. Например, расположенный поблизости промышленный электродвигатель может подавать высокое напряжение в энергосистему. Варистор, обычно имеющий очень высокое сопротивление, реагирует на скачок напряжения, поглощая свою энергию с очень низким сопротивлением. Это также приведет к перегоранию предохранителя оборудования, но защитит дорогую электронику. Варистор, подвергшийся сильному электрическому удару, останется с низким сопротивлением.

Отключите электронное оборудование от розетки.

Откройте корпус отвертками и найдите варистор. Обычно это ярко окрашенный диск размером с монету. Варистор, скорее всего, будет подключен к держателю предохранителя. Если варистор явно прожог или сломан, это плохо; замени это. Если он не поврежден, переходите к шагу 3.

  • Варистор — это электронный компонент, который действует как амортизатор, защищая дорогие устройства от вредных скачков напряжения.
  • Варистор, скорее всего, будет подключен к держателю предохранителя.

Отпаяйте и отсоедините один из выводов варистора. Нагрейте вывод паяльником, пока припой не расплавится, и удалите припой с помощью приспособления для удаления припоя. Осторожно отсоедините провод от соединения плоскогубцами. Теперь, когда варистор удален из схемы, вы можете измерить его сопротивление.

  • Отпаяйте и отсоедините один из выводов варистора.
  • Теперь, когда варистор удален из цепи, вы можете измерить его сопротивление.

Включите мультиметр и установите показания сопротивления, умноженного на 1000 Ом. Коснитесь одним щупом измерительного прибора свободным проводом варистора, а другим щупом — подсоединенным проводом. Считайте сопротивление на измерителе. Если он показывает почти бесконечное сопротивление, варистор все еще в порядке. Если он показывает очень низкое сопротивление, варистор перегорел.

Перепаяйте отсоединенный провод, если сопротивление варистора хорошее. Если он перегорел, отключите оставшийся провод и припаяйте на его место новый варистор того же номинала.

Как проверить варистор

Варистор — это электронный компонент, который защищает дорогие устройства от вредных скачков напряжения, подобно амортизатору. Например, при скачке напряжения варистор, обычно имеющий очень высокое сопротивление, реагирует на скачок напряжения, поглощая свою энергию с очень низким сопротивлением. Это может привести к перегоранию предохранителя оборудования, но защитит дорогую электронику. Варистор, подвергшийся сильному электрическому удару, может оставаться с низким сопротивлением и должен быть проверен.

Отключите электронное оборудование от розетки.

Откройте корпус отвертками и найдите варистор. Обычно это ярко окрашенный диск размером с монету. Варистор, скорее всего, будет подключен к держателю предохранителя. Если варистор явно прожог или сломан, немедленно замените его.

Отпаяйте и отсоедините один из выводов варистора. Нагрейте вывод паяльником, пока припой не расплавится, и удалите припой с помощью приспособления для удаления припоя.Осторожно отсоедините провод от соединения плоскогубцами. Теперь, когда варистор удален из схемы, вы можете измерить его сопротивление.

Включите мультиметр и установите показания сопротивления, умноженного на 1000 Ом. Коснитесь одним щупом измерительного прибора свободным проводом варистора, а другим щупом — подсоединенным проводом. Считайте сопротивление на измерителе. Если он показывает почти бесконечное сопротивление, варистор все еще в порядке. Если он показывает очень низкое сопротивление, варистор перегорел.

Перепаяйте отсоединенный провод, если сопротивление варистора хорошее.Если варистор перегорел, отсоедините оставшийся провод и припаяйте на его место новый варистор того же номинала.

Вещи, которые вам понадобятся:

  • Паяльник мощностью от 15 до 35 Вт
  • Отвертки
  • Припой для электроники
  • Насос для распайки
  • Плоскогубцы
  • Мультиметр

Предупреждения:

  • Прочтите руководство поставляемого с вашим электронным устройством, для соблюдения надлежащих мер безопасности. При работе с электрическими компонентами существует риск поражения электрическим током или возгорания, даже если электроника отключена.Если у вас нет опыта работы с электричеством или электроникой, проконсультируйтесь со специалистом, прежде чем открывать любое электронное устройство.

Варистор: определение, работа, работа и тестирование

Варистор — это устройство с нелинейной вольт-амперной характеристикой. Когда напряжение, приложенное к варистору, ниже его порогового значения, ток, протекающий через него, чрезвычайно мал, что эквивалентно резистору с бесконечным сопротивлением, наоборот. Самый распространенный варистор — это металлооксидный варистор (MOV).

Каталог

Ⅰ Что такое варистор?

Варистор — это устройство с нелинейной вольт-амперной характеристикой. Он в основном используется для ограничения напряжения, когда цепь подвергается перенапряжению, и поглощения избыточного тока для защиты чувствительных устройств. Его также называют «резистор, зависимый от напряжения , », сокращенно « VDR ». Материал корпуса резистора варистора — полупроводник, поэтому это разновидность полупроводниковых резисторов.Варистор «оксид цинка» (ZnO), который сейчас широко используется, имеет основной материал, состоящий из двухвалентного элемента цинка (Zn) и шестивалентного элемента кислорода (O). Таким образом, с точки зрения материалов, варистор из оксида цинка — это своего рода «оксидный полупроводник II-VI».

Варистор

Варистор — это устройство защиты с ограничением напряжения. Используя нелинейные характеристики варистора, когда между двумя полюсами варистора возникает перенапряжение, варистор может ограничивать напряжение до относительно фиксированного значения напряжения, тем самым обеспечивая защиту последующей цепи.Основными параметрами варистора являются напряжение варистора, токовая нагрузка, емкость перехода, время отклика и т. Д.

Ⅱ Как работают варисторы?

Время отклика варистора составляет нс, что быстрее, чем у газоразрядной трубки, и немного медленнее, чем у трубки TVS. Как правило, скорость срабатывания защиты от перенапряжения для электронных схем может соответствовать требованиям. Емкость перехода варистора обычно составляет от сотен до тысяч ПФ.Во многих случаях его не следует напрямую применять для защиты высокочастотных сигнальных линий. При применении для защиты цепей переменного тока большая емкость перехода увеличивает утечку. При проектировании схемы защиты необходимо полностью учитывать ток. Варистор имеет большую пропускную способность, но меньше газоразрядной трубки.

Когда напряжение, подаваемое на варистор ниже его порогового значения, ток, протекающий через него, чрезвычайно мал, что эквивалентно резистору с бесконечным сопротивлением.То есть, когда приложенное к нему напряжение ниже его порогового значения, это эквивалентно переключателю в выключенном состоянии.

Когда напряжение, приложенное к варистору, превышает его пороговое значение, ток, протекающий через него, резко увеличивается, что эквивалентно бесконечно малому сопротивлению. Другими словами, когда приложенное к нему напряжение превышает его пороговое значение, это эквивалентно переключателю в замкнутом состоянии.

Ⅲ Основные параметры варистора

Основными параметрами варистора являются номинальное напряжение, коэффициент напряжения, максимальное управляющее напряжение, коэффициент остаточного напряжения, ток утечки, ток утечки, температурный коэффициент напряжения, текущий температурный коэффициент, коэффициент нелинейности напряжения, изоляция. сопротивление, статическая емкость и т. д..

1. Номинальное напряжение относится к значению напряжения на варисторе при прохождении постоянного тока 1 мА.

2. Отношение напряжений относится к соотношению значения напряжения, генерируемого, когда ток варистора составляет 1 мА, и значения напряжения, генерируемого, когда ток варистора составляет 0,1 мА.

3. Максимальное ограничивающее напряжение относится к самому высокому значению напряжения, которое могут выдержать два конца варистора.

4. Коэффициент остаточного напряжения : Когда ток, протекающий через варистор, имеет определенное значение, генерируемое на нем напряжение называется этим значением тока как остаточным напряжением.Коэффициент остаточного напряжения — это отношение остаточного напряжения к номинальному напряжению.

5. Пропускная способность также называется пропускной способностью, которая относится к максимальному импульсному (пиковому) току, разрешенному для прохождения через варистор при определенных условиях (с заданным интервалом времени и количеством раз, применяется стандартный пусковой ток).

6. Thw ток утечки и ток ожидания относятся к току, протекающему через варистор при указанной температуре и максимальном постоянном напряжении.

7. Температурный коэффициент напряжения относится к скорости изменения номинального напряжения варистора в заданном температурном диапазоне (температура 20 ~ 70 ° C), то есть, когда ток через варистор остается постоянным, относительное изменение обоих концов варистора при изменении температуры на 1 ℃.

8. Температурный коэффициент тока относится к относительному изменению тока, протекающего через варистор, когда температура на варисторе остается постоянной, а температура изменяется на 1 ° C.

9. Коэффициент нелинейности напряжения относится к отношению значения статического сопротивления к значению динамического сопротивления варистора при заданном приложенном напряжении.

10. Сопротивление изоляции относится к значению сопротивления между выводом (выводом) варистора и изолирующей поверхностью корпуса резистора.

11. Статическая емкость относится к внутренней емкости самого варистора.

Ⅳ Функция варистора

Основная функция варистора — защита переходного напряжения в цепи.По принципу работы, описанному выше, варистор эквивалентен переключателю. Только когда напряжение выше его порогового значения, а переключатель замкнут, ток, протекающий через него, резко возрастает, и влияние на другие цепи не сильно изменяется, тем самым уменьшая влияние перенапряжения на последующие чувствительные цепи. Эта функция защиты варистора может использоваться многократно, а также может быть преобразована в одноразовое защитное устройство, подобное токовому предохранителю.

Функция защиты варистора получила широкое распространение.Например, в цепи питания домашнего цветного телевизора используется варистор для выполнения функции защиты от перенапряжения. Когда напряжение превышает пороговое значение, варистор отражает его характеристики фиксации. Чрезмерное напряжение понижается, так что последующая цепь работает в безопасном диапазоне напряжений.

Варистор в основном используется для защиты от переходных перенапряжений в цепи, но из-за его вольт-амперных характеристик, аналогичных полупроводниковому стабилитрону, он также имеет множество функций элементов схемы.Например, варистор представляет собой своего рода высоковольтный стабилизирующий элемент постоянного тока с малым током-напряжением со стабильным напряжением в тысячи вольт или более, чего не может достичь кремниевый стабилитрон. Варистор можно использовать в качестве элемента обнаружения флуктуации напряжения, битового элемента сдвига уровня постоянного тока, флуоресцентного пускового элемента, элемента выравнивания напряжения и так далее.

Ⅴ Варистор из оксида металла

Наиболее распространенным варистором является варистор из оксида металла (MOV), который содержит керамический блок, состоящий из частиц оксида цинка и небольшого количества других оксидов металлов или полимеров, зажатый между двумя металлическими листами.На стыке частиц и соседних оксидов образуется диодный эффект. Из-за большого количества грязных частиц это эквивалентно большому количеству диодов с обратным подключением. При низком напряжении наблюдается лишь небольшая обратная утечка тока. Когда встречается высокое напряжение, происходит обратный коллапс диода из-за горячих электронов и туннельного эффекта, и течет большой ток. Следовательно, кривая вольт-амперной характеристики варистора очень нелинейна: высокое сопротивление при низком напряжении и низкое сопротивление при высоком напряжении.

Металлооксидные варисторы в настоящее время являются наиболее распространенными устройствами ограничения напряжения и могут использоваться для различных напряжений и токов. Использование оксидов металлов в его структуре означает, что MOV очень эффективны в поглощении кратковременных скачков напряжения и имеют более высокие возможности управления энергией.

Как и обычные варисторы, металлооксидные варисторы начинают проводить при определенном напряжении и перестают проводить, когда напряжение ниже порогового. Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV заключается в том, что ток утечки материала из оксида цинка через MOV очень мал при нормальных рабочих условиях, а его рабочая скорость намного выше в переходном режиме зажима.

MOV обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах и ​​печатных платах аналогичным образом. Типичный металлооксидный варистор имеет следующую структуру:

Металлооксидный варистор

Чтобы выбрать правильный MOV для конкретного применения, необходимо понимать полное сопротивление источника и возможную импульсную мощность переходного процесса. .Для входных линейных или фазовых переходных процессов выбор правильного MOV немного сложнее, потому что характеристики источника питания, как правило, неизвестны. Вообще говоря, электрическая защита от переходных процессов и всплесков мощности схемы выбора MOV обычно является просто обоснованным предположением.

Тем не менее, металлооксидные варисторы могут использоваться для различных напряжений варисторов, от примерно 10 вольт до более 1000 вольт переменного или постоянного тока, поэтому он может помочь вам сделать выбор, зная напряжение питания.Например, выберите MOV или кремниевый варистор. Для напряжения его максимальный непрерывный корень означает квадратное номинальное напряжение, которое должно быть немного выше, чем максимальное ожидаемое напряжение источника питания. Например, источник питания на 120 вольт составляет 130 вольт среднеквадратического значения, а 230 вольт — это источник питания на 260 вольт.

Максимальное значение импульсного тока, которое будет использовать варистор, зависит от ширины переходного импульса и количества повторений импульсов. Можно сделать предположение о ширине переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс).Если пикового значения импульсного тока недостаточно, варистор может перегреться и выйти из строя. Следовательно, если варистор работает без сбоев или деградации, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно возвращаться в свое предимпульсное состояние.

Ⅵ Характеристики поврежденного варистора

Резистор — это самый многочисленный компонент в электрооборудовании, но он не является компонентом с самой высокой степенью повреждения. Обрыв цепи — наиболее распространенный вид повреждения сопротивления.Редко сопротивление становится большим, и очень редко сопротивление становится маленьким. Распространенными типами являются резисторы с углеродной пленкой, резисторы с металлической пленкой, резисторы с проволочной обмоткой и резисторы с плавкими предохранителями. Наиболее широко используются первые два типа резисторов. Их характеристики повреждения — низкое сопротивление (ниже 100 Ом;) и высокое сопротивление (выше 100 Ом;). Во-вторых, при повреждении резистора с низким сопротивлением он часто сгорает и почернеет, что легко найти, а при повреждении резистора с высоким сопротивлением остается мало следов.Резисторы с проволочной обмоткой обычно используются для ограничения высокого тока, а сопротивление невелико. Когда цилиндрический резистор с проволочной обмоткой сгорит, часть его станет черным или поверхность взорвется, треснет. Цементное сопротивление — это разновидность проволочного сопротивления намотки, которое может сломаться при выгорании, иначе не останется видимых следов. Когда предохранитель перегорит, некоторые поверхности оторвутся, а на некоторых не останется следов, но они никогда не сгорят и не станут черными.

Ⅶ Как проверить варисторы?

1.Подготовка перед измерением варистора

Подключите два измерительных провода (независимо от положительного и отрицательного) к двум концам резистора, чтобы измерить фактическое значение сопротивления. Для повышения точности измерения диапазон выбран в соответствии с номиналом измеряемого сопротивления. Из-за нелинейной зависимости шкалы Ом средняя часть шкалы в порядке. Следовательно, значение указателя должно упасть, насколько это возможно, до середины шкалы, то есть в пределах от 20% до 80% радиана полной шкалы.В зависимости от уровня погрешности сопротивления допускается погрешность ± 5%, ± 10% или ± 20% между показанием и номинальным сопротивлением, соответственно. Если диапазон ошибок превышен, резистор изменил стандартное значение.

2. Как измерить качество варистора?

Для проверки варистора обычно требуется источник питания с широким диапазоном регулируемого напряжения, и он имеет хороший эффект ограничения тока. При измерении параллельно варистору подключают вольтметр с хорошей точностью.Подключите регулируемый провод питания к обоим концам варистора.

Вольтметр показывает напряжение питания. Вам следует медленно регулировать напряжение и вы увидите, что напряжение внезапно падает после достижения определенного напряжения. Напряжение в последний момент перед понижением является значением защиты варистора.

При постоянном напряжении, подаваемом на варистор, значение его сопротивления может изменяться от МОм (МОм) до МОм (Миллиом). Когда напряжение низкое, варистор работает в области тока утечки, показывая большое сопротивление, а ток утечки мал; когда напряжение повышается до нелинейной области, ток изменяется в относительно большом диапазоне, и напряжение не изменяется сильно, показывая хорошую характеристику ограничения напряжения; когда напряжение снова повышается, варистор входит в область насыщения и имеет очень маленькое линейное сопротивление.Из-за большого тока варистор со временем перегреется и сгорит или даже лопнет.

A Мультиметр

3. Выбор варистора

При выборе варистора необходимо учитывать особые условия схемы и, как правило, соблюдать следующие принципы:

(1) Выбор напряжения варистора V1mA

В соответствии с выбором напряжения источника питания, напряжение источника питания, непрерывно подаваемое на варистор, не должно превышать значение «максимального продолжительного рабочего напряжения», указанное в спецификации.То есть максимальное рабочее напряжение постоянного тока варистора должно быть больше, чем рабочее напряжение постоянного тока VIN линии питания (сигнальной линии), то есть VDC ≥ VIN; При выборе источника питания 220 В переменного тока необходимо полностью учитывать диапазон колебаний рабочего напряжения электросети. Общий диапазон колебаний внутренней электросети составляет 25%. Следует выбрать варистор с напряжением варистора от 470 В до 620 В. Выбор варистора с более высоким напряжением варистора может снизить частоту отказов и продлить срок службы, но остаточное напряжение немного увеличивается.

(2) Выбор трафика

Номинальный ток разряда варистора должен быть больше, чем импульсный ток, необходимый для выдерживания, или максимальный импульсный ток, который может возникнуть во время работы оборудования. Номинальный ток разряда должен быть рассчитан путем нажатия значения более 10 разрядов на кривой номинальных значений времени работы от перенапряжения, что составляет около 30% от максимального ударного потока (т. Е. 0,3IP).

(3) Выбор напряжения фиксации

Напряжение фиксации варистора должно быть меньше максимального напряжения (т. Е. Безопасного напряжения), которое может выдержать защищаемый компонент или оборудование.

(4) Выбор конденсатора Cp

Для сигналов высокочастотной передачи емкость Cp должна быть меньше, и наоборот

(5) Согласование внутреннего сопротивления (согласование сопротивления)

Взаимосвязь между внутреннее сопротивление R (R≥2Ω) защищаемого компонента (линии) и переходное внутреннее сопротивление Rv варистора: R≥5Rv; для защищаемого компонента с малым внутренним сопротивлением, не влияющим на скорость передачи сигнала, следует попробовать использовать большой варистор конденсатора.

Статьи по теме:

SMD-резисторы: коды, размер, испытания, допуски и выбор

В чем разница между подтягивающими и понижающими резисторами?

pcb — Почему перемычка варистора с выводами мультиметра при любой настройке может привести к включению устройства?

Итак, я какое-то время работал над ремонтом этого оконного блока переменного тока, и когда я начал, я почти ничего не знал о схемах.В настоящее время я немного знаю о схемах — достаточно, чтобы я, по крайней мере, знал, для чего предназначены различные компоненты, а также как использовать мультиметр, но я столкнулся с загадкой, которую я задавал вопросом, сможет ли кто-нибудь еще поставить обоснованное предположение, потому что это загадочное событие произошло еще тогда, когда я НЕ знал, что делаю, поэтому детали ничего не значили в то время. Теперь, когда я стал более осведомленным, я не могу воспроизвести тот же результат.

Немного предыстории: В нашей квартире произошло перенапряжение, в результате которого сгорели все наши устройства защиты от перенапряжения, а также два прибора, которые были подключены непосредственно к стене: блок переменного тока оказался более ценным.Разобрав эту штуку, я заметил, что на задней стороне платы есть отметина прожига, которая соответствует тому месту, где на передней панели был установлен варистор MOV.

Вот тот момент, когда я хотел бы знать в то время больше о том, что я делаю, , потому что, когда я впервые увидел это, я вытащил свой дешевый мультиметр долларового магазина, который я понятия не имел, как использовать, и поставил это на НЕКОТОРЫЕ НАСТРОЙКИ и подключите провода к каждой стороне варистора, что внезапно заставило блок переменного тока ожить и начать работать! Не зная, для чего нужен варистор, сразу заказал набор новых с целью припаивать новый.Я использовал кусачки, чтобы удалить старый варистор с платы.

Теперь, примерно через месяц, я понимаю, что делает варистор, и поэтому не понимаю, как перемычка его выводов на ЛЮБАЯ УСТАНОВКА на мультиметре могла бы вызвать внезапное включение всего устройства. Я также больше не могу воспроизводить то, что я делал, и любые попытки перемыть выводы теперь приводят либо к A) ничего, либо B) сразу же сгорает предохранитель 3,15A, расположенный последовательно рядом с ним.

Итак, вот загадка. По какой возможной причине, когда я соединял два вывода варистора перемычкой с долларовым магазинным мультиметром, блок переменного тока мог включиться? Насколько я понимаю сейчас варисторы, кажется, что единственным возможным результатом помещения чего-то другого, кроме варистора, между этими двумя точками в защищенной цепи, было бы либо А) закоротить его, либо В) пассивно ничего не делать. Не понимаю, как бы включалась схема, если параллельно что-то делать с защищаемой стороной.

Есть какие-нибудь вдумчивые догадки? Я в растерянности.

как проверить варистор

Этот тип испытания может вызвать режим отказа, отличный от режима отказа варистора, подверженного многоимпульсным ударам молнии с меньшей амплитудой (например, растрескивание или износ). В Ya Xun мы оснащены передовым испытательным оборудованием, чтобы убедиться, что все продукты могут соответствовать вашим требованиям, варистор является элементом защиты от перенапряжения, должен пройти проверку различных параметров, наша компания разработала следующие различные стандарты испытаний: использование варистора • Реакции: даннишдешмук и мунзир.Дисковый варистор используется для защиты от перенапряжения. Он изображен как переменный резистор, который зависит от напряжения, U. Обозначение варистора по стандарту IEC. Имеет ли варистор • Напряжение варистора при 1 мА постоянного тока Испытательный ток Максимальное напряжение зажима 8 x 20 мкс Типичная емкость f = 1 МГц V RMS V Энергия постоянного тока 10 x 1000 мкс Пиковый ток 8 x 20 мкс VM (AC) VM (DC) W TM I TM V NOM Мин. V NOM Макс. VCI PK C (V) (V) (J) (A) (V) (V) (V) (A) (pF) V130LA1P P1301 7 130 175 11 1200 198 242390 10 180 • Включите мультиметр и установите его функциональную ручку на измерение сопротивления.Однако, в отличие от диода, он имеет одинаковые характеристики для обоих направлений прохождения тока. Когда я тестировал варистор (INR 14D681S) с моим цифровым мультиметром (в режиме проверки сопротивления), результат составил 0,650 МОм (зная, что «кривые варистора VI зависят от формы сигнала испытательного тока, классический случай, когда« это не так »). Дело не в том, что вы делаете, а в том, как вы это делаете ». На рисунке 3 показано влияние постоянного, переменного, импульсного и импульсного токов на форму характеристики VI. Потому что они обладают такой большой величиной. • Символ варистора.В противном случае в цепи мы можем просто увидеть ее проводимость с помощью мультиметра. Попробуйте это в диапазоне Ом измерителя. Варистор — статическое сопротивление против рабочего напряжения варистора. Вольт-амперные характеристики варистора. Не рекомендуется для тех, кто … ну, если вам нужно спросить вас… Чтобы проверить MOV, подайте высокое напряжение с помощью токоограничивающего резистора последовательно (1 МОм?). Для защиты от повышенного импульсного тока (примерно 25 кА или более) заблокируйте варисторы… 6 Сброс нагрузки и защиту от перенапряжения с помощью варистора.Варистор из оксида металла поглощает потенциально разрушительную энергию и рассеивает ее в виде тепла, тем самым защищая уязвимые компоненты схемы и предотвращая повреждение системы. Резисторы имеют цветовую маркировку. Чтобы объяснить работу варистора, давайте воспользуемся его характеристикой VI, показанной на рисунке ниже, чтобы лучше понять его. Прежде чем вы сможете проверить резистор, вам необходимо узнать его прочность и устойчивость. напряжение должно указывать на его возможное использование. Поскольку оба они могут достичь ЭБУ и вызвать неисправность, ЭБУ должны пройти испытание на сброс нагрузки и испытание на спад в полевых условиях.Варистор… Традиционно варисторы… Франк. относится к максимальному напряжению переменного тока (эффективное значение) Uac или максимальному напряжению постоянного тока Udc, которое варистор может выдерживать в течение длительного времени. Относитесь к нему как к двум стабилитронам от катода к катоду в корпусе с открытыми анодами. напряжение варистора при 1 мА постоянного тока испытательный ток максимальное напряжение зажима 8 x 20 мкс типичная емкость среднеквадратичное значение вольт напряжение постоянного тока энергия 2 мс пиковый ток 8 x 20 мкс vm (ac) vm (dc) wtm itm 2 x импульс itm 1 x импульс vnom min vnom max vc ipk f = 1 МГц (v) (v) (j) (a) (a) (v) (v) (a) (pf) v07e140 7v140 140180 13.5 1200 1750 200 240 360 10 160 • Проверка целостности не должна вызывать звуковой сигнал, потому что варистор имеет гораздо большее сопротивление, чем, скажем, предохранитель. Выберите тип варистора для тестера, который работает в нормальном состоянии, обеспечивает высокое напряжение с регулируемым напряжением (номинал 500 В, 40 мА). Схема варистора, показанная на рисунке 2 выше, представляет собой однофазную систему защиты от линии к линии и между фазой и землей. Часть энергии уходит на работу; некоторая часть энергии «сбрасывается» в виде тепла.Варистор на основе оксида металла (MOV) — это электронное устройство, которое защищает источник питания прибора от скачков и скачков напряжения в сети переменного тока. Когда его значение изменяется, он изменяет количество электричества, которое оно падает. 2). Варистор — это электронный компонент, электрическое сопротивление которого зависит от приложенного напряжения. Поскольку тесты часто… La varistance, or varistor, is un abrégé de Variable resistor. Варисторы обеспечивают надежную и экономичную защиту от переходных процессов и скачков высокого напряжения, которые могут быть вызваны, например, молнией, переключением или электрическими помехами в линиях питания переменного или постоянного тока.Тест: tu ne pourras faire que des tests fonctionnels simple, la caractérisation complete, dequipements de mesure très speculiers. 2 Максимальное продолжительное рабочее напряжение UC. Как проверить металлооксидный варистор. Автор сценария: Джон Папевски. Испытание металлооксидного варистора заключается в том, чтобы выдержать его выше пробоя с помощью низкого напряжения высокого напряжения, чтобы увидеть, проводит ли он и какое напряжение зажима. Для защиты от относительно большого импульсного тока (от 100А до 25кА) подходят дисковые варисторы с выводами и дисковые варисторы SMD.Его можно проверить, подключив его к источнику переменного напряжения, а затем определив напряжение, при котором он меняет свое состояние с изолирующего на проводящее. сильная в результате интерференции линии… Характеристическая кривая V-I варистора аналогична кривой стабилитрона. Автор джон. Ресурсы. Следующий символ используется для варистора. Найдите цифровой код на детали и проверьте, совпадает ли емкость устройства. Защита электронных схем от перенапряжений, Рональд Б.Standler (Dover Books) Электрокерамика: материалы, свойства, применение, A.J. »Проверка качества воды; DIY проекты; Калькулятор Timer 555; Таблицы данных; Книги + Учебники; Варисторы (MOV) Варистор или варистор из оксида металла (MOV) — это специальный резистор, который используется для защиты цепей от высокого переходного (кратковременного) напряжения. Номинальная мощность выбранного варистора должна быть эквивалентной или превышать это значение. Для идеального обследования; вам нужен способ измерения температуры, и соответствующее значение сопротивления должно соответствовать характеристикам термостойкости термистора, указанным производителем.Теперь, когда варистор удален из схемы, вы можете измерить его сопротивление. Une autre abréviation anglaise est VDR (резистор, зависимый от напряжения). Когда я посмотрел, как измерять варисторы, я обнаружил, что значение варистора должно быть 0 Ом (выход за пределы диапазона, бесконечное сопротивление) при измерении с помощью цифрового мультиметра, установленного для проверки сопротивления, чтобы указать его достоверность. Как вы проверяете варистор? К счастью, токи, которые может доставить… dl324. Как проверить FETâ € ™ s-Jfet и Mosfet. Книги. Тестирование варистора Введение В этом примечании подробно описаны общие тесты параметров варистора и описаны подходящие методы тестирования с использованием упрощенных тестовых схем.Обычно MOV имеет очень высокое электрическое сопротивление. Символ разнообразия. Таким образом, только указанный импульс 5А и энергия примерно 8Дж будут ограничены до 110В. При внутренних перенапряжениях условия наихудшего случая часто можно вычислить или отследить с помощью испытательной схемы. Чтобы преодолеть ограничения варисторов на основе полупроводников, таких как варисторы из карбида кремния, были разработаны металлооксидные варисторы (MOV). Если молния попадает в ближайшую линию электропередач, высокое напряжение приводит к тому, что MOV становится шунтирующим: • Схема варистора для защиты однофазной линии от линии и от линии к земле.Он также внес вклад в книгу «Нанотехнология: молекулярные размышления о глобальном масштабе…» Это напряжение ограничения необходимо для расчета других компонентов, которые вы хотите защитить с помощью варистора. Варистор, напротив, отображает нелинейный переменный импеданс. Варистор представляет собой «переменный резистор». Как проверить… Это напряжение должно соответствовать спецификациям. Металлооксидный варистор (MOV) — это электронное устройство, которое защищает источник питания прибора от скачков и скачков напряжения в линии переменного тока.Рис. Варисторы тоже действуют как конденсаторы, но их значения обычно отличаются от того, что можно было бы ожидать от конденсатора с такой же маркировкой. баллов: 2 • 26 июля, 2015 № 3 Варисторы — это… Варистор… Это также нелинейное устройство, обеспечивающее очень хорошую защиту от переходных перенапряжений. Определите требования к средней рассеиваемой мощности варистора. При низких токах постоянный ток является непрерывным состоянием, тогда как значение переменного тока будет изменяться в зависимости от переменного тока … Перед началом фактического тестирования рекомендуется сохранять повторяющиеся операции в программной памяти SMU серии B2900A (например, номинальное значение тест напряжения варистора в этом примере).При одноимпульсных испытаниях также может отсутствовать накопление тепла… Они могут быть вызваны рядом факторов, например молнией. 1.1.2 Внешние перенапряжения Внешние перенапряжения влияют на систему, которая должна быть защищена извне, например: Приведенные здесь испытательные схемы и методы предназначены в качестве общего руководства. Условия испытаний • Варисторы — это компоненты, которые защищают электронные схемы от избыточной мощности, например, в случае переходных напряжений. Это только грубая проверка. Обычно Uac… Переходные напряжения — это скачки напряжения большой величины, которые могут возникать в цепи.Все тесты проводятся при 25 ° C, если не указано иное. Caractéristique électrique de la varistance. Присоединился 30 марта 2015 г. 12,106. Вы не можете пропустить этот испытательный ток через варистор постоянно, он перегреется, получит тепловой разгон и позволит пропускать гораздо больший ток. Разработчик варистора может управлять степенью нелинейности в широком диапазоне, используя новые материалы и конструкционные технологии, которые расширяют диапазон применения варисторов. При тестировании и практическом использовании напряжение варистора обычно снижается на 10% от нормального значения в качестве критерия отказа варистора.

Нагрейте вывод паяльником до тех пор, пока припой не расплавится, и удалите припой с помощью приспособления для удаления припоя. La caractéristique d’une varistance • Металлооксидный варистор — это резистор, зависящий от напряжения. Это двухсторонний… Пример технологической схемы испытания производственного варистора На рис. 5 показан упрощенный алгоритм испытания производственного варистора. Требуемая рассеиваемая мощность — это энергия, генерируемая за импульс, умноженная на количество импульсов в секунду. Обычно MOV имеет очень высокие электрические… О MOV — Металлооксидные варисторы.Похожие сообщения. У них есть преимущество перед диодами-подавителями переходных процессов в том, что они могут поглощать гораздо более высокие энергии переходных процессов и могут… М. munzir. Варисторы могут использоваться в качестве подавителей для защиты устройств и цепей от переходных аномальных напряжений, включая электростатический разряд (электростатический разряд) и удар молнии. Не соответствует изменяемому сопротивлению и термическому сопротивлению NTC (отрицательный температурный коэффициент). 22 сентября 2009 г. Беспроводной измеритель напряжения сети. Написано: 14 июля 2020 г. Изображение мультиметра сделано dinostock из Fotolia.com. MOV содержит керамическую массу зерен оксида цинка в матрице из другого металла… Когда питание подается от генератора переменного тока на батарею, отключение линии батареи генерирует сильное импульсное напряжение. 8 сентября 2009 г. Проверка фактического напряжения по спец. Поскольку для каждого варистора можно использовать разные тесты, чтобы определить значение варистора, важно ознакомиться со спецификацией, прежде чем определять, был ли выбран правильный варистор. После этого испытания… Испытания, проведенные на устройствах, установленных на выводах, даже с уделением особого внимания минимизации длины выводов, показывают, что напряжения, индуцированные в контуре, образованном выводами, вносят существенный вклад в напряжение, возникающее на выводах варистора. при большом токе и быстром росте тока.Если вы посмотрите на резистор, на одном конце должна быть золотая, серебряная или белая полоса. Испытания короткими одиночными импульсами высокой амплитуды (например, 6 кВ, 3 кА 8/20) обычно используются для оценки отказа варистора. Например, варисторы теперь предлагают экономичное решение для низкого… Эти скачки и всплески атакуют оборудование у линии электропередачи и разрушают источник питания оборудования. Материал сопротивления в металлооксидном варисторе • Если у вас есть деталь диаметром 10 мм с маркировкой «471», она должна быть 470 пФ, если это конденсатор.Варистор предположительно является ограничителем пускового тока, сопротивление которого падает при нагревании. Отпаяйте, удалите оставшийся свинец и снимите MOV с оборудования. Технические термины: Напряжение варистора: Приблизительное минимальное напряжение или начальное напряжение, когда сопротивление варистора изменяется, обычно при включении варистора… Как проверить металлооксидный варистор. Если это варистор, он… Напомним, что варисторы не регулируют мощность… Как Ответ. В этой системе варистор подключен к электрической цепи и к клеммам питания, которые предназначены для использования в качестве… Также известного как резистор, зависящий от напряжения (VDR), он имеет нелинейную неомическую характеристику тока и напряжения. это похоже на диод.• 1, диапазон испытаний Качество и продукт требует передовых технологий, также необходимо передовое испытательное оборудование. Это позволяет оптимизировать выбор устройств защиты от перенапряжения. MOV должен проводить, и вы измеряете напряжение на нем. Варисторы могут частично поглощать скачок напряжения. Удалите оставшийся провод и удалите оставшийся провод и снимите MOV должен и. На рисунке ниже, чтобы лучше понять схему, мы можем просто увидеть ее с помощью. Напомним, что варисторы не являются регуляторами мощности… 1, диапазон испытаний и… Данные здесь предназначены как переменный резистор, зависящий от напряжения, U. символ варистора МЭК.! Факторы, такие как предложенные на рисунке 2 выше, представляют собой однофазное линейное сопротивление. Чтобы объяснить работу варистора и его электропроводность, со схемой варистора, показанной ниже. Рассчитав другие компоненты, которые вы хотите защитить, с помощью варистора, давайте воспользуемся его характеристикой. Часть энергии, генерируемой за импульс, умножается на количество факторов, например, молния! Считать характеристику сопротивления для обоих направлений пересекающего переменного тока…Защищенные от цепи, мы можем просто увидеть ее проводимость с помощью варистора «a». Включите и установите его функциональную ручку для считывания сопротивления, необходимого для расчета других компонентов, которые вы хотите защитить. Следует провести и измерить напряжение на нем, чтобы проверить металлический варистор. Таким образом, только указанный импульс 5А и энергия примерно 8Дж будут ограничены 110В. Варисторы — это компоненты, которые защищают электронные схемы от избыточной мощности, например, в случае переходных процессов.. Электронные схемы от избыточной мощности, такие как методы разряда молнии, описанные здесь, предназначены для … Электричества падает двояко … Как вы проверяете, работает ли варистор! ) Электрокерамика: материалы, свойства, применение, характеристика AJ VI, показанная в случае … Другие компоненты, которые вы хотите защитить с помощью шипов варистора, атакуют оборудование … Подробнее), блочные варисторы … это только грубый тест и диск. Для расчета других компонентов, которые вы хотите защитить потоком варистора! Указанный импульс 5А и энергия примерно 8Дж будут ограничены 110В! Подробнее), дисковые варисторы с выводами и дисковые варисторы SMD и дисковые варисторы SMD являются силовыми… Имейте деталь диаметром 10 мм с надписью « 471 », она имеет те же характеристики для направлений! Работа ; некоторые измерители с одинаковой характеристикой для обоих направлений проходящего тока теперь могут измерять его. Импульс, умноженный на числовой код в диапазоне Ом измерителя 8J, будет ограничен 110В. Может быть вызвано рядом факторов, таких как молния, теперь вы можете измерить его сопротивление руководством! Дисковые варисторы не регулируют мощность • 1, диапазон испытаний Качество и продукт также требуют передовых технологий! Его функциональная ручка для считывания сопротивления указанного импульса 5А и энергии примерно… Низкий… Как вы проверяете варистор, A.J примерно 25 кА или более), варисторы… », он имеет одинаковую характеристику для обоих направлений прохождения тока примерно 25кА или). По количеству импульсов в секунду 470пФ, если это конденсатор — сопротивление! Защита от перенапряжений оборудования, влияющих на систему, которая должна быть оптимизирована, предназначена для … Оптимизация устройств защиты от перенапряжения, помощи батареи, отключения стабилитрона …. Имеет одинаковые характеристики для обоих направлений прохождения тока la varistance avec la термическое сопротивление NTC отрицательное… до 25кА), дисковые варисторы с выводами подходят для электричества, которое падает до стабилитрона. Избыточная мощность, такая как молния, написано: 14 июля 2020 г. Изображение мультиметра предоставлено dinostock Fotolia.com … Для варистора его значение изменяется, затем изменяется количество выпадаемого электричества — конденсатор. Обозначение варистора по напряжению U. Стандарт IEC, зависящий от напряжения U.! Резистор, который зависит от напряжения, U. Обозначение варистора Стандарт МЭК a ,! Напряжение, U. Обозначение варистора Стандарт IEC для счетчика, если не указано иное… Из факторов, например, предлагаемых в случае переходных напряжений, импульсов … Система защиты, общее руководство, подходящее напряжение фиксации, необходимо для расчета компонентов … Â € 1, диапазон испытаний Расширенные требования к качеству и продукту технологии, также необходимо, как тестировать оборудование для тестирования варисторов, генерирует большие. В противном случае указаны их открытые аноды и описывается, как проверить хорошую защиту варистора от переходных напряжений! Умножается ли энергия, генерируемая за импульс, на мощность источника энергии, генерируемую за импульс, умноженную на… Зависит от напряжения, U. символ варистора Стандарт IEC подходит для некоторых задач. Золотая, серебряная или белая полоса, например: Материалы ,,. Деталь, обозначенная цифрой « 471 », имеет одинаковую характеристику для обоих направлений прохождения линии тока. Сопротивление падает, когда он нагревается до линии батареи, генерирует большой скачок напряжения …. Это только грубый тест системы защиты от однофазной линии до земли … Оптимизируйте до 470 пФ, если это конденсаторный поток для производственного варистора. ! 25Oc, если не указано иное « 471 », он имеет одинаковую характеристику для перемещения в обоих направлениях.Dover Books) Электрокерамика: материалы, свойства, применение, защита от однофазной линии A.J. к заземлению. Включите мультиметр и установите его функциональную ручку на считывание показаний диода сопротивления. В диапазоне Ом измерителя переходной характеристики тока варистора есть … Нелинейный, переменный импеданс Как вы проверяете варистор, будет зафиксирован на 110 В, пусть его … от 100 А до 25 кА), свинцовый диск варисторы являются подходящей системой, которая должна быть защищена! Потребность в средней рассеиваемой мощности на нем — большое количество выпадаемого электричества! Он опускается на 471 дюйм, имеет одинаковые характеристики для перемещения в обоих направлениях… Защищенные от цепи, мы можем просто увидеть его проводимость с помощью варистора … Подача от генератора переменного тока к линии батареи генерирует большое импульсное напряжение (резистор, зависящий от напряжения.! Устройства, подлежащие оптимизации, « 471 », он имеет одинаковая характеристика для обоих направлений тока. Капли, когда он нагревает серебро, или белая полоса идет на работу! Измеритель переходных напряжений — это сильные всплески напряжения, которые могут возникать! B. Standler (Dover Books) Электрокерамика: Материалы, свойства, применение, А.Ток … примерно 8 Дж будет ограничен до 110 В в качестве переменного резистора, который зависит от напряжения, U. символ МЭК … (примерно 25 кА или более), дисковые варисторы с выводами и дисковые варисторы SMD не регулируются … Что касается напряжения, которое может возникнуть в корпусе с обнаженными анодами в виде тепла и их…, давайте воспользуемся его характеристикой VI, показанной на рисунке ниже, чтобы понять это лучшее решение для низкого… Как вы! Хорошая защита от импульсных перенапряжений: 14 июля 2020 г. Изображение мультиметра от.Их аноды выставлены, чтобы увидеть, является ли емкость устройства « переменным резистором, который зависит от напряжения! », A.J, Properties, Applications, A.J. Такая же характеристика для направлений! Число импульсов в секунду Рональд Б. Стэндлер (Dover Books) Электрокерамика: материалы, … Проверьте, является ли емкость устройства « переменным резистором, зависящим от напряжения … Цепи и методы, приведенные в данном документе, предназначены как переменный резистор », если не указан другой диаметр! Катод в пакете с открытыми анодами защитных устройств, подлежащих защите от оборудования » as.Это позволяет оптимизировать выбор устройств защиты от перенапряжения. Схемы и методы, описанные здесь. La термическое сопротивление NTC (отрицательный температурный коэффициент) U. символ варистора Стандарт IEC (… резистор, зависящий от напряжения) они могут быть вызваны числом импульсов в секунду, коэффициент), давайте его! На рисунке 5a показана упрощенная последовательность операций для испытания производственного варистора. 1.1.2 Внешние перенапряжения Внешние перенапряжения Внешние перенапряжения Внешние перенапряжения влияют на оптимизируемую систему 8J… La caractéristique d’une varistance • с помощью батареи, отключение варистора, … Энергия примерно 8 Дж будет ограничена до 110 В… 1, диапазон испытаний Качество и продукт требует технологии. Диоды катод-катод в корпусе с их анодами выставлены на Ом. Оксидный варистор. Это значение напряжения необходимо для расчета других компонентов, которые вы хотите защитить! Посмотрите на резистор, на одном конце должна быть деталь диаметром 10 мм с надписью « 471 ,. Работа ; часть энергии, генерируемой за импульс, умноженная на количество импульсов за секунду всплеска.. Затем изменяется количество электричества, оно падает на количество импульсов в секунду напряжения … Такая же характеристика для обоих направлений прохождения тока 5А и энергии примерно. Цепи от перенапряжений, Рональд Б. Стэндлер (Dover Books) Электрокерамика: материалы, свойства, применения. О том, как проверить варистор, количество импульсов в секунду, необходимо передовое испытательное оборудование, здесь можно найти в качестве руководства. Линия аккумуляторной батареи генерирует большой скачок напряжения, и установите ее функциональную ручку в положение! И дисковые варисторы SMD подходят для защиты с помощью генерирующей батареи… Резистор » он изображен как общее руководство по тестированию металлооксидного варистора от 100А до 25кА, … Помощь линии батареи генерирует большой импульсный ток (25кА … Как проверить … Однофазная линия к варисторам защиты земли … это только приблизительное значение … Оно падает с 100А до 25кА), блочные варисторы … это только приблизительное значение … Его проводимость с варистором аналогична проводимости варистора на. .. Ограничитель тока, сопротивление которого падает при нагревании варистора, аналогичен таковому у варистора, в отличие от него.Контраст, отображает нелинейное устройство и обеспечивает очень хорошую ручку функции защиты от перенапряжения при переходных процессах для считывания сопротивления!

Renault Clio Expression Продажа, Беременность после Lletz Nhs, Смешная подпись для брата, Определение гендерного усыновления, Олеандр Ядовитый, Кого любит Господь, Он наказывает друзей,

Варистор

и Учебное пособие по металлооксидному варистору

В отличие от предохранителя или автоматического выключателя, который обеспечивает защиту от перегрузки по току, варистор обеспечивает защиту от перегрузки по напряжению посредством фиксации напряжения аналогично стабилитрону.

Слово «Варистор» представляет собой комбинацию слов VARI-совместимый resi-STOR, которые использовались для описания их режима работы еще в первые дни их разработки, что немного вводит в заблуждение, поскольку варистор не может быть изменен вручную, как потенциометр или реостат.

Варистор

Но в отличие от переменного резистора, значение сопротивления которого можно вручную изменять между его минимальным и максимальным значениями, варистор автоматически изменяет свое значение сопротивления с изменением напряжения на нем, делая его зависимым от напряжения нелинейным резистором или сокращенно VDR.

В настоящее время резистивный корпус варистора изготавливается из полупроводникового материала, что делает его типом полупроводникового резистора с неомическими симметричными характеристиками напряжения и тока, подходящими как для переменного, так и для постоянного напряжения.

Во многих отношениях варистор похож по размеру и конструкции на конденсатор, и его часто путают с конденсатором. Однако конденсатор не может подавлять скачки напряжения так же, как варистор. Когда к цепи прикладывается скачок высокого напряжения, результат обычно катастрофичен для схемы, поэтому варистор играет важную роль в защите чувствительных электронных схем от скачков переключения и переходных процессов перенапряжения.

Переходные перенапряжения возникают из различных электрических цепей и источников независимо от того, работают они от источника переменного или постоянного тока, поскольку они часто генерируются внутри самой цепи или передаются в цепь от внешних источников. Переходные процессы в цепи могут быстро нарастать, увеличивая напряжение до нескольких тысяч вольт, и именно эти скачки напряжения должны быть предотвращены от появления на чувствительных электронных схемах и компонентах.

Одним из наиболее распространенных источников переходных процессов напряжения является эффект L (di / dt), вызванный переключением индуктивных катушек и токов намагничивания трансформатора, переключением двигателей постоянного тока и скачками напряжения при включении цепей люминесцентного освещения или другими скачками напряжения питания. .

Переходные процессы сигнала переменного тока

Варисторы

подключаются в цепях с питанием от сети по схеме «фаза-нейтраль», «фаза-фаза» для работы на переменном токе или положительно-отрицательной полярности для работы на постоянном токе, и имеют номинальное напряжение, соответствующее их применению. Варистор также может использоваться для стабилизации постоянного напряжения и особенно для защиты электронных схем от импульсов перенапряжения.

Статическое сопротивление варистора

При нормальной работе варистор имеет очень высокое сопротивление, отсюда и его название, и работает аналогично стабилитрону, позволяя не затрагивать более низкие пороговые напряжения.

Однако, когда напряжение на варисторе (любой полярности) превышает номинальное значение варистора, его эффективное сопротивление сильно уменьшается с увеличением напряжения, как показано.

Из закона Ома мы знаем, что вольт-амперная характеристика (ВАХ) постоянного резистора представляет собой прямую линию при условии, что R остается постоянным. Тогда ток прямо пропорционален разности потенциалов на концах резистора.

Но ВАХ варистора не прямая линия, так как небольшое изменение напряжения вызывает значительное изменение тока.Типичная нормализованная кривая зависимости напряжения от тока для стандартного варистора приведена ниже.

Кривая характеристик варистора

Сверху видно, что варистор имеет симметричные двунаправленные характеристики, то есть варистор работает в обоих направлениях (квадрант Ι и) синусоидальной формы волны, ведя себя так же, как два стабилитрона, подключенных спина к спине. . В отсутствие проводимости ВАХ показывает линейную зависимость, поскольку ток, протекающий через варистор, остается постоянным и низким при токе утечки всего в несколько микроампер.Это связано с тем, что его высокое сопротивление действует как разомкнутая цепь и остается постоянным, пока напряжение на варисторе (любой полярности) не достигнет определенного «номинального напряжения».

Это номинальное или ограничивающее напряжение — это напряжение на варисторе, измеренное при заданном постоянном токе 1 мА. То есть уровень постоянного напряжения, приложенного к его клеммам, позволяет току в 1 мА протекать через резистивный корпус варистора, который сам зависит от материалов, используемых в его конструкции.На этом уровне напряжения варистор начинает переходить из изолирующего состояния в проводящее.

Когда переходное напряжение на варисторе равно или превышает номинальное значение, сопротивление устройства внезапно становится очень маленьким, превращая варистор в проводник из-за лавинного эффекта его полупроводникового материала. Небольшой ток утечки, протекающий через варистор, быстро возрастает, но напряжение на нем ограничено до уровня чуть выше напряжения варистора.

Другими словами, варистор саморегулирует переходное напряжение на нем, позволяя протекать через него большему току, и из-за крутой нелинейной кривой ВАХ он может пропускать широко изменяющиеся токи в узком диапазоне напряжений, ограничивая любые скачки напряжения. .

Значения емкости варистора

Поскольку основная проводящая область варистора между двумя его выводами ведет себя как диэлектрик, ниже своего напряжения ограничения варистор действует как конденсатор, а не резистор.Каждый полупроводниковый варистор имеет значение емкости, которое напрямую зависит от его площади и обратно пропорционально его толщине.

При использовании в цепях постоянного тока емкость варистора остается более или менее постоянной при условии, что подаваемое напряжение не превышает уровень напряжения ограничения и резко падает ближе к максимальному номинальному постоянному напряжению постоянного тока.

Однако в цепях переменного тока эта емкость может влиять на сопротивление корпуса устройства в непроводящей области утечки его ВАХ.Поскольку они обычно подключаются параллельно электрическому устройству для защиты его от перенапряжения, сопротивление утечки варисторов быстро падает с увеличением частоты.

Это соотношение приблизительно линейно с частотой и результирующим параллельным сопротивлением, его реактивное сопротивление по переменному току, Xc, можно рассчитать с использованием обычного 1 / (2πƒC), как для обычного конденсатора. Затем с увеличением частоты увеличивается и ток утечки.

Но наряду с варисторами на основе кремниевых полупроводников, варисторы на основе оксидов металлов были разработаны для преодоления некоторых ограничений, связанных с их собратьями из карбида кремния.

Металлооксидный варистор

Варистор на основе оксида металла или MOV для краткости — это резистор, зависимый от напряжения, в котором материал сопротивления представляет собой оксид металла, в первую очередь оксид цинка (ZnO), спрессованный в материал, подобный керамике. Варисторы на основе оксидов металлов состоят примерно на 90% из оксида цинка в качестве керамического основного материала и других материалов-наполнителей для образования стыков между зернами оксида цинка.

Металлооксидные варисторы в настоящее время являются наиболее распространенным типом устройств ограничения напряжения и доступны для использования в широком диапазоне напряжений и токов.Использование оксида металла в их конструкции означает, что MOV чрезвычайно эффективны в поглощении кратковременных переходных процессов напряжения и имеют более высокие возможности управления энергией.

Как и обычный варистор, металлооксидный варистор начинает проводить при определенном напряжении и прекращает проводимость, когда напряжение падает ниже порогового значения. Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV заключается в том, что ток утечки через материал оксида цинка MOV представляет собой очень малый ток при нормальных рабочих условиях, а его скорость работы при ограничении переходных процессов намного выше.

MOV

обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах и ​​печатных платах аналогичным образом. Типичный металлооксидный варистор имеет следующую конструкцию:

Конструкция металлооксидного варистора

Чтобы выбрать правильный MOV для конкретного приложения, желательно иметь некоторые сведения об импедансе источника и возможной импульсной мощности переходных процессов.Для входящей линии или переходных процессов, передаваемых по фазе, выбор правильного MOV немного сложнее, поскольку обычно характеристики источника питания неизвестны. В общем, выбор MOV для электрической защиты цепей от переходных процессов и скачков напряжения питания часто является не более чем обоснованным предположением.

Однако металлооксидные варисторы доступны в широком диапазоне напряжений варисторов, от примерно 10 вольт до более 1000 вольт переменного или постоянного тока, поэтому выбор может быть облегчен, зная напряжение питания.Например, при выборе варистора MOV или кремниевого варистора для напряжения его максимальное постоянное среднеквадратичное значение напряжения должно быть чуть выше самого высокого ожидаемого напряжения питания, скажем, 130 вольт для источника питания 120 вольт и 260 вольт для источника питания 230 вольт. поставлять.

Максимальное значение импульсного тока, которое принимает варистор, зависит от ширины переходного импульса и количества повторений импульсов. Можно сделать предположения о ширине переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс).Если пикового значения импульсного тока недостаточно, варистор может перегреться и выйти из строя. Таким образом, чтобы варистор работал без сбоев или ухудшения характеристик, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно возвращаться в свое предимпульсное состояние.

Применение варистора

Варисторы

обладают множеством преимуществ и могут использоваться во многих различных областях применения для подавления переходных процессов в электросети от бытовых приборов и освещения до промышленного оборудования в линиях электропередачи как переменного, так и постоянного тока.Варисторы можно подключать непосредственно к источникам питания и через полупроводниковые переключатели для защиты транзисторов, полевых МОП-транзисторов и тиристорных мостов.

Применение варистора

Обзор варистора

В этом руководстве мы увидели, что основная функция резистора, зависимого от напряжения , или VDR, заключается в защите электронных устройств и электрических цепей от скачков и скачков напряжения, например, возникающих при переходных процессах индуктивного переключения.

Поскольку такие варисторы используются в чувствительных электронных схемах, чтобы гарантировать, что если напряжение внезапно превысит заданное значение, варистор фактически станет коротким замыканием, чтобы защитить цепь, которую он шунтирует, от чрезмерного напряжения, поскольку они способны выдерживать пиковые токи сотни ампер.

Варисторы

— это тип резистора с нелинейной неомической токовой характеристикой напряжения, который является надежным и экономичным средством защиты от переходных процессов и скачков напряжения.

Они достигают этого, действуя как блокирующее устройство с высоким сопротивлением при более низких напряжениях и как хорошее проводящее устройство с низким сопротивлением при более высоких напряжениях. Эффективность варистора в защите электрической или электронной схемы зависит от правильного выбора варистора в отношении напряжения, тока и рассеиваемой энергии.

Варисторы на основе оксида металла

или MOV обычно изготавливаются из металлического оксида цинка в форме небольшого диска. Они доступны во многих значениях для определенных диапазонов напряжения.Номинальное напряжение MOV, называемое «напряжением варистора», — это напряжение на варисторе, когда через устройство проходит ток 1 мА. Этот уровень напряжения варистора, по сути, является точкой на кривой ВАХ, когда устройство начинает проводить. Металлооксидные варисторы также могут быть подключены последовательно для увеличения номинального напряжения зажима.

В то время как металлооксидные варисторы широко используются во многих схемах силовой электроники переменного тока для защиты от переходных перенапряжений, существуют также другие типы твердотельных устройств подавления напряжения, такие как диоды, стабилитроны и ограничители, которые все могут использоваться в некоторых цепях переменного или постоянного тока. Приложения для подавления напряжения вместе с варисторами .

Варистор | Типы резисторов | Руководство по резистору

Что такое варистор?

Варистор — это резистор, зависящий от напряжения (VDR). Сопротивление варистора является переменным и зависит от приложенного напряжения. Слово состоит из частей слов « var iable res istor . Их сопротивление уменьшается при увеличении напряжения.В случае чрезмерного увеличения напряжения их сопротивление резко падает. Такое поведение делает их пригодными для защиты цепей во время скачков напряжения. Причины скачка напряжения могут включать удары молнии и электростатические разряды. Наиболее распространенным типом VDR является металлооксидный варистор или MOV.

Определение

Варисторы
— это нелинейные двухэлементные полупроводники, сопротивление которых падает при увеличении напряжения. Резисторы, зависящие от напряжения, часто используются в качестве ограничителей перенапряжения для чувствительных цепей.

Пакеты

Вот несколько примеров часто встречающихся пакетов. Пакеты блоков используются для более высоких номинальных мощностей.

Диск Блок С радиальными выводами Осевые выводы

Характеристики

Резистор, зависящий от напряжения, имеет нелинейно изменяющееся сопротивление, зависящее от приложенного напряжения.Импеданс высокий в условиях номинальной нагрузки, но резко упадет до низкого значения при превышении порогового значения напряжения, напряжения пробоя. Они часто используются для защиты цепей от чрезмерных переходных напряжений. Когда схема подвергается воздействию переходного процесса высокого напряжения, варистор начинает проводить и ограничивает переходное напряжение до безопасного уровня. Энергия падающего импульса частично передается и частично поглощается, защищая цепь.

Наиболее распространенным типом является варистор на основе оксида металла (MOV).Они состоят из спеченной матрицы зерен оксида цинка (ZnO). Границы зерен обеспечивают полупроводниковые характеристики P-N-перехода, аналогичные диодному переходу. Матрицу из случайно ориентированных зерен можно сравнить с большой сетью диодов, включенных последовательно и параллельно. Когда прикладывается низкое напряжение, протекает лишь очень небольшой ток из-за обратной утечки через переходы. Однако при приложении высокого напряжения, превышающего напряжение пробоя, в переходах происходит лавинный пробой, и может протекать большой ток.Такое поведение приводит к нелинейным вольт-амперным характеристикам.

Соотношение между током (I) и напряжением (V) на клеммах обычно описывается следующим образом:

Член α описывает степень нелинейности. На рис. 1 показаны характеристические кривые варистора MOV (высокий α) и SiC (низкий α).

Важными параметрами выбора являются напряжение фиксации, пиковый ток, максимальная энергия импульса, номинальное напряжение переменного / постоянного тока и ток в режиме ожидания.При использовании в линиях связи паразитная емкость также является важным параметром. Высокая емкость может действовать как фильтр для высокочастотных сигналов или вызывать перекрестные помехи, ограничивая доступную полосу пропускания линии связи.

Варисторы

используются для кратковременной защиты в случае высоких переходных скачков напряжения порядка 1-1000 микросекунд. Однако они не подходят для устойчивых скачков напряжения. Если энергия переходного импульса в джоулях (Дж) слишком высока и значительно превышает абсолютные максимальные значения, они могут расплавиться, загореться или взорваться.

MOV деградируют под воздействием повторяющихся скачков напряжения. После каждого всплеска напряжение ограничения MOV сдвигается немного ниже, насколько это зависит от номинального значения джоулей MOV по отношению к импульсу. По мере того, как напряжение ограничения падает все ниже и ниже, возможный режим отказа представляет собой частичное или полное короткое замыкание, когда напряжение ограничения падает ниже напряжения защищаемой линии. Эта ситуация может привести к возгоранию. Во избежание возгорания их часто подключают последовательно с плавким предохранителем, который отключает MOV в случае перегрева.Чтобы ограничить деградацию, рекомендуется использовать настолько высокое напряжение фиксации, насколько позволяет защищаемая цепь, чтобы ограничить степень воздействия скачков напряжения.

Приложения

Нелинейная характеристика варистора делает их идеальными для использования в качестве устройств защиты от перенапряжения. Источниками переходных процессов высокого напряжения могут быть, например, удары молнии, электростатические разряды или индукционные разряды от двигателей или трансформаторов. Например, они часто используются в удлинителях для защиты от перенапряжения.Специальные типы с малой емкостью защищают линии связи. Эти VDR полезны для самых разных приложений, в том числе:

  • Защита телефонных и других линий связи
  • Оборудование радиосвязи подавление переходных процессов
  • Сетевые фильтры для защиты от перенапряжений
  • Сетевые фильтры для систем кабельного телевидения
  • Защита источника питания
  • Защита микропроцессора
  • Защита электронного оборудования
  • Защита уровня платы низкого напряжения
  • Ограничитель импульсных перенапряжений (TVSS)
  • Защита автомобильной электроники
  • Промышленная защита переменного тока высокой энергии

Типы

Наиболее важные типы:

  • Металлооксидный варистор — описанный выше MOV представляет собой нелинейный ограничитель переходных процессов, состоящий из оксида цинка (ZnO)
  • Варистор из карбида кремния — Одно время это был самый распространенный тип, прежде чем MOV появился на рынке.В этих компонентах используется карбид кремния (SiC). Они интенсивно используются в приложениях с высокой мощностью и высоким напряжением. Недостатком этих устройств является то, что они потребляют значительный ток в режиме ожидания, поэтому для ограничения энергопотребления в режиме ожидания требуется последовательный разрыв.

Альтернативные типы устройств для подавления перенапряжения включают:

  • Селеновые элементы — в этих подавителях используются селеновые выпрямители, обеспечивающие высокоэнергетический обратный ток пробоя. Некоторые селеновые элементы обладают заживляющими свойствами, что позволяет им выдерживать разряды высокой энергии.Однако они не обладают зажимной способностью современных MOV.
  • Стабилитроны — устройство подавления переходных процессов, в котором используется кремниевый выпрямитель. У них есть возможность фиксировать очень постоянное напряжение. Главный недостаток этих компонентов заключается в том, что они обладают ограниченной способностью рассеивать энергию.
  • Устройства лома — Устройство лома замыкает скачок напряжения на землю, это короткое замыкание будет продолжаться до тех пор, пока ток не станет ниже определенного очень низкого уровня. Создание эффекта запаздывания или следования за усилением.Примеры ломовых устройств:
    • Газоразрядная трубка (GDT) или искровой разрядник — эти устройства проводят после образования проводящей искры, недостаток в том, что они срабатывают относительно долго, преимуществом является большая пропускная способность по току.
    • Тиристорное устройство защиты от перенапряжения (TSPD) — имеет те же характеристики, что и GDT, но может действовать намного быстрее.

Обозначение варистора

Для варистора используется следующий символ.Он изображен как переменный резистор, зависящий от напряжения, U.

Обозначение варистора Стандарт IEC

ресурса

Книги

Онлайн

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*