Виды вакуума: Понятие вакуума. Термины и определения. – Степени вакуума, высокий вакуум, сверхвысокий вакуум

Содержание

Степени вакуума, высокий вакуум, сверхвысокий вакуум

Величина давления системы — это традиционная характеристика для классификации степеней вакуума. В настоящее время общий термин «вакуум» относится к любой области, имеющей давление в диапазоне от атмосферного до давления, на 19 порядков ниже атмосферного. Для удобства этот расширенный диапазон давлений подразделяется на несколько интервалов, обозначающих степень вакуума. Данное подразделение величин давления ниже атмосферного является несколько произвольным и представляет собой удобный способ обозначения различных физических явлений, возникающих в пределах величин давления, указанных для каждой степени. Многие промышленные виды применения вакуума могут быть также классифицированы в соответствии со степенью вакуума. В табл. 2 представлены виды промышленного применения вакуума и соответствующие им диапазоны давлений.

Таблица 2. Виды промышленного применения вакуума

Степень вакуума

Цель

Виды применения

Низкий вакуум

Достижение перепада давления

Установки получения низкого вакуума в медецине, удерживание и поднятие грузов, пневматические приводы транспортных машин, очистители, филь­ трация, формование

Средний вакуум

Удаление активных газов — компонентов атмосферы

Лампы (накаливания, люминесцентные, электро- разрядные), плавление, спекание, упаковка, инкап­ суляция, обнаружение течей

 

Удаление газовых включений или газов, растворенных

в твердых телах

Сушка, дегидратация, конденсация, сушка вымора­ живанием, дегазация, лиофильная сушка, импрегна­ ция

 

Уменьшение передачи энергии

Тепловая изоляция, электрическая изоляция, ваку­ умный микробаланс, моделирование условий кос­ мического пространства

Высокий вакуум

Исключение столкновения молекул

Электронные и катодно-лучевые трубки, кинеско­ пы, фотоэлементы, фотоумножители, рентгеновс­ кие трубки, ускорители, накопители, масс-спектро­ метры, установки для разделения изотопов, элект­ ронные микроскопы, сварка электронным лучом, нанесение покрытий (испарением, металлизация напылением), молекулярная дистилляция

Сверхвысокий вакуум

Очистка поверхностей

Дробление, адгезия, эмиссионные исследования, испытания материалов для применения в космичес­ кой промышленности

Для рассмотрения физических явлений, связанных с различными степенями вакуума, указанными в табл. 1.2, будет полезно ввести другие понятия, характеризующие степень вакуума: молекулярная концентрация, средняя длина свободного пути молекул газа и время формирования мономолекулярного слоя. Эти термины имеют следующие определения:

  1. Молекулярная концентрация — среднее число молекул газа в единице объема;
  2. Средняя длина свободного пути молекул газа — среднее расстояние, которое проходит молекула между двумя последовательными столкновениями с другими молекулами;
  3. Время формирования мономолекулярного слоя — время, которое необходимо для того, чтобы чистая поверхность покрылась слоем газа толщиной в одну молекулу. Это время определяется отношением числа молекул, необходимым для формирования компактного мономолекулярного слоя (приблизительно 8 x 1014
    молекул/см2), и частотой соударений молекул с поверхностью.

На рис. 1.1 показано соотношение между этими величинами в виде функции давления. С помощью приведенных выше определений можно описать физические процессы, характеризующие различные степени вакуума.

Рис 1. Функция Максвелла-Больцмана распределения молекул по скоростям

Низкий и средний вакуум

В диапазоне низкого и среднего вакуума число молекул газа в вакуумном сосуде велико по сравнению с числом молекул, покрывающих поверхность сосуда. Таким образом, снижение давления путем откачки служит для удаления молекул из газовой фазы. Данный диапазон вакуума находится в пределах величин давления от 1 атм до примерно 10-2 Торр. Вакуум такой степени используется во многих промышленных технологиях, где требуется дегазация или сушка материалов и компонентов.

1. Функция Максвелла-Больцмана распределения молекул по скоростям

$$\int _{v}=\frac{1}{n}\frac{dn}{dn}=\frac{4}{\pi ^{\frac{1}{2}}}\left ( \frac{m}{2kT} \right ).$$

2. Наиболее вероятная скорость

$$v_{p}=\sqrt{\frac{2kT}{m}}.$$

3. Среднеарифметическая скорость

$$\bar{v}=\sqrt{\frac{8kT}{\pi m}}==1.13v_{p}.$$

4. Среднеквадратичная скорость

$$v_{max}=\sqrt{\frac{3kT}{m}}=1.225vv_{p}.$$

5. Средняя энергия

$$\bar{e}=\frac{3}{2}kT.$$

Высокий вакуум

Область высокого вакуума соответствует состоянию, при котором молекулы газа располагаются главным образом на поверхностях сосуда и средняя длина свободного пути молекул равна или превышает размеры вакуумного сосуда. Молекулы движутся в вакуумном сосуде, не сталкиваясь с другими молекулами. При такой степени вакуума цель откачки заключается в удалении отдельных молекул. Молекулы покидают поверхность и по отдельности достигают насоса. Высокий вакуум широко используется для нанесения вакуумных покрытий, обработки поверхностей и модификации. Диапазон давлений высокого вакуума составляет от 10-3до 10-7 Торр.

Сверхвысокий вакуум

В условиях сверхвысокого вакуума время формирования мономолекулярного слоя равно или превышает время формирования мономолекулярного слоя в обычных лабораторных условиях. Таким образом, можно производить подготовку и определение свойств чистых поверхностей перед формированием слоя адсорбированного газа. Диапазон давлений сверхвысокого вакуума составляет от 10-7 до 10-15 Торр.
В табл. 2 приведены различные виды применения вакуумной техники во многих ключевых промышленных технологических процессах в зависимости от степени используемого вакуума.

Физический вакуум — это… Что такое Физический вакуум?

Ва́куум (от лат. vacuum — пустота) — среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т.д. В зависимости от величины соотношения λ/d различают низкий (λ/d<<1), средний (λ/d~1) и высокий (λ/d>>1) вакуум.

Следует различать понятия физического вакуума и технического вакуума.

Технический вакуум

На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно. Мерой степени разрежения вакуума служит длина свободного пробега молекул газа < λ > , связанной с их взаимными столкновениями в газе, и характерного линейного размера l сосуда, в котором находится газ. Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 Торр) говорят о достижении низкого вакуума(λ < < l)(5000-10000 молекул на 1см3). Обычно низковакуумный насос стоит между атмосферным воздухом и высоковакуумным насосом, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере, увеличивается средняя длина свободного пробега λ молекул газа. При λ > > l молекулы газа уже не сталкиваются друг с другом, а свободно перемещаются от стенки до стенки, в этом случае говорят о высоком вакууме(10-5 Торр)(1000 молекул на 1 см3). Сверхвысокий вакуум соответствует давлению 10-9 Торр и ниже. К сожалению в земных условиях пока не получен. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10-30 Торр и ниже(1 молекула на 1 см3).Встречается полное отсутствие молекул.

Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Физический вакуум

Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира[1] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых ложных вакуумов) является одним из главных основ инфляционной теории Большого взрыва.

Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему. А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.

См. также

Применения:

Примечания

  1. Физическая энциклопедия, т.5. Стробоскопические приборы — Яркость/ Гл. ред. А. М. Прохоров. Ред.кол.:А. М. Балдин,А. М. Бонч-Бруевич и др. — М.:Большая Российская Энциклопедия,1994, 1998.-760 с.:ил. ISBN 5-85270-101-7 , стр.644

Ссылки

Wikimedia Foundation. 2010.

Как делать упражнение вакуум для живота: техника выполнения для начинающих

Можно ли накачать пресс лежа на диване? Разбираемся, что такое вакуум для живота, как он работает и как правильно его делать.

Как правильно делать вакуум живота для похудения: базовые рекомендации

Что такое вакуум живота

Тренировка живота с помощью вакуума — это отличный способ укрепить пресс, улучшить осанку и защитить внутренние органы. Появилось упражнение во времена расцвета бодибилдинга, а придумал его спортсмен Фрэнк Зейн. Но популярность вакуум приобрел только благодаря Арнольду Шварцнеггеру и Кори Эверсону.

В процессе упражнения вы выдыхаете весь воздух и втягиваете живот. Вакуум живота можно делать как стоя, так и лежа. Какие мышцы тренирует упражнение? Вакуум живота работает с поверхностными и глубинными мышцами пресса, а также прорабатывает поперечную мышцу.


Зачем делать упражнение вакуума для живота

Упражнение вакуум действительно работает, так как пресс остается напряженным длительное время. Вакуум прорабатывает поперечные мышцы пресса, тонизирует внутренние органы, сужает талию и даже уменьшает боли в спине.

Самое главное — для вакуума живота не требуется специального инвентаря, а значит, его удобно делать в домашних условиях.

Как правильно делать вакуум живота для похудения

Чтобы добиться максимального результата, необходимо регулярно делать вакуум живота и соблюдать правильную технику. На первый взгляд упражнение выглядит сложным и даже невероятным, но на деле его легко повторить. Поэтапная инструкция:

  • Исходное положение

Для начала встаньте в исходное положение — прямая спина, ноги на ширине плеч, а плечи немного назад. Поза должна быть максимально удобной для вас. Можно выполнять упражнение на спине, животе, сидя или стоя на коленях.

  • Дышите медленно

Дышите медленно через нос. Сделайте глубокий вдох, наполняя легкие воздухом. Вдох должен быть медленным и постепенным — для понимания отсчитайте 3−5 секунд.

  • Выдохните через рот

Медленно выдыхайте и одновременно втягивайте живот. Удерживайте живот, насколько это возможно, но старайтесь продержаться хотя бы 15 секунд. Затем расслабьте мышцы. Как легко сделать вакуум живота? Для полноценной визуализации процесса втягивания представьте, что вы стараетесь достать пупком до позвоночника. Конечно, сразу сильно втянуть не получится — нужно больше практики.

  • Повторяйте практику

Упражнение вакуума живота нужно повторить 5 раз, а потом сделать перерыв. Конечно, все зависит от вашего опыта: если вы регулярно делаете вакуум, то можно повторить и 10 раз.

Упражнение вакуум живота: техника выполнения для начинающих

Как сделать вакуум живота в первый раз? Для новичков оптимальный способ выполнения — вакуум в позиции лежа.

Попробуйте сделать вакуум живота своей полезной утренней привычкой. Утром натощак лежа в постели перевернитесь на спину, согните колени и сделайте вакуум. Выдохните весь воздух и втяните живот, насколько можете. Со временем увеличивайте нагрузку, делая упражнение из положения стоя или сидя.

Начинающим нужно стараться удерживать вакуум в течение 15 секунд по 3−5 подходов.

Сколько раз делать вакуум живота для похудения

Всё зависит от вашей физической подготовки и навыков. Оптимальный график вакуумов для похудения — 3 раза в неделю. Например, запланируйте тренировки на понедельник, среду и пятницу, увеличивая каждую неделю время вакуума.

  • Неделя 1 — 3 подхода по 20 секунд.
  • Неделя 2 — 3 подхода по 40 секунд.
  • Неделя 3 — 3 подхода по 60 секунд.

Вакуум живота: результаты

Если вы будете соблюдать полноценную диету и регулярно выполнять вакуум для живота, то добьетесь реальных результатов:

  • уменьшение талии;
  • улучшение осанки;
  • увеличение объема легких;
  • снятие стресса;
  • проработка пресса.

Вакуум живота: отзывы

Многие фитнес-тренеры полагают, что вакуум живота не способен в короткие сроки избавить вас от большого количества лишнего жира и подарить талию балерины. Однако вакуум помогает наладить «дружеские отношения» с дыханием и со своим телом в целом.

Регулярные вакуум-тренировки нужно сочетать с тренажерным залом. Вакуум живота повысит вашу производительность, и вам будет проще адаптироваться к более сложным физическим нагрузкам.

Вакуум живота: противопоказания

Вакуум может повысить кровяное давление. Людям с высоким давлением лучше отказаться от упражнения. Также он не подходит беременным женщинам. Дополнительные противопоказания для вакуума:

  • язвы;
  • грыжа;
  • менструация.

Вакуум — это… Что такое Вакуум?

Ртутный вакуумный барометр Эванджелисты Торричелли — учёного, впервые создавшего вакуум в лаборатории. Над поверхностью ртути в верхней части запаянной трубки — «торричелиева пустота» (вакуум, содержащий пары ртути под давлением насыщения при данной температуре).

Ва́куум (от лат. vacuum — пустота) — пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащую газ при давлениях, значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером среды

d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (), средний () и высокий () вакуум.

Следует различать понятия физического вакуума и технического вакуума.

Технический вакуум

\lambda /d \gg 1

На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

Мерой степени разрежения вакуума служит длина свободного пробега молекул газа , связанной с их взаимными столкновениями в газе, и характерного линейного размера сосуда, в котором находится газ.

Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 торр) говорят о достижении низкого вакуума () (1016 молекул на 1 см³). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ молекул газа. При молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме (10−5 торр) (1011 молекул на 1 см³). Сверхвысокий вакуум соответствует давлению 10−9 торр и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием сканирующего туннельного микроскопа. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10−16 торр и ниже (1 молекула на 1 см³).

Высокий вакуум в микроскопических порах некоторых кристаллов достигается уже при атмосферном давлении, поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере и т. д. Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов — это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например титан) и криосорбционные насосы (в основном для создания форвакуума).

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах (сосудах Дьюара), состоящих из ёмкости с двойными стенками, пространство между которыми вакуумированно.

Вакуум широко применяется в электровакуумных приборах — радиолампах (например, магнетронах микроволновых печей), электронно-лучевых трубках и т. п.

Физический вакуум

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира[1] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.

См. также

Применения:

Примечания

  1. Физическая энциклопедия, т.5. Стробоскопические приборы — Яркость/ Гл. ред. А. М. Прохоров. Ред.кол.:А. М. Балдин,А. М. Бонч-Бруевич и др. — М.:Большая Российская Энциклопедия,1994, 1998.-760 с.:ил. ISBN 5-85270-101-7 , стр.644

Литература

Вакуумное оборудование: различные виды и типы

Все категории

  • Все категории
  • Насосы
  • Винтовые насосы
  • Водокольцевые насосы
  • Диффузионные насосы
  • Мембранные насосы
  • Насосы Рутса
  • Плунжерные (золотниковые) насосы типа АВЗ
  • Пластинчато-роторные насосы
  • Компактные пластинчато-роторные насосы для кондиционирования
  • Спиральные насосы
  • Турбомолекулярные насосы
  • Аксессуары для насосов
  • Масла, рабочие жидкости
  • Компоненты
  • Вакуумные уплотнения в сборе
  • Коллекторы
  • Кресты полные
  • Кресты полные переходные
  • Трубки вакуумные
  • Вакуумные уплотнения в сборе с внешним кольцом
  • Центрирующие кольца
  • Центрирующие кольца с сеткой
  • Уплотнительные кольца (O-rings)
  • Уплотнительные кольца UHV для KF и ISO-K (алюминий)
  • Уплотнения медные
  • Магнитожидкостные уплотнения
  • Хомуты
  • Струбцины
  • Зажимы
  • Заглушки
  • Уголки
  • Тройники
  • Тройники переходные
  • Кресты
  • Кресты переходные
  • Кубы
  • Патрубки под сварку
  • Фланцы под cварку
  • Патрубки (ниппели) с фланцами
  • Переходники KF — KF
  • Переходники CF-CF
  • Переходники CF — ISO
  • Переходники CF — KF
  • Переходники ISO — ISO
  • Переходники ISO — KF
  • Сильфонные шланги
  • Шланги ПВХ армированные
  • Штуцеры
  • Адаптеры Swagelok
  • Адаптеры для ПВХ шлангов
  • Адаптеры для «грибкового» (быстросъемного) соединения
  • Адаптеры VCR с внешней резьбой
  • Адаптеры VCR с внутренней резьбой
  • Адаптеры на внешнюю трубную резьбу
  • Адаптеры на внутренюю трубную резьбу
  • Вводы электрические
  • Смотровые окна
  • Пластиковые крышки
  • Затворы
  • Вакуумные шиберные затворы с большим ДУ500-1320
  • Высоковакуумные шиберные затворы Ду63-400
  • Клапаны
  • Угловые клапаны ручные
  • Угловые клапаны электромагнитные
  • Угловые клапаны с пневмоприводом
  • Прямоточные клапаны ручные
  • Прямоточные клапаны с пневмоприводом
  • Прямоточные клапаны электромагнитные
  • Шаровые клапаны ручные
  • Датчики
  • Датчики Edwards
  • Датчики Пирани Edwards
  • Широкодиапазонные датчики Edwards
  • Датчики Inficon
  • Мембранно-ёмкостные датчики Inficon
  • Датчики Leybold
  • Датчики Пирани Leybold THERMOVAC
  • Ионизационные датчики Leybold PENNINGVAC
  • Мембранно-ёмкостные датчики Leybold CERAVAC
  • Широкодиапазонные датчики Leybold IONIVAC
  • Контроллеры датчиков Edwards
  • Контроллеры датчиков Leybold
  • Портативные измерительные устройства
  • Вакуумметры
  • Течеискатели
  • Течеискатели
  • Аксессуары для течеискателей
  • Камеры
  • Материалы
  • Бязь безворсовая
  • Изоляция
  • Расчет систем
  • Расчет вакуумных систем
  • Полировка
  • Криокулеры

ЧТО ЕСТЬ ФИЗИЧЕСКИЙ ВАКУУМ?

В вакууме, заключенном в объеме обыкновенной 
электрической лампочки, энергии такое большое 
количество, что ее хватило бы, чтобы вскипятить 
все океаны на Земле.
Р.Фейнман, Дж. Уилер.

 

       Главный смысл новейших мировых открытий таков: во вселенной доминирует физический вакуум, по плотности энергии он превосходит все обычные формы материи вместе взятые. Хоть вакуум чаще всего называют космическим, он присутствует всюду, пронизывая насквозь все пространство и материю. Физический вакуум является самым энергоемким, в прямом смысле слова неисчерпаемым источником жизненно важной, экологически чистой энергии. Физический вакуум — это единое энергоинформационное поле Вселенной.

      В настоящее время в физике формируется принципиально новое направление научных исследований, связанное с изучением свойств и возможностей физического вакуума. Это научное направление становится доминирующим, и в прикладных аспектах способно привести к прорывным технологиям в области энергетики, электроники, экологии.

      Чтобы понять роль и место вакуума в сложившейся картине мира, попытаемся оценить, как соотносятся в нашем мире материя вакуума и вещество.

      В этом отношении интересны рассуждения Я.Б.Зельдовича: «Вселенная огромна. Расстояние от Земли до Солнца составляет 150 миллионов километров. Расстояние от солнечной системы до центра Галактики в 2 млрд. раз больше расстояния от Земли до Солнца. В свою очередь, размеры наблюдаемой Вселенной в миллион раз больше расстояния от Солнца до нашей Галактики. И все это огромное пространство заполнено невообразимо большим количеством вещества.

      Масса Земли составляет более чем 5,97 Х 10 в 27-й степени грамм. Это такая большая величина, что ее трудно даже осознать.

      Масса Солнца в 333 тысячи раз больше. Только в наблюдаемой области Вселенной суммарная масса порядка 10 в 22-й степени масс Солнца. Вся безбрежная огромность пространства и баснословное количество вещества в нем поражает воображение».

      С другой стороны, атом, входящий в состав твердого тела, во много раз меньше любого известного нам предмета, но во много раз больше ядра, находящегося в центре атома. В ядре сконцентрировано почти все вещество атома. Если увеличить атом так, чтобы ядро стало иметь размеры макового зернышка, то размеры атома возрастут до нескольких десятков метров. На расстоянии десятков метров от ядра будут находиться многократно увеличенные электроны, которые все равно трудно разглядеть глазом вследствие их малости. А между электронами и ядром останется огромное пространство, не заполненное веществом. Но это не пустое пространство, а особый вид материи, которую физики назвали физическим вакуумом.

     Само понятие «физический вакуум» появилось в науке как следствие осознания того, что вакуум не есть пустота, не есть «ничто». Он представляет собой чрезвычайно существенное «нечто», которое порождает все в мире и задает свойства веществу, из которого построен окружающий мир.

     Оказывается, что даже внутри твердого и массивного предмета вакуум занимает неизмеримо большее пространство, чем вещество. Таким образом, мы приходим к выводу, что вещество является редчайшим исключением в огромном пространстве, заполненном субстанцией вакуума. В газовой среде такая асимметрия еще больше выражена, не говоря уже о космосе, где наличие вещества является больше исключением, чем правилом. Видно, сколь ошеломляюще огромно количество материи вакуума во Вселенной в сравнении даже с баснословно большим количеством вещества в ней. В настоящее время ученым уже известно, что вещество своим происхождением обязано материальной субстанции вакуума, и все свойства вещества задаются свойствами физического вакуума.

       Наука все глубже проникает в сущность вакуума. Выявлена основополагающая роль вакуума в формировании законов вещественного мира. Уже не является удивительным утверждение некоторых ученых, что «все из вакуума и все вокруг нас — вакуум».

       Физика, сделав прорыв в описании сущности вакуума, заложила условия для практического его использования при решении многих проблем, в том числе, проблем энергетики и экологии.

       По расчетам Нобелевского лауреата Р.Фейнмана и Дж. Уиллера, энергетический потенциал вакуума настолько огромен, что «в вакууме, заключенном в объеме обыкновенной электрической лампочки, энергии такое количество, что ее хватило бы, чтобы вскипятить все океаны на Земле..

 

 Однако, до сих пор традиционная схема получения энергии из вещества остается не только доминирующей, но даже считается единственно возможной. Под окружающей средой по-прежнему упорно продолжают понимать вещество, которого так мало, забывая о вакууме, которого так много. Именно такой старый «вещественный» подход и привел к тому, что человечество, буквально купаясь в энергии, испытывает энергетический голод. 

       В новом, «вакуумном» подходе исходят из того, что окружающее пространство — физический вакуум — является неотъемлемой частью системы энергопреобразования. При этом возможность получения вакуумной энергии находит естественное объяснение без отступления от физических законов. Открывается путь создания энергетических установок, имеющих избыточный энергобаланс, в которых полученная энергия превышает энергию, затраченную первичным источником питания. Энергетические установки с избыточным энергобалансом смогут открыть доступ к огромной энергии вакуума, запасенной самой Природой.

      В завершение к сказанному следует добавить, что астрономами подсчитано и теоретически доказано существование энергии в вакууме Вселенной. По их расчетам, только 2-3% этой энергии израсходовано на создание видимого мира (галактик, звезд и планет), а остальная энергия находится в Физическом вакууме. В одной из книг Дж. Уиллер привел оценку нижней границы этой бесконечной энергии, которая оказалась равной 1095 г/см3. Поэтому нет ничего удивительного, что вакуум является источником в конечном итоге всех существующих видов энергии, и правильнее всего получать энергию непосредственно из вакуума.

                            Высшая физика вакуума

      В последние годы газеты, радио, журналы и телевидение почти ежедневно сообщают нам сведения о явлениях, которые получили название аномальных. Мы узнаем о различных повторяющихся событиях, связанных с психикой человека (ясновидение, телекинез, телепатия, телепортация, левитации, экстрасенсорика и т.д.) Все эти сведения, вызывающие у естествоиспытателя защитную реакцию в виде «подозрительного скепсиса», скорее всего говорят об ограниченности существующих научных знаний.

      Более широкий взгляд на проблему предложен в разработанной авторами программе всеобщей относительности и теории физического вакуума, основной целью которой является объединение на научной основе представлений культур Востока и Запада об окружающей нас реальности. Как оказалось, физическим посредником в явлениях психофизики выступают первичные торсионные поля, обладающие рядом необычных свойств, а именно:

а) Поля не переносят энергии, но переносят информацию;

б) Интенсивность торсионного сигнала одинакова на любом расстоянии от источника;

в) Скорость торсионного сигнала превышает скорость света;

г) Торсионный сигнал обладает высокой проникающей способностью.

      Все эти свойства, полученные из теоретического анализа уравнений вакуума, совпадают со свойствами физического посредника, установленными в большом количестве экспериментальных работ. 

     Религиозные книги и древние философские трактаты утверждают, что кроме физического тела у человека существуют астральные и ментальные и т.д. тела, образованные «тонкими материями», и способные сохранять информацию о человеке даже после смерти его физического тела. Теория вакуума подтверждает эти представления, поскольку в этой теории (кроме уже известных нам четырех уровней реальности — твердое тело, жидкость, газ и элементарные частицы) существуют объекты, описывающие физические свойства тонких миров, связанных с сознанием человека. Для медицинского работника это означает, что лечение только физического тела человека не приводит к успеху при заболеваниях, вызванных нарушением полей в его тонких телах.

 

                       СЕМЬ УРОВНЕЙ РЕАЛЬНОСТИ

 

       Одним из существенных результатов теории вакуума является систематика психофизических феноменов в соответствии со следующими семью уровнями физической реальности: твердое тело (земля), жидкость (вода), газ (воздух), плазма (огонь), физический вакуум (эфир), первичные торсионные поля (поле сознания), Абсолютное <Ничто> (Божественная монада). Действительно, существующая научная и техническая литература отражает, в основном, достигнутый на сегодняшний день уровень знания первых четырех уровней реальности, которые рассматриваются как четыре фазовых состояния вещества. Все известные нам физические теории, начиная с механики Ньютона и кончая современными теориями фундаментальных Физических взаимодействий, занимаются теоретическим и экспериментальным изучением поведения твердых тел, жидкостей, газов, различных полей и элементарных частиц. За последние двадцать лет нарастающим темпом появляются факты, которые указывают на то, что существуют ещё два уровня, это уровень первичного поля кручения (или «Поля Сознания», а так же информационного поля) и уровень Абсолютного «Ничто». Эти уровни признаются многими исследователями как уровни реальности, на которых базируются давно утерянные человечеством технологии.

Основным методом познания реальности в таких технологиях является медитация, в отличие от рефлексии, используемой как метод познания окружающего мира в объективной физике. Два верхних уровня, включая частично и вакуумный уровень, образуют . Эти уровни признаются многими исследователями как уровни реальности, на которых базируются давно утерянные человечеством технологии. Основным методом познания реальности в таких технологиях является медитация, в отличие от рефлексии, используемой как метод познания окружающего мира в объективной физике. Два верхних уровня, включая частично и вакуумный уровень, образуют «субъективную физику», поскольку основным фактором в явлениях различного рода на нижних уровнях является сознание (полеты йогов, телекинез, ясновидение, парапсихология, опыты Ури Геллера и т.д.). Основной энергией, действующей на верхних уровнях, является психическая энергия, которая играет важнейшую роль в вопросах медицины. В настоящее время ученые более чем в 120 странах мира занимаются интенсивным изучением второго уровня. Для этого созданы научные центры, оснащенные современным оборудованием, и разработаны научные программы  позволяющие получать реальные достаточно внушительные достижения во многих областях человеческой жизни; в здоровье, учебе, экологии, науке и т.д. Эти достижения убедительно показывают, что противопоставление материального и идеального, материи и сознания, науки и религии, уходящей корнями во второй уровень, значительно ограничивает наши представления о реальности. Скорее всего, все эти противоположности составляют диалектическое единство на всех уровнях реальности и одновременно проявляются в различной степени в той или иной ситуации. Понятно, что без учета верхних трех уровней картина мира окажется неполной. Более того, происходит слияние современных методов изучения физических законов с получением «чистого знания», путем взаимодействия человеческого сознания с «Полем Сознания»,* которое, согласно научной программе , представляет собой единый источник как для законов естествознания, так и для общественных законов. Поэтому под психофизикой (субфизикой) понимаются явления, основной причиной которых оказывается сознание человека, а основной технологией — медитация.

 

                                           МЕДИТАЦИЯ

 

       На Востоке несколько тысячелетий назад возник совершенно необычный (с позиций западной науки) способ познания реальности — медитация. В результате специальной методики человек, занимающийся медитацией, может целенаправленно расширять область взаимодействия своего Сознания с Информационным Полем (Полем Сознания), носителем которого является первичное торсионное поле, и таким образом получать знания об окружающем нас мире. В 1972 г. индийский философ и физик Махариши Махеш Йоги основал в США международный университет по практическому применению медитации в различных областях жизни современного общества: астральное и ментальное тела сформированы из вторичных торсионных полей, т.е. порождены атомарно — молекулярной структурой физического тела. Остальные тонкие тела — казуальное, душа и дух образованы первичными торсионными полями и взаимодействуют непосредственно с полем сознания. Совокупность тонких тел образует сознание человека.

 

                              ТЕОРИЯ ВАКУУМА И ДРЕВНИЕ УЧЕНИЯ

 

       Многие древние трактаты восточной философии утверждают, что источником всего сущего является пустое пространство или вакуум в современном понимании. Развитие науки привело физиков именно к такому же представлению об источнике материи любого вида и положило начало изучению пятого (после твердого тела, жидкости, газа и плазмы) вакуумного состояния реальности на базе современного мновый уровень реальности — физический вакуум, при этом разные по своей природе теории давали разные представления о нем. Если в теории Эйнштейна вакуум рассматривается как пустое четырехмерное пространство-время, наделенной геометрией Римана, то в электродинамике Максвелла — Дирака вакуум (глобально нейтральный) представляет собой своего рода «кипящий бульон», состоящий из виртуальных частиц — электронов и античастиц — позитронов. Дальнейшее развитие квантовой теории поля показало, что основное состояние всех квантовых полей — физический вакуум — образуют не только виртуальные электроны и позитроны, но и все другие известные частицы и античастицы, находящиеся в виртуальном состоянии. Для того, чтобы объединить эти два различных представления о вакууме, Эйнштейном была выдвинута программа, получившая название программы единой теории поля. В теоретической физике, посвященной этому вопросу, были сформулированы две глобальные идеи, предполагающие создать единую картину мира: это программа Римана, Клиффорда и Эйнштейна, согласно которой «…в физическом мире не происходит ничего кроме изменения кривизны пространства, подчиняющегося (возможно) закону непрерывности «, и программа Гайзенберга, предполагающая построить все частицы материи из частиц спина 1/2. Трудности в объединении этих двух программ, по мнению ученика Эйнштейна известного теоретика Джона Уилера, состоит в том, что: «…мысль о получении понятия спина из одной лишь классической геометрии представляется столь же невозможной, как и потерявшая смысл надежда некоторых исследователей прежних лет вывести квантовую механику из теории относительности». Уилер высказал эти слова в 1960 году, читая лекции в Международной школе физики им. Энрико Ферми, и пока еще не знал, что уже в это время были начаты блестящие работы Пенроуза, которые показывают, что именно спиноры могут быть положены в основу классической геометрии и что именно они определяют топологические и геометрические свойства пространства-времени такие, например, как его размерность и сигнатура. Поэтому новая картина мира, по мнению автора, может быть найдена лишь на пути объединения программы Римана Клиффорда-Эйнштейна-Гайзенберга-Пенроуза с многочисленной феноменологией, не укладывающиеся в современные научные представления. Сейчас становится ясным, что программа Единой Теории Поля переросла в Теорию Физического Вакуума, которая призвана объяснить не только явления объективной физики, но и психофизические явления. На сегодняшний день существует богатый фактический материал, относящийся к психофизическим явлениям, однако прочной теоретической основы в имеющихся работах, включая работы Хагелина, нет до сих пор. Любые попытки дать объяснение существующим фактам в отрыве от современной науки не могут считаться успешными, поскольку реальность представляет собой единое целое, а психофизика, с одной стороны, и современная физика с другой, представляют собой различные грани единого целого. В настоящей работе было показано, что некоторые весьма общие свойства психофизических явлений (например, сверхсветовая передача информации), следуют из теории физического вакуума. Эта теория является результатом естественного развития физической науки и поэтому неудивительно, что именно явления психофизики представляют собой весомый аргумент для обобщения современных физических теорий. Эксперименты показывают, что основным инструментом психофизики является человеческое сознание, способное «подключаться» к первичному полю кручения (или Единому Полю Сознания) и через него воздействовать на «грубые» уровни реальности — плазму, газ, жидкость и твердое тело. Вполне вероятно, что в вакууме существуют критические точки (точки бифуркации), в которых все уровни реальности проявляются одновременно виртуальным образом. Достаточно незначительных воздействий на эти критические точки «полем сознания» для того, чтобы развитие событий привело к рождению из вакуума либо твердого тела, либо жидкости или газа и т.д. Существование явления телепортации предметов указывает на возможность «ухода в вакуум» и «рождения из вакуума» не только элементарных частиц и античастиц, но и более сложных физических объектов, представляющих собой огромное, упорядоченное скопление этих частиц. Важно отметить, что кроме гравитационного и электромагнитного полей, теория физического вакуума выделяет особую роль полю сознания, физическим носителем которого является поле инерции (торсионное поле). Это физическое поле порождает силы инерции, действующие на любые виды материи в силу их универсальности. Не исключено, что явление телекинеза (передвижение предметов различной природы психофизическим усилием) объясняется способностью человека возмущать физический вакуум вблизи предмета таким образом, что возникают поля и силы инерции, вызывающие движение предмета. Автор выражает надежду, что именно теория физического вакуума окажется той научной основой, которая позволит нам объяснить столь загадочные явления как явления психофизики.

 

                               КОСМИЧЕСКАЯ ЭВОЛЮЦИЯ ЧЕЛОВЕКА

 

       Теория физического вакуума заставляет нас пересмотреть соотношение между материей и сознанием, отдавая приоритет сознанию как творческому началу всякого реального процесса. Творение миров и вещества, из которых они состоят, начинается Абсолютным «Ничто» из потенциального состояния материи — физического вакуума без какой-либо первоначально проявленной материи. Число возможных миров в этой ситуации безгранично, поэтому сверхсознание — Абсолютное «Ничто» нуждается в процессе творения в добровольных помощниках, которых он сам и создает на уровне проявленной материи «по своему образу и подобию». Цель этих помощников состоит в постоянном самосовершенствовании и эволюции.

      Эволюционная лестница построена в соответствии с семиуровневой схемой реальности, возникающей в теории физического вакуума, поэтому эволюция помощника означает продвижение вверх по лестнице от материального проявленного к тонким вакуумным и сверхвакуумным уровням реальности. Эта цель объединяет всех помощников, хотя они и находятся на разных уровнях эволюционной лестницы. Чем на более высоком уровне находится помощник, тем ближе он к Абсолютному «Ничто» по своим информационным и творческим возможностям. У продвинутых помощников эти творческие возможности столь колоссальны, что они способны создавать в проявленном состоянии звездные системы и разумных существ, подобных нам. Человек нашей планеты был создан, возможно, помощниками – творцами (или творцом) высокого уровня и наше предназначение, как и всего в мире, помогать Абсолютному «Ничто» в его творческой работе. Тот, кто преуспевает в этом, тот и восходит в процессе этой работы вверх по эволюционной лестнице, становясь свободным и получая все больше и больше возможностей для творческой деятельности. 

   

«Всё во Вселенной — энергоинформационное взаимодействие»

 

      До настоящего времени в мире существуют две концепции во взглядах на устройство всего живого и, в частности, организма человека, на болезни и способы их лечения. Одна из них, развивающаяся с недавних пор, — биохимико-физиологическая (европейская) и другая, дошедшая до нас из глубины веков через Индию и Китай, — энергетическая. В рамках первого направления организм человека рассматривается на телесном уровне, без каких-либо понятий, связанных с тонкими энергиями. Это направление  характеризуется с одной стороны, научно-техническими достижениями, а с другой — неспособностью реально справиться с постоянным численным ростом серьезных заболеваний (инфаркт миокарда, инсульт, онкологические, вирусные заболевания, СПИД и т.д.), с проблемой старения. Тем не менее, многие ученые стремятся изучить себя и окружающий мир в единстве этих двух концепций, дополняя, а не исключая их, в проблеме здоровья и долголетия. Среди таких ученых — известные всему миру физики, химики, биологи, врачи: Луи Пастер, Пьер Кюри, Владимир Вернадский, Александр Гурвич. Проблема здоровья в излагаемом материале рассматривается с позиций обеих концепций.

      Ни для кого не секрет, что пространство Вселенной (физический вакуум) наполнено множеством достаточно изученных физических полей (электрические, магнитные, гравитационные и др.), и все эти поля создаются в результате различных излучений от множества космических тел Вселенной. В процессе жизни человек подвергается воздействию множества факторов окружающей среды, которые и определяют его жизнь. Организм человека взаимодействует с большим количеством живых и неживых объектов — соответственно и с Землей — посредством не только известных органов чувств, но и через различные поля, в том числе электрическое, магнитное и гравитационное. В конце ХХ века в результате теоретических и практических исследований науке стало известно об энергии и полях, имеющих неэлектромагнитное происхождение, часто называемых торсионными, тонкими. Многолетние исследования, проведенные автором в области тонких полей, позволяют говорить о том, что при решении задач обеспечения качества жизни центральным оказывается вопрос энергообеспечения человека и взаимодействия его посредством своей энергетической системы (биологического поля) с энергиями окружающей среды тонкого плана.

     На современном этапе наших исследований полученные знания позволили выйти на беспрецедентный уровень обеспечения качества и продолжительности жизни человека. Изучив природу энергии и полей такого типа, разработчикам данной технологии удалось впервые в мировой практике найти способ их получения и применения с пользой для людей.

     Каждый человек хотя бы раз в жизни слышал о различных чудесных исцелениях «живой водой». Отметим, что степень полезного действия на организм человека в вышеуказанной воде определяется объемом энергии и нужной информацией, сконцентрированной в ней. Изучив природу подобных чудес, становится понятной причина такого рода исцелений и «панацейности» такой воды.

     Известно, что вода обладает магнетическими свойствами притягивать, накапливать и быть носителем энергии и информации окружающего пространства. Например, изменяя пространство определенными геометрическими формами (постройками), можно увеличивать энергоинформационные свойства воды при помещении ее внутрь формы, и чем длительнее ее пребывание там, тем целебнее свойства она приобретает. Также имеет значение месторасположение таких объектов или водоемов, где биолокационным способом определяется энергоинформационный потенциал данного пространства. На похожем принципе основана святая вода (эффект купола), вода из пирамид, структурированная вода, пограничная вода, крещенская вода, талая вода, вода с отрицательными значениями протонов в толщах озера Байкал.

     Известно, что для существования и регенерации клетки организма снабжаются не только энергией, высвобожденной в результате метаболизма, но и всепроникающей энергией физического вакуума, следовательно, взаимодействие клеток между собой обеспечивается через их общее поле. Состояние здоровья человека на 99% определяется достаточным по количеству и качеству обеспечением клеток, тканей и в целом организма адекватной энергией и информационными ресурсами. Новейшими исследованиями установлено, что практически все здоровые (дифференцированные) клетки нынешнего среднестатистического человека испытывают колоссальный дефицит в адекватной энергетике и информации, что обуславливает высокий иммунодефицит и крайне неудовлетворительный обмен. Неудивительно, что подавляющее большинство населения планеты, включая детей, ныне глубоко поражены различными и, к сожалению, уже не излечимыми заболеваниями.

Вакуум технический (основные характеристики) — Мегаобучалка

Лекция 1.

Основные свойства вакуума, плазмы и твердого тела.

Вакуум технический (основные характеристики)

Вакуум (от лат. vacuum — пустота) означает пространство, свободное от вещества. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

В технике и прикладной физике под словом вакуум понимается пространство, содержащее газ при давлениях значительно ниже атмосферного. В физике понятие вакуума более фундаментальное. Поэтому принято различать технический вакуум и физический вакуум.

В качестве одной из характеристик технического вакуума часто рассматривается соотношение между длиной свободного пробега молекул газа (λ) и характерным размером среды (d). В таком подходе под d понимается расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий ((λ/d)<< 1), средний ((λ/d)~ 1) и высокий ((λ/d)>> 1) вакуум.

В другом подходе, при описании параметров различных технических установок и устройств, уровень вакуума определяют по давлению в среде. По этому признаку низкому техническому вакууму обычно соответствуют давления выше 100 Па, среднему — от 100 до 0,1 Па, высокому — от 0,1 до 10 мкПа. Область еще более низких давлений относят к сверхвысокому вакууму. Однако, при определении уровня вакуума в некотором объеме по давлению всегда следует оговаривать расстояния между стенками рассматриваемого пространства. Так например, в вакуумных установках и приборах размером d = 10 см низкому вакууму соответствует область давлений выше 102н/м2 (1 мм рт. ст.), среднему вакууму — от 102 до 10-1н/м2 (от 1 до 10-3 мм рт. ст.) и высокому вакууму — ниже 0,1 н/м2 (10-8 мм рт. ст.). Для указанных объемов область давлений ниже 10-6н/м2 (10-8 мм рт. cm.) обычно называют сверхвысоким вакуумом. Но, например, в порах или каналах диаметром d = 1 мкм поведение газа соответствует высокому вакууму при давлениях, начиная с 103н/м2 (десятки мм рт. ст.), поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.



Свойства газа в условиях низкого вакуума определяются частыми столкновениями молекул газа друг с другом, сопровождающимися обменом энергией между ними. Такой газ обладает внутренним трением (вязкостью). Его течение подчиняется законам аэродинамики. Явления переноса (электропроводность, теплопроводность, внутреннее трение, диффузия) в условиях низкого вакуума характеризуются плавным изменением или постоянством градиента переносимой величины. Например, температура газа в пространстве между «горячей» и «холодной» стенками в низком вакууме изменяется постепенно. При этом переносимое количество тепла или вещества не зависит от давления. Если газ находится в двух сообщающихся сосудах при различных температурах, то при равновесии давления в этих сосудах равны. При прохождении тока в низком вакууме определяющую роль играет ионизация молекул газа.

В высоком вакууме свойства газа определяются только столкновениями его молекул со стенками. Столкновения молекул друг с другом происходят редко и играют второстепенную роль. Движение молекул между стенками происходит прямолинейно (молекулярный режим течения газа).

Прохождение тока в высоком вакууме возможно только в результате испускания (эмиссии) электронов и ионов электродами. Электроны как носители заряда могут возникать в вакууме в результате термоэлектронной, туннельной, фторичной или фотоэлектронной эмиссии. Ионы можно получить в процессах ионной эмиссии. Ионизация молекул газа в электрическом поле здесь играет второстепенную роль.

Свойства газа в среднем вакууме являются промежуточными между его свойствами в низком и высоком вакууме.

Технический вакуум получают с помощью специальных насосов (вакуумных насосов). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ молекул газа. При (λ/d)>> 1 молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме (10−5 торр) (1011 молекул на 1 см³). Сверхвысокий вакуум соответствует давлению 10−9 торр и ниже. Для сравнения, давление в космосе на несколько порядков ниже давления, которое в технике принято называть сверхвысоким вакуумом. Например, в дальнем же космосе и вовсе может достигать 10−16 торр и ниже (1 молекула на 1 см³).

Для поглощения газов и создания глубокого вакуума используются геттеры. Более широкий термин «вакуумная техника» включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере и т. д.

Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов — это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например, в пористый титан) и криосорбционные насосы (в основном для создания форвакуума).

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое количество носителей тепла (газ фононов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами. Тем не менее вакуум является лучшим теплоизолятором. Перенос тепловой энергии в нём происходит лишь за счёт теплового излучения. Конвекции и теплопроводности в вакууме нет. Это свойство вакуума используется для теплоизоляции в термосах (сосудах Дьюара), представляющих собой ёмкость с двойными стенками, пространство между которыми эвакуировано.

Вакуум широко применяется в электровакуумных приборах – радиолампах, магнетронах, электронно-лучевых трубках и т.п.

Приборы, используемые для измерения низких давлений, называются вакуумметрами.

 

Отправить ответ

avatar
  Подписаться  
Уведомление о