Зачем конденсатор на электродвигателе: Пусковые конденсаторы для электродвигателей 220В

Содержание

53.Однофазные электродвигатели

53.Однофазные электродвигатели 

Однофазными электродвигателями оборудовано большое количество маломощных холодильных агрегатов, используемых в быту (домашние холодильники, морозильники, бытовые кондиционеры, небольшие тепловые насосы…).
Несмотря на очень широкое распространение, однофазные двигатели с вспомогательной обмоткой зачастую недооцениваются по сравнению с трехфазными двигателями.
Целью настоящего раздела является изучение правил подключения однофазных электродвигателей, их ремонта и обслуживания, а также рассмотрение узлов и элементов, необходимых для их работы (конденсаторы, пусковые реле). Конечно, мы не будем изучать, как и почему вращаются такие двигатели, но все особенности их использования в качестве двигателей для компрессоров холодильного оборудования мы постараемся изложить.
А) Однофазные двигатели с вспомогательной обмоткой
Такие двигатели, установленные в большинстве небольших компрессоров, питаются напряжением 220 В. Они состоят из двух обмоток (см. рис. 53.1).

► Основная  обмотка  Р,   называемая                      ________
часто рабочей обмоткой, или по-английски Run (R), имеет провод толстого сечения, который в течение всего периода работы двигателя остается под напряжением и пропускает номинальную силу тока двигателя.
► Вспомогательная обмотка А, называемая также пусковой обмоткой, или по-английски S (Start), имеет провод более тонкого сечения, следовательно, большее сопротивление, что позволяет легко отличить ее от основной обмотки.

Вспомогательная или пусковая обмотка, согласно названию, служит для обеспечения запуска двигателя.
Действительно, если попытаться запустить двигатель, подав напряжение только на основную обмотку (и не запитать вспомогательную), мотор будет гудеть, но вращаться не начнет. Если в этот момент вручную крутануть вал, мотор запустится и будет вращаться в том лее направлении, в котором его закрутили вручную. Конечно, такой способ запуска совсем не годится для практики, особенно если мотор спрятан в герметичный кожух.


Пусковая обмотка как раз и служит для того, чтобы запустить двигатель и обеспечить величину пускового момента выше, чем момент сопротивления на валу двигателя.
Далее мы увидим, что последовательно с пусковой обмоткой в цепь вводится, как правило, конденсатор, обеспечивающий необходимый сдвиг по фазе (около 90°) между током в основной и пусковой обмотках. Эта искусственная расфазировка как раз и позволяет запустить двигатель.

Внимание! Все замеры должны быть выполнены с большой аккуратностью и точностью, особенно, если модель двигателя вам незнакома или схема соединения обмоток отсутствует.

Случайное перепутывание основной и вспомогательной обмоток, как правило, заканчивается тем, что вскоре после подачи напряжения мотор сгорает!

Не стесняйтесь повторить измерения несколько раз и набросать схему мотора, снабдив ее максимумом пометок, это позволит вам избежать многих ошибок!
ПРИМЕЧАНИЕ
Если двигатель трехфазный, омметр покажет одинаковые значения сопротивлений между всеми тремя клеммами. Таким образом, представляется, что трудно ошибиться, прозванивая этот тип двигателя (по трехфазным двигателям см. раздел 62).
В любом случае, возьмите в привычку читать справочные данные на корпусе двигателя, а также подумайте о том, как заглянуть вовнутрь клеммной коробки, сняв ее крышку, поскольку там часто приводится схема соединения обмоток двигателя.

Проверка двигателя. Одним из наиболее сложных для начинающего ремонтника вопросов является принятие решения о том, что по результатам проверки двигатель следует считать сгоревшим. Напомним основные дефекты электрического характера, наиболее часто встречающиеся в двигателях (неважно, однофазных или трехфазных). Большинство этих дефектов имеют причиной сильный перегрев двигателя, обусловленный чрезмерной величиной потребляемого тока. Повышение силы тока может быть следствием электрических (продолжительное падение напряжения, перенапряжение, плохая настройка предохранительных устройств, плохой электрический контакт, неисправный контактор) или механических (заклинивание из-за нехватки масла) неполадок, а также аномалий в холодильном контуре (слишком большое давление конденсации, присутствие кислот в контуре.

..).

Одна из обмоток может быть оборвана . В этом случае омметр при измерении ее сопротивления будет показывать очень большую величину вместо нормального сопротивления. Удостоверьтесь, что ваш омметр исправен и что его зажимы имеют хороший контакт с клеммами обмотки. Не стесняйтесь проверить омметр с помощью хорошего эталона.
Напомним, что обмотка обычного мотора имеет максимальное сопротивление в несколько десятков Ом для небольших двигателей и несколько десятых долей Ома для огромных двигателей. Если обмотка оборвана, нужно будет либо заменить двигатель (или полностью агрегат), либо перемотать его (в том случае, когда такая возможность имеется, перемотка тем более выгодна, чем больше мощность двигателя).
Между двумя обмотками может существовать короткое замыкание. Чтобы выполнить такую проверку, необходимо убрать соединительные провода (и соединительные перемычки на трехфазном двигателе).

Когда вы проводите отсоединение, никогда не стесняйтесь предварительно разработать детальную схему замеров и сделать максимум пометок, чтобы в дальнейшем спокойно и без ошибок вновь поставить на место соединительные провода и перемычки.

В омметр должен показывать бесконечность. Однако, он показывает ноль (или очень низкое сопротивление), что без сомнения означает возможность короткого замыкания между двумя обмотками.
Такая проверка менее показательна для однофазного двигателя с вспомогательной обмоткой в случае, если две обмотки невозможно разъединить (когда общая точка С, соединяющая две обмотки, находится внутри двигателя). Действительно , в зависимости от точного места нахождения короткого замыкания, замеры сопротивлений, осуществленные между тремя клеммами (С —> А, С —> Р и Р —> А), дают пониженные, но достаточно несвязанные между собой величины. Например, сопротивление между точками А и Р, может не соответствовать сумме сопротивлений С —> А + С —> Р.

Также, как и в случае обрыва обмоток, при коротком замыкании между обмотками необходимо либо заменить, либо перемотать двигатель.


Обмотка может быть замкнута на массу. Сопротивление изоляции нового двигателя (между каждой из обмоток и массой) должно достигать 1000 MQ. Со временем это сопротивление уменьшается и может упасть до 10… 100 MQ. Как правило, принято считать, что начиная с 1 MQ (1000 kQ) нужно предусматривать замену двигателя, а при величине сопротивления изоляции 500 kQ и ниже, эксплуатация двигателя не допускается (напомним: 1 MQ = 103kQ = 10°>Q).
Обмотка замкнута на массу

Сопротивление стремится к нулю
Если изоляция нарушена, измерение сопротивления между клеммой обмотки и корпусом мотора дает нулевую ветмчину (или очень низкое сопротивление) вместо бесконечности (см. рис. 53.8). Заметим, что такое измерение должно быть выполнено на каждой клемме двигателя с помощью наиболее точного омметра. Перед каждым измерением убедитесь, что ваш омметр в исправном состоянии, и что его зажимы имеют хороший контакт с клеммой и металлом корпуса двигателя (при необходимости, соскоблите краску на корпусе, чтобы добиться хорошего контакта).
В примере на рис. 53.8 измерение указывает на то, что обмотка несомненно может быть замкнута на корпус.
Рис. 53.8.
Однако контакт обмотки с массой может быть и не полным. Действительно, сопротивление изоляции между обмотками и корпусом может становиться достаточно низким, когда двигатель находится под напряжением, чтобы вызывать срабатывание предохранительного автомата, в то же время оставаясь достаточно высоким, чтобы в отсутствие напряжения не быть обнаруженным с помощью обычного омметра.
В этом случае необходимо использовать мегомметр (или аналогичный прибор), который позволяет контролировать сопротивление изоляции с использованием постоянного напряжения от 500 В, вместо нескольких вольт для обычного омметра
При вращении ручного индуктора мегомметра, если сопротивление изоляции в норме, стрелка прибора должна отклоняться влево (поз. 1) и указывать бесконечность (оо). Более слабое отклонение, например, на уровне 10 MQ (поз. 2), указывает на снижение изоляционных характеристик двигателя, которое хотя и недостаточно для того, чтобы только оно привело к срабатыванию защитного автомата, но, тем не менее, должно быть отмечено и устранено, поскольку даже незначительные повреждения изоляции, вдобавок к уже существующим, в большинстве случаев рано или поздно приведут к полной остановке агрегата.

Отметим также, что только мегомметр может позволить выполнить качественную проверку изоляции двух обмоток между собой, когда их невозможно разъединить (см. выше проблему короткого замыкания между обмотками в однофазном двигателе). В заключение укажем, что проверку подозрительного электродвигателя необходимо проводить очень строго.
В любом случае недостаточно только заменить двигатель, но необходимо также найти, вдобавок к этому первопричину неисправности (механического, электрического или иного характера) с тем, чтобы радикально исключить всякую возможность ее повторения. В холодильных компрессорах, где имеется большая вероятность наличия кислоты в рабочем теле (обнаруживаемой простым анализом масла), после замены сгоревшего мотора необходимо будет предпринять дополнительные меры предосторожности. Не следует пренебрегать и осмотром электроаппаратуры (при необходимости, заменяя контактор и прерыватель, проверяя соединения и предохранители…).

Вдобавок к этому, замена компрессора требует от персонала высокой квалификации и строгого соблюдения правил: слива хладагента, при необходимости промывая после этого контур, возможной установки антикислотного фильтра на всасывающей магистрали, замены фильтра-осушителя, поиска утечек, обезвоживания контура путем вакуумирования, заправки контура хладагентом и полного контроля функционирования.

.. Наконец, особенно если изначально установка была заправлена хладагентом типа CFC (R12, R502…), может быть будет возможным и целесообразным воспользоваться заменой компрессора, чтобы поменять тип хладагента?
Б) Конденсаторы
Чтобы запустить однофазный двигатель со вспомогательной обмоткой, необходимо обеспечить сдвиг по фазе переменного тока во вспомогательной обмотке по отношению к основной. Для достижения сдвига по фазе и, следовательно, обеспечения требуемого пускового момента (напомним, что пусковой момент двигателя обязательно должен быть больше момента сопротивления на его валу) используют, в основном, конденсаторы, установленные последовательно со вспомогательной обмоткой. Отныне мы должны запомнить, что если емкость конденсатора выбрана неправильно (слишком малая или слишком большая), достигнутая величина фазового сдвига может не обеспечить запуск двигателя (двигатель стопорится).
В электрооборудовании холодильных установок мы будем иметь дело с двумя типами конденсаторов:
► Рабочие (ходовые) конденсаторы (бумажные) небольшой емкости (редко более 30 мкф), и значительных размеров.
► Пусковые конденсаторы (электролитические), имеющие, наоборот, большую емкость (может превышать 100 мкф) при относительно небольших размерах. Они не должны находиться постоянно под напряжением, иначе такие конденсаторы очень быстро перегреваются и могут взорваться. Как правило, считается, что время их нахождения под напряжением не должно превышать 5 секунд, а максимально допустимое число запусков составляет не более 20 в час.
С одной стороны, размеры конденсаторов зависят от их емкости (чем больше емкость, тем больше и размеры). Емкость указывается на корпусе конденсатора в микрофарадах (др, или uF, или MF, или MFD, в зависимости от разработчика) с допуском изготовителя, например: 15uF±10% (емкость может составлять от 13,5 до 16,5 мкФ) или 88-108 MFD (емкость составляет от 88 до 108 мкФ).
Кроме того, размеры конденсатора зависят от величины напряжения, указанного на нем (чем выше напряжение, тем больше конденсатор). Полезно напомнить, что указанное разработчиком напряжение является максимальным напряжением, которое можно подавать на конденсатор, не опасаясь его разрушения. Так, если на конденсаторе указано 20мкф/360В, это значит, что такой конденсатор свободно можно использовать в сети с напряжением 220 В, но ни в коем случае нельзя подавать на него напряжение 380 В.

 53.1. УПРАЖНЕНИЕ


Попробуйте для каждого из 5 конденсаторов, изображенных на рис. 53.10 в одном и том же масштабе, определить, какие из них являются рабочими (ходовыми), а какие пусковыми.

Конденсатор №1 самый большой по размерам из всех представленных, имеет довольно низкую емкость в сравнении с его размерами. По-видимому, это рабочий конденсатор.
Конденсаторы №3 и №4, при одинаковых размерах, имеют очень небольшую емкость (заметим, что конденсатор №4, предназначенный для использования в сети с напряжением питания, большим, чем конденсатор №3, имеет более низкую емкость). Следовательно, эти два конденсатора также рабочие.
Конденсатор №2 имеет, в сравнении с его размерами, очень большую емкость, следовательно это пусковой конденсатор. Конденсатор №5 имеет емкость несколько меньше, чем №2, но он предназначен для более высокого напряжения: это также пусковой конденсатор.

Проверка конденсаторов. Измерения при помоши омметра, когда они дают те результаты, которые мы только что рассмотрели, являются превосходным свидетельством исправности конденсатора. Тем не менее, они должны быть дополнены измерением фактической емкости конденсатора (вскоре мы увидим, как выполнить такое измерение).
Теперь изучим типичные неисправности конденсаторов (обрыв цепи, короткое замыкание между пластинами, замыкание на массу, пониженная емкость) и способы их выявления. Прежде всего следует заметить, что совершенно недопустимым является вздутие корпуса конденсатора.

В конденсаторе может иметь место обрыв вывода
Тогда омметр, подключенный к выводам и установленный на максимальный диапазон, постоянно показывает бесконечность. При такой неисправности все происходит как в случае отсутствия конденсатора. Однако, если двигатель оснащен конденсатором, значит он для чего-то нужен. Следовательно, мы можем представить себе, что двигатель либо не будет нормально работать, либо не будет запускаться, что зачастую будет обусловливать срабатывание тепловой защиты (тепловое реле защиты, автомат защиты…).
Внутри конденсатора может иметь место короткое замыкание между пластинами
При такой неисправности омметр будет показывать нулевое или очень низкое сопротивление (используйте небольшой диапазон). Иногда компрессор может запуститься (далее мы увидим, почему), но в большинстве случаев короткое замыкание в конденсаторе приводит к срабатыванию тепловой защиты.
Пластины могут быть замкнуты на массу
Пластины конденсатора, также как и обмотки электродвигателя, изолированы от массы. Если сопротивление изоляции резко падает (опасность чего проявляется при чрезмерном перегреве), утечка тока обусловливает отключение установки автоматом защиты.
Такая неисправность может возникать, если конденсатор имеет металлическую оболочку. Сопротивление, измеренное между одним из выводов и корпусом в этом случае стремится к 0, вместо того, чтобы быть бесконечным (проверять нужно оба вывода).
Емкость конденсатора может быть пониженной
В этом случае действительная величина емкости, измеренная на его концах, ниже емкости, указанной на корпусе с учетом допуска изготовителя.

В  измеренная емкость должна была бы находиться в пределах от 90 до 110 мкФ. Следовательно, на самом деле, емкость слишком низкая, что не обеспечит требуемые величины сдвига по фазе и пускового момента. В результате двигатель может больше не запуститься.

Рассмотрим теперь, как осуществить измерение фактической емкости конденсатора с помощью несложной схемы, легко реализуемой в условиях монтажной площадки.
О
ВНИМАНИЕ! Чтобы исключить возможные опасности, необходимо перед сборкой этой схемы проверить конденсатор с помощью омметра.
Внешне исправный конденсатор достаточно подключить к сети переменного тока напряжением 220 В и измерить потребляемый ток (конечно, в этом случае, рабочее напряжение конденсатора должно быть не ниже 220 В).
Схему необходимо защитить либо автоматом защиты, либо плавким предохранителем с рубильником. Измерение  должно быть как можно более коротким (пусковой конденсатор опасно долго держать под напряжением).

При напряжении 220 В действительная емкость конденсатора (в мкФ) примерно в 14 раз больше потребляемого тока (в амперах).

Например, вы хотите проверить емкость конденсатора (очевидно, это пусковой конденсатор, поэтому время его нахождения под напряжением должно быть очень небольшим, см. рис. 53.21). Поскольку на нем указано, что рабочее напряжение равно 240 В, его можно включить в сеть напряжением 220 В.

Если емкость, обозначенная на конденсаторе составляет 60 мкФ ± 10% (то есть от 54 до 66 мкФ), теоретически он должен потреблять ток силой: 60 / 14 = 4,3 А.
Установим автомат или плавкий предохранитель, рассчитанный на такой ток, подключим трансформаторные клещи и установим на амперметре диапазон измерения, например, 10 А. Подадим напряжение на конденсатор, считаем показания амперметра и тотчас отключим питание.

ВНИМАНИЕ, ОПАСНОСТЬ! Когда вы измеряете емкость пускового конденсатора, время его нахождения под напряжением не должно превышать 5 секунд (практика показывает, что при небольших затратах на организацию процесса измерения, этого времени вполне достаточно для выполнения замера).
В нашем примере, фактическая емкость составляет около 4,1 х 14 = 57 мкФ, то есть конденсатор исправный, поскольку его емкость должна находиться между 54 и 66 мкФ.
Если замеренный ток составил бы, например, 3 А, фактическая емкость была бы 3 х 14 = 42 мкФ. Эта величина выходит за пределы допуска, следовательно нужно было бы заменить конденсатор.

В) Пусковые реле
Вне зависимости от конструкции, задачей пускового реле является отключение пусковой обмотки, как только двигатель наберет примерно 80% номинального числа оборотов. После этого, двигатель считается запущенным и продолжает вращение только с помощью рабочей обмотки.
Существует два основных типа пусковых реле: реле тока и реле напряжения. Мы упомянем также запуск с помощью термистора СТР.
Вначале изучим пусковое реле тока
Этот тип реле, как правило, применяется в небольших однофазных двигателях, используемых для привода компрессоров, мощность которых не превышает 600 Вт (домашние холодильники, небольшие морозильные камеры. ..).

В большинстве случаев (но не всегда) эти реле подключаются непосредственно к компрессору при помощи двух или трех (в зависимости от моделей) гнезд, в которые входят штеккеры обмоток электродвигателя, предотвращая возможные ошибки при подключении реле к вспомогательной и основной обмоткам. На верхней крышке реле, как правило, нанесены следующие обозначения:
Р / М —> Рабочая (Main) —> Основная обмотка А / S -> Пусковая (Start) —> Вспомогательная обмотка L         Линия (Line)     —> Фаза питающей сети
Если реле перевернуть верхней крышкой вниз, можно отчетливо услышать стук подвижных контактов, которые скользят свободно.
Поэтому, при установке такого реле необходимо строго выдерживать его пространственную ориентацию, чтобы надпись «Верх» (Тор) находилась сверху, так как если реле перевернуто, его нормально разомкнутый контакт будет постоянно замкнут.

При проверке омметром сопротивления между контактами пускового реле тока (в случае его правильного расположения) между гнездами A/S и Р/М, а также между гнездами L и A/S, должен иметь место разрыв цепи (сопротивление равно со), поскольку при снятом питании контакты реле разомкнуты.
Между гнездами Р/М и L сопротивление близко к 0, соответствуя сопротивлению катушки реле, которая мотается проводом толстого сечения и предназначена для пропускания пускового тока.
Можно также проверить сопротивление реле в перевернутом состоянии. В таком случае, между гнездами A/S и L вместо бесконечности должно быть сопротивление, близкое к нулю.
При монтаже реле тока в перевернутом положении ) его контакты будут оставаться постоянно замкнутыми, что не позволит отключать пусковую обмотку. В результате возникает опасность быстрого сгорания электродвигателя.

Изучим теперь работу пускового реле тока в схеме, приведенной на  в отсутствие напряжения.
Как только на схему будет подано напряжение, ток пойдет через тепловое реле защиты, основную обмотку и катушку реле. Поскольку контакты A/S и L разомкнуты, пусковая обмотка обесточена и двигатель не запускается — это вызывает резкое возрастание потребляемого тока.
Повышение пускового тока (примерно пятикратное, по отношению к номиналу) обеспечивает такое падение напряжения на катушке реле (между точками L и Р/М), которое становится достаточным, чтобы сердечник втянулся в катушку, контакты A/S и L замкнулись и пусковая обмотка оказалась под напряжением.

Благодаря импульсу, полученному от пусковой обмотки, двигатель запускается и по мере того, как число его оборотов растет, потребляемый ток падает. Одновременно с этим падает напряжение на катушке реле (между L и Р/М). Когда мотор наберет примерно 80% от номинального числа оборотов, напряжение между точками L и Р/М станет недостаточным для удержания сердечника внутри катушки, контакт между A/S и L разомкнётся и полностью отключит пусковую обмотку.
Однако, при такой схеме пусковой момент на валу двигателя очень незначительный, поскольку в ней отсутствует пусковой конденсатор, обеспечивающий достаточную величину сдвига по фазе между током в основной и пусковой обмотках (напомним, что главным назначением конденсатора является увеличение пускового момента). Поэтому данная схема используется только в небольших двигателях с незначительным моментом сопротивления на валу.
Если речь идет о небольших холодильных компрессорах, в которых в качестве расширительного устройства обязательно используются капиллярные трубки, обеспечивающие выравнивание давления в конденсаторе и давления в испарителе при остановках, то в этом случае запуск двигателя происходит при минимально возможном моменте сопротивления на валу {см. раздел 51. «Капиллярные расширительные устройства»).
При необходимости повышения пускового момента последовательно с пусковой обмоткой необходимо устанавливать пусковой конденсатор (Cd). Поэтому часто реле тока выпускаются с четырьмя гнездами, как например, в модели, представленной.
Реле такого типа поставляются с шунтирующей перемычкой между гнездами 1 и 2. При необходимости установки пускового конденсатора шунт удаляется.
Отметим, что при прозвонке такого реле омметром между гнездами М и 2 сопротивление будет близким к нулю и равным сопротивлению обмотки реле. Между гнездами 1 и S сопротивление равно бесконечности (при нормальном положении реле) и нулю (при реле, перевернутом крышкой вниз).

ВНИМАНИЕ! При замене неисправного реле тока новое реле всегда должно быть с тем же индексом, что и неисправное.

Действительно, существуют десятки различных модификаций реле тока, каждая из которых имеет свои характеристики (сила тока замыкания и размыкания, максимально допустимая сила тока. ..). Если вновь устанавливаемое реле имеет отличные от заменяемого реле характеристики, то либо его контакты никогда не будут замыкаться, либо будут оставаться постоянно замкнутыми.

Если контакты никогда не замыкаются, например, из-за того, что пусковое реле тока слишком мощное (рассчитано на замыкание при пусковом токе 12 А, в то время как на самом деле пусковой ток не превышает 8 А), вспомогательная обмотка не может быть запитана и мотор не запускается. Он гудит и отключается тепловым реле защиты.
Заметим, что эти же признаки сопровождают такую неисправность, как поломка контактов реле
В крайнем случае, проверить эту гипотезу можно замкнув накоротко на несколько секунд контакты 1 и S, например. Если мотор запускается, это будет доказательством неисправности реле.
Если контакт остается постоянно замкнутым, например, из-за низкой мощности пускового реле тока (оно должно размыкаться при падении тока до 4 А, а двигатель на номинальном режиме потребляет 6 А), пусковая обмотка окажется все время под напряжением. Заметим, что то же самое произойдет, если вследствие чрезмерной силы тока, контакты реле «приварятся» или если реле установлено верхом вниз*, из-за чего контакты будут оставаться постоянно замкнутыми.
Компрессор будет тогда потреблять огромный ток и, в лучшем случае, отключится тепловым реле защиты (в худшем случае он -сгорит). Если при этом в схеме присутствует пусковой конденсатор, он также будет все время под напряжением и при каждой попытке запуска будет сильно перегреваться, что в конечном счете приведет к его разрушению.

Нормальную работу пускового реле тока можно легко проверить с помощью трансформаторных клещей, установленных в линии конденсатора и пусковой обмотки. Если реле работает нормально, то в момент запуска ток будет максимальным, а когда контакт разомкнётся, амперметр покажет отсутствие тока.
Наконец, чтобы завершить рассмотрение пускового реле тока, нужно остановиться на одной неисправности, которая может возникать при чрезмерном росте давления конденсации. Действительно, любое повышение давления конденсации, чем бы оно ни обусловливалось (например, загрязнен конденсатор), неизбежно приводит к росту потребляемого двигателем тока (см. раздел 10. «Влияние величины давления конденсации на силу тока, потребляемого электромотором компрессора»). Этот рост иногда может оказаться достаточным, чтобы привести к срабатыванию реле и замыканию контактов, в то время как двигатель вращается. Последствия такого явления вы можете себе представить!
* Установка пускового реле в горизонтальной плоскости, как правило, дает такой же результат и также является неверной (прим. ред.).


Когда мощность двигателя растет (становясь выше, чем 600 Вт), возрастает и сила потребляемого тока, и использование пускового реле тока становится невозможным из-за того, что увеличивается потребный диаметр катушки реле. Пусковое реле напряжения тоже имеет катушку и контакты, но в отличие от реле тока, катушка реле напряжения имеет очень высокое сопротивление (наматывается тонким проводом с большим числом витков), а его контакты нормально замкнуты. Поэтому, вероятность перепутать эти два устройства очень незначительна.
 представлен внешний вид наиболее распространенного пускового реле напряжения, представляющего собой герметичную коробку черного цвета. Если прозвонить клеммы реле с помощью омметра, можно обнаружить, что между клеммами 1 и 2 сопротивление равно 0, а между 1-5 и 2-5 оно одинаково и составляет, например 8500 Ом (заметим, что клеммы 4 не включаются в схему и используются только для удобства соединения и разводки проводов на корпусе реле).

Контакты реле наверняка находятся между клеммами 1 и 2, поскольку сопротивление между ними равно нулю, однако к какой из этих клемм подключен один из выводов катушки определить нельзя, так как результат при измерениях будет одинаковым (см. схему на рис. 53.29).
Если у вас есть схема реле, проблем с определением общей точки не будет. В противном случае вам потребуется выполнить дополнительно маленький опыт, то есть подать питание вначале на клеммы 1 и 5, а затем 2 и 5 (измеренное между ними сопротивление составило 8500 Ом, следовательно, один из концов катушки подключен либо к клемме 1, либо к клемме 2).

Допустим, что при подаче напряжения на клеммы 1-5, реле будет работать в режиме «дребезга» (как зуммер) и вы отчетливо различите постоянное замыкание и размыкание его контакта (представьте последствия такого режима для двигателя). Это будет признаком того, что клемма 2 является общей и один из концов катушки подключен именно к ней. В случае
неуверенности вы можете проверить себя, подав питание на клеммы 5 и 2 (контакты 1 и 2
разомкнутся и будут оставаться разомкнутыми).
ВНИМАНИЕ! Если вы подадите напряжение на клеммы 1 и 2 (клеммы нормально замкнутых контактов), то получите короткое замыкание, что может быть очень опасным

Чтобы выполнить такую проверку, вы должны использовать напряжение 220 В, если реле предназначено для оснащения двигателя на 220 В (настоятельно рекомендуем использовать в цепи плавкий предохранитель, чтобы защитить схему от возможных ошибок при подключении). Однако может случиться так, что контакты реле не будут размыкаться ни при подаче питания на клеммы 1 и 5, ни при его подаче на клеммы 2 и 5, хотя катушка будет исправной (при прозвонке омметром сопротивление 1-5 и 2-5 одинаково высокое). Это может быть обусловлено самим принципом, заложенным в основу работы схемы с реле напряжения (сразу после данного абзаца мы его рассмотрим), который требует для срабатывания реле повышенного напряжения. Чтобы продолжить проверку, вы можете увеличить напряжение до 380 В (реле при этом ничего не угрожает, так как оно способно выдержать напряжение до 400 В).

Как только на схему подается питание, ток проходит через тепловое реле защиты и основную обмотку (С—>Р). Одновременно он проходит через пусковую обмотку (С—»А). нормально замкнутые контакты 2-1 и пусковой конденсатор (Cd). Все условия для запуска соблюдены и двигатель начинает вращение.
По мере того, как двигатель набирает обороты, в пусковой обмотке наводится дополнительное напряжение, которое добавляется к напряжению питания.

В конце запуска наведенное напряжение становится максимальным и напряжение на концах пусковой обмотки может достигать 400 В (при напряжении питания 220 В). Катушка реле напряжения сконструирована таким образом, чтобы разомкнуть контакты точно в тот момент, когда напряжение на ней превысит напряжение питания на величину, определенную разработчиком двигателя. Когда контакты I -2 разомкнутся, катушка реле остается запитанной напряжением, наведенным в пусковой обмотке (эта обмотка, намотанная на основную обмотку, представляет собой как бы вторичную обмотку трансформатора).
Во время запуска очень важно, чтобы напряжение на клеммах реле в точности соответствовало напряжению на концах пусковой обмотки. Поэтому пусковой конденсатор всегда должен включаться в схему между точками I и Р, а не между А и 2 Отметим, что при размыкании контактов 1-2 пусковой конденсатор полностью исключается из схемы.
Существует множество различных моделей реле напряжения, отличающихся своими характеристиками (напряжением замыкания и размыкания контактов…).

Поэтому, при необходимости замены неисправного реле напряжения, для этого нужно использовать реле той же самой модели.
Если реле для замены не вполне соответствует двигателю -это значит, что либо его контакты при запуске не будут замкнуты, либо будут замкнуты постоянно.
Когда при запуске контакты реле оказываются разомкнутыми, например из-за того, что реле слишком маломощное (оно срабатывает при 130 В, то есть сразу после подачи напряжения и пусковая обмотка запитана только как вторичная обмотка), двигатель не сможет запуститься, будет гудеть и отключится тепловым реле защиты (см. рис. 53.33).

Отметим, что такие же признаки будут иметь место в случае поломки контакта. В крайнем случае, всегда можно проверить эту гипотезу, замкнув на мгновение накоротко контакты 1 и 2. Если двигатель запустится, значит контакт отсутствует.

Запуск при помощи термистора (СТР)

Термистор, или терморезистор (СТР* — сокращение, в переводе означает положительный температурный коэффициент, то есть повышение сопротивления при росте температуры) включается в цепь так, как показано на рис. 53.37.
При неподвижном роторе мотора СТР холодный (имеет окружающую температуру) и его сопротивление очень низкое (несколько Ом). Как только на двигатель подается напряжение, запитывается основная обмотка. Одновременно ток проходит через низкое сопротивление СТР и пусковую обмотку, в результате чего двигатель запускается. Однако ток, текущий через пусковую обмотку, проходя через СТР, нагревает его, что обусловливает резкое повышение его температуры, а следовательно и сопротивления. По истечении одной-двух секунд температура СТР становится более 100°С, а его сопротивление легко превышает 1000 Ом.
Резкое повышение сопротивления СТР снижает ток в пусковой обмотке до нескольких миллиампер, что эквивалентно отключению этой обмотки так, как это сделало бы обычное пусковое реле. Слабый ток, не оказывая никакого влияния на состояние пусковой обмотки, продолжает проходить через СТР, оставаясь вполне достаточным, чтобы поддерживать его температуру на нужном уровне.
Такой способ запуска используется некоторыми разработчиками, если момент сопротивления при запуске очень малый, например, в установках с капиллярными расширительными устройствами (где при остановке неизбежно выравнивание давлений).
Однако, когда компрессор остановился, длительность остановки должна быть достаточно большой, чтобы не только обеспечить выравнивание давлений, но и, главным образом, охладить СТР (по расчетам для этого нужно как минимум 5 минут).
Всякая попытка запуска двигателя при горячем СТР (имеющим, следовательно, очень высокое сопротивление) не позволит пусковой обмотке запустить двигатель. За такую попытку можно поплатиться значительным возрастанием тока и срабатыванием теплового реле защиты.
Терморезисторы представляют собой керамические диски или стержни и основным видом неисправностей этого типа пусковых устройств является их растрескивание и разрушение внутренних контактов, наиболее часто обусловленное попытками запуска при горячих СТР, что
неизбежно влечет за собой чрезмерное повышение пускового тока.
. Мы часто указывали на важность соблюдения идентичности моделей при замене неисправных элементов электрооборудования (тепловые реле защиты, пусковые реле…) на новые, либо на те, которые рекомендуются для замены разработчиком. Мы советуем также при замене компрессора менять и комплект пусковых устройств (реле + конденсатор(ы)).
* Иногда встречается термин РТС, который означает то же самое, что и СТР {прим. peo.j.

Г) Обобщение наиболее часто встречающихся схем пусковых устройств

В документации различных разработчиков встречается множество схем с несколькими экзотическими названиями, которые мы сейчас разъясним. Воспользовавшись этим случаем, мы пополним наши знания и увидим роль рабочих конденсаторов.
Для лучшего понимания дальнейшего материала напомним, что в отличие от пусковых конденсаторов, рабочие конденсаторы рассчитаны на постоянное нахождение под напряжением и что конденсатор включается в схему последовательно с пусковой обмоткой, позволяя повысить крутящий момент на вачу двигателя.
1) Схема PSC (Permanent Split Capacitor) — схема с постоянно подключенным конденсатором является самой простой, поскольку в ней отсутствует пусковое реле.
Конденсатор, постоянно находясь под напряжением (см. рис. 53.40\ должен быть рабочим конденсатором. Поскольку с ростом емкости такой тип конденсаторов быстро увеличивается в размерах, их емкость ограничивается небольшими значениями (редко более 30 мкФ).
Следовательно, схема PSC используется, как правило, в небольших двигателях с незначительным моментом сопротивления на валу (малые холодильные компрессоры для капиллярных расширительных устройств, обеспечивающих выравнивание давлений при остановках, вентиляторные двигатели небольших кондиционеров).
  При подаче напряжения на схему, постоянно подключенный кон-
денсатор (Ср) дает толчок, позволяя запустить двигатель. Когда двигатель запущен, пусковая обмотка остается под напряжением вместе с последовательно включенным конденсатором, что ограничивает силу тока и позволяет повысить крутящий момент при работе двигателя.
2) Схема СТР. изученная ранее, называется также РТС (Positive Temperature Coefficient) и используется в качестве относительно простого пускового устройства.
Она может быть усовершенствована добавлением постоянно подключенного конденсатор.
При подаче напряжения на схему (после остановки длительностью не менее 5 минут), сопротивление термистора СТР очень низкое и конденсатор Ср, будучи замкнутым накоротко, не влияет на процесс запуска (следовательно, момент сопротивления на валу должен быть незначительным, что требует выравнивания давлений при остановке).
В конце запуска сопротивление СТР резко возрастает, но вспомогательная обмотка остается подключенной к сети через конденсатор Ср, который позволяет повысить крутящий момент при работе двигателя (например, при росте давления конденсации).
Поскольку конденсатор все время находится под напряжением,
пусковые конденсаторы в схемах этого типа использовать нельзя.

 53.2. УПРАЖНЕНИЕ 2

Однофазный двигатель с напряжением питания 220 В, оснащенный рабочим конденсатором с емкостью 3 мкФ, вращает вентилятор кондиционера. Переключатель имеет 4 клеммы: «Вход» (В), «Малая скорость» (МС), «Средняя скорость» (СС), «Большая скорость» (БС), позволяющие скоммутировать двигатель с сетью таким образом, чтобы выбрать требуемое значение (МС, СС или БС) числа оборотов.

Решение


Набросаем, согласно нашему предположению внутреннюю схему двигателя, сверяясь с данными измерения сопротивлений (например, между Г и Ж должно быть 290 Ом, а между Г и 3 — 200 Ом).
Остается только включить в схему переключатель, помня о том, что максимальная скорость вращения (БС) достигается, если двигатель напрямую подключен к сети . И напротив, минимальное число оборотов будет обеспечено при самом слабом напряжении питания, следовательно, при задействовании максимального значения гасящего сопротивления.

Такие двигатели, редко встречающиеся в настоящее время, могут однако использоваться в качестве привода сальниковых компрессоров. Чтобы изменить направление вращения двигателя, достаточно крест-накрест поменять точку соединения пусковой и основной обмоток.
В качестве примера на рис.  показано, как конец пусковой обмотки стал началом, а начало — концом.
Заметим, что в этом случае направление прохождения тока по пусковой обмотке изменилось на противоположное, что позволяет дать в момент запуска импульс магнитного поля в обратном направлении.
Наконец, отметим также двухпроводные двигатели с «витком Фраже» или с «фазосдвигаю-щим кольцом», широко используемые для привода небольших вентиляторов с низким моментом сопротивления (как правило, лопастных). Эти двигатели очень надежные, хотя и имеют малый крутящий момент, и при их включении в сеть отсутствуют какие-либо особые проблемы, поскольку они имеют всего два провода (конечно, плюс заземление).

В) Пусковые реле
Вне зависимости от конструкции, задачей пускового реле является отключение пусковой обмотки, как только двигатель наберет примерно 80% номинального числа оборотов. После этого, двигатель считается запущенным и продолжает вращение только с помощью рабочей обмотки.
Существует два основных типа пусковых реле: реле тока и реле напряжения. Мы упомянем также запуск с помощью термистора СТР.
Вначале изучим пусковое реле тока
Этот тип реле, как правило, применяется в небольших однофазных двигателях, используемых для привода компрессоров, мощность которых не превышает 600 Вт (домашние холодильники, небольшие морозильные камеры…).

Конденсатор для коллекторного двигателя переменного тока

Имеется коллекторный двигатель с обмотками возбуждения подключенными последовательно. Питание от переменного тока 220 В. Вопрос: какова схема подключения искрогасящих конденсаторов? Спасибо за ответ.

Комментарии и отзывы

Для борьбы с искрообразованием по коллектору двигателя и предотвращения более серьезных повреждений в скользящем контакте, от того же кругового огня по коллектору и прочих неприятностей конденсаторы следует подключать параллельно нагрузке, как показано на рисунке.

В зависимости от конкретного двигателя выбираются конденсаторы соответствующей емкости. Если емкости одного конденсатора недостаточно, то для повышения суммарной емкости к нему необходимо добавить в параллель необходимое количество, тогда их емкости будут суммироваться.

Стоит отметить, что для мощных двигателей и при большой емкости конденсаторов на щетках коллектора будет происходить бросок тока. Что несет достаточно плачевные последствия для контактов. Поэтому в цепь с конденсатором рекомендуется включать резистор для ограничения величины тока, особенно в момент пуска двигателя.

Мы вновь возвращаемся в мир занимательного — как электротехника, так как считаю, что эти знания нам просто всем необходимы в нашей повседневной жизни.

Подключение однофазного коллекторного двигателя — переменного тока

В этой теме необходимо понять, — как именно подключается однофазный коллекторный двигатель переменного тока, допустим, после его ремонта. Электрическая схема рис. 1 дает нам представление о характере электрических соединений, то-есть, здесь мы можем заметить, что две обмотки статора электродвигателя в электрической цепи состоят в последовательном соединении, а две обмотки ротора электродвигателя относительно внешнего источника напряжения — соединены параллельно и электрическая цепь для данного примера замыкается на обмотках ротора электродвигателя.

Кто разбирал из нас бытовые потребители электроэнергии как:

и далее, со мной согласятся, что для электрической схемы рис.1 недостает еще одного элемента — конденсатора. Следовательно, к данному названию типа двигателя можно еще добавить такое название как конденсаторный электродвигатель . Если следовать логическому мышлению, то конденсатор в схеме электродвигателя в обязательном порядке соединяется с пусковой обмоткой статора, который служит для первоначального сдвига ротора. Соответственно мы пришли к выводу, что конденсатор непосредственно должен состоять в последовательном соединении с пусковой обмоткой. Для примера, приведена схема однофазного двигателя с рабочей и пусковой обмотками статора, где сопротивление на каждой обмотке будет принимать свое значение рис.2.

В зависимости от типов асинхронных двигателей и их применения рис.3, существуют следующие схемы подключения к однофазной сети:

а) омический сдвиг фаз, биффилярный способ намотки пусковой обмотки;

б) емкостной сдвиг фаз с пусковым конденсатором;

в) емкостной сдвиг фаз с пусковым и рабочим конденсатором;

г) емкостной сдвиг фаз с рабочим конденсатором.

В схемах указаны следующие обозначения:

Перед подключением коллекторного однофазного двигателя, необходимо определить:

обмотки статора. Конденсатор, с его номинальными значениями по емкости и напряжению, и соответствующими данными для определенного типа двигателя, следует подключать к пусковой обмотке статора — последовательно. Сопротивление обмоток статора принимает следующие средние значения:

  • рабочая обмотка 10-13 Ом;
  • пусковая обмотка 30-35 Ом;
  • общее сопротивление обмоток 40-45 Ом,

— для некоторых видов бытовой техники. Выполняя замеры сопротивлений на выводах проводов обмоток статора можно определить пусковую обмотку с ее средним значением. То-есть, сопротивление пусковой обмотки принимает среднее значение между рабочей обмоткой и общим сопротивлением двух обмоток — рабочей и пусковой.

Управление коллекторным двигателем — без реостата

Для управления коллекторным двигателем — без реостата, вполне подойдет пакетный переключатель, с помощью которого осуществляется переключение контактной группы — в переключателе рис.4.

В этом примере, в зависимости от переключения позиции, будет изменяться направление вращения ротора электродвигателя, работа осуществляется с постоянной скоростью и оборотами двигателя, изменяется только полярность обмоток статора.

переключатель кулачковый пакетный

Для управления скоростью вращения ротора электродвигателя, можно воспользоваться симисторным регулятором скорости вращения. Данное электроустановочное изделие как и все остальные, подбирается с учетом номинальных значений по силе тока и напряжению, — учитывается подключаемая нагрузка мощность потребителя электрической энергии.

Мощность потребителя, как наглядно видно из формулы рис.5, это произведение силы тока и напряжения. Для чего вообще необходимо проводить преварительные вычисления? Нагрузка, как известно нам, подключается через автомат защитного отключения. Чтобы установить и подключить автомат защитного отключения, принимается во внимание расчет по силе тока нагрузки рис.6.

симисторный регулятор скорости вращения электродвигателя

В кратце, чтобы представить — что из себя представляет симисторный регулятор, опять-же нужно вспомнить основы электроники . Симистор, состоящий в схеме управления, выполняет функцию регулирующего элемента — для питания электродвигателя рис.7.

На рисунке показаны выводы симистра:

При поступлении импульса на вход G — симистор открывается рис.8, то-есть, выполняет роль электронного ключа — для питания электродвигателя.

На фотоснимке показано изображение электронного модуля управления. Электронный модуль управления встречается в стиральных машинах-автомат, работающих в заданом, автоматическом режиме.

электронный модуль управления стиральной машины индезит

Подключение коллекторного двигателя — через реостат

В этом схематическом изображении рис.9 показано подключение нагрузки к выводным клеммам генератора через реостат. Нагрузкой здесь является электрическая лампа накаливания. Реостат в электрической схеме состоит в последовательном соединении, нагрузка лампочка соединена в схеме параллельно. Таким-же образом, вместо данной нагрузки можно подключить коллекторный двигатель , работающий от источников электрической энергии, таких как:

либо от внешнего источника энергии, то-есть, от электрической сети. При подключении коллекторного двигателя нужно принимать во внимание электрическую схему обмоток статора, тип двигателя, как допустим для следующей схемы рис.10.

Электрическая схема представляет из себя схему универсального коллекторного двигателя , где двигатель может работать как от переменного так и от постоянного тока.

В свое время мною было изготовлено определенное количество электрических наждаков, электрические двигатели монтировались на платформу с последующим подключением, на вал ротора закреплялась насадка для установки наждачного круга, поэтому, в своей практике приходилось подключать различные типы электродвигателей.

Приведенный пример по электрическим наждакам, — тема довольно-таки тоже занимательная и полезная для наших бытовых нужд.

Остается пожелать Вам успешного проведения ремонта для различных видов бытовой техники.

Статью писал технически не граматный дебил, схема бесколекторного двигателя а описание колекторного и наоборот.

Здравствуйте электрик. Какие схемы Вы подразумеваете с названиями: «безколлекторный и коллекторный двигатели»? По схемам дается пояснение подключения обмоток коллекторного двигателя. Представляться нужно не электриком, а указывать свое имя. У меня, к примеру, имеется имя, отчество и фамилия — Виктор Георгиевич Повага. Проживаю в Сибири, работаю по договору с Яндекс.Директ.
В следующий раз, если от Вас поступит подобное письмецо, я обращусь в интернет-компании для Вашего розыска и затем, — перед судом будете доказывать «кто я такой».
Всего Вам доброго «электрик».

Виктор Георгиевич ! Большое спасибо за полезную статью.

Здравствуйте. Я электрике ничего не понимаю, но мне нужно подключить электромотор постоянного тока ИП-22, в обычную сеть

Здравствуйте. В своей практике я не встречал такой тип электродвигателя ИП-22. Не пойму Вас о чем здесь идет речь — о пожарном извещателе ИП-22 или о электродвигателе? Укажите техническую характеристику на ваш электродвигатель и страну-производитель, чтобы я смог сориентироваться по вашему вопросу.

Добрый день, Виктор! Подскажите будет ли регулировать скорость вращения коллекторного двигателя УЛ-062-УХЛ4 симисторный преобразователь без снижения момента на валу? С этим вопросом справляются частотные преобразователи, но применение их для управления данной моделью двигателя не допустимы.

Приветствую Валентин. Скоростью вращения универсального коллекторного двигателя можно управлять симисторным регулятором мощности. Симисторный преобразователь можно понимать как симисторный стабилизатор напряжения.

Боюсь обидеть автора, но по моему, действительно с названиями типов двигателя путаница. Коллекторный и однофазный асинхронный — два разных типа двигателей. Конденсатор в коллекторном двигателе если и присутствует, то как не обязательный, в принципе, элемент. Чаще всего, иногда в сочетании с дросселями, для защиты сети от создаваемых двигателем помех (фильтр). Сам двигатель без конденсатора будет работать, можно лишь поспорить об эффекте искрогашения. Поэтому называть коллекторный двигатель конденсаторным — вводить в заблуждение. В асинхронном однофазном двигателе конденсатор служит для сдвига ФАЗЫ в пусковой обмотке. Без него — сдвига фазы, ротор действительно не начнет вращаться. После раскрутки до оборотов, близких к номинальным, двигатель будет работать и без пусковой обмотки, но с существенно меньшим вращающим моментом. Сдвига фазы можно достичь и другими путями — с помощью индуктивности или активной нагрузки. Вот тогда он и не будет асинхронным двигателем с КОНДЕНСАТОРНЫМ пуском (в этом конкретно случае).

Боюсь обидеть автора, но с названиями электродвигателей в самом деле путаница. В коллекторном электродвигателе конденсатор не является необходимым элементом. В цепи питания коллекторного электродвигателя может стоять конденсатор, часто в сочетании с индуктивностями, но это для защиты сети от помех, создаваемых коллектором двигателя (фильтр). Для работы двигателя он не обязателен. Можно поспорить только по поводу необходимости его для искрогашения. Поэтому называть коллекторный электродвигатель конденсаторным – не правильно. В асинхронном «однофазном» двигателе конденсатор в цепи пусковой обмотки служит для сдвига фазы в ней. И тоже это только вариант, правда, наиболее распространенный. Сдвига фазы можно достичь включением в цепь пусковой обмотки индуктивности или активного сопротивления. Так что уместнее говорить о конденсаторном пуске асинхронного электродвигателя в однофазной сети. Двигатель при этом правильнее назвать двухфазным. Одна фаза из сети, вторая искусственно сдвинутая. После пуска при достижении двигателем оборотов, близких к номинальным, пусковую обмотку можно отключить, двигатель будет работать, однако вращающий момент его будет существенно меньше.

Здравствуйте. Здесь я в общем-то поторопился высказать свое мнение, назвав коллекторный двигатель конденсаторным. Приятно было пообщаться с вами. С прошедшими праздниками вас.

Подскажите как подключить двигатель ул-062 к сети 220

Здравствуйте. Я не нашел схему на данный электродвигатель. Если верить той информации, которую мне удалось найти в интернете, то подключение двигателя (УЛ-062) выглядит следующим образом: к выводам контактов (на клеммной колодке) О1Я2 и С1Ш2 подключается переменное напряжение 220 Вольт, на другие два вывода контактов устанавливается перемычка (отрезок провода). Перед подключением, рекомендую проверить работу электродвигателя малым напряжением.

На клемной колодке 6 выводов, бывает и 8. Что куда подсоединять

Имеется коллекторный двигатель с обмотками возбуждения подключенными последовательно. Питание от переменного тока 220 В. Вопрос: какова схема подключения искрогасящих конденсаторов? Спасибо за ответ.

Комментарии и отзывы

Для борьбы с искрообразованием по коллектору двигателя и предотвращения более серьезных повреждений в скользящем контакте, от того же кругового огня по коллектору и прочих неприятностей конденсаторы следует подключать параллельно нагрузке, как показано на рисунке.

В зависимости от конкретного двигателя выбираются конденсаторы соответствующей емкости. Если емкости одного конденсатора недостаточно, то для повышения суммарной емкости к нему необходимо добавить в параллель необходимое количество, тогда их емкости будут суммироваться.

Стоит отметить, что для мощных двигателей и при большой емкости конденсаторов на щетках коллектора будет происходить бросок тока. Что несет достаточно плачевные последствия для контактов. Поэтому в цепь с конденсатором рекомендуется включать резистор для ограничения величины тока, особенно в момент пуска двигателя.

Ремонт вентилятора своими руками

Вентилятором называется устройство, создающее поток воздуха для охлаждения или его циркуляцию для устранения неприятных запахов или удаления вредных веществ. Вентиляторы в быту применяются в качестве:

  • настольных или напольных приборов для создания комфортных условий в жаркое время;
  • вытяжных устройств на кухнях, ванных и санузлах;
  • в компьютерной технике для охлаждения силовых узлов: блока питания, процессора, жестких дисков, а также для вентиляции корпуса;
  • в сварочных инверторах для охлаждения силовых электронных компонентов.

Вентиляторы выходят из строя, но не во всех случаях нужно торопиться с походом в специализированную мастерскую. Стоимость ремонта некоторых изделий иногда соизмерима с затратами на покупку новых. Поэтому целесообразнее попробовать их отремонтировать своими руками.

Ремонт вентилятора своими руками

Признаками неисправности механической части вентилятора являются:

  • посторонние шумы при работе;
  • снижение скорости вращения, при этом вращение вала выключенного прибора рукой происходит с усилием;
  • полная остановка, при которой вращение вала вентилятора рукой невозможно или требует значительных усилий.

К электрическим неисправностям относятся:

  • срабатывание защитных устройств (автоматических выключателей) при включении вентилятора;
  • запахи горелой или перегретой изоляции при работе;
  • снижение скорости вращения при свободном вращении вала выключенного прибора;
  • перебои в работе при изменении режимов.

Несвоевременно устраненные механические неисправности прогрессируют в развитии и приводят к возникновению электротехнических проблем. Длительная работа вентилятора с заклиниванием на валу приводит к перегреву и выходу из строя обмоток электродвигателя. Разболтанный подшипник позволяет валу двигателя совершать перемещения в радиальном направлении, которые приводят к повреждению обмоток статора.

Поэтому при обнаружении признаков неисправности нужно незамедлительно заняться ее устранением.

Устройство настольного вентилятора

Устранение механических неисправностей

Бытовые вентиляторы не имеют в своем составе подшипников качения или им подобных, которые заменяются в случае выхода из строя. В них устанавливают подшипники скольжения, вал вращается во втулках из бронзы. Они навсегда запрессованы в корпус. Но, даже если их оттуда вынуть, то заменить будет нечем. Во поэтому нужно своевременно смазывать такие подшипники. Стоит им некоторое время поработать «на сухую», и зазор между валом и подшипником увеличится. Это приведет к осевому биению вала, в результате – посторонний шум, снижение оборотов и увеличение скорости износа подшипника. Особенно это фатально для компьютерных кулеров.

Для смазки используется машинное масло, но лучше применять веретенное. Если в доме есть швейная машинка, то масло для ее смазки – лучший вариант для подшипников вентиляторов. Для смазки вентилятор нужно разобрать, чтобы добраться до подшипников. У кулеров и некоторых вытяжных вентиляторов достаточно отклеить защитную пленку с одной из сторон.

Смазка подшипников вентилятора

Обратите внимание на наличие загрязнений подшипника. В некоторых случаях придется разобрать узел, почистить его, а затем – собрать и смазать. Не нужно наносить много смазки: подшипнику для нормальной работы достаточно одной-двух капель. Остальное будет разбрызгано по всему корпусу при первом же пуске. Капли масла внутри корпуса неплохо собирают пыль.

Если после смазки все равно наблюдается шум при работе, биение вала, то изделие придется выбросить. Заменить подшипник скольжения не получится.

Устранение неисправностей электрической части вентилятора

При полной остановке вентилятора нужно проверить исправность сетевого шнура и переключателей режима работы. Для этого потребуется мультиметр. Лучший метод проверки шнура питания – измерить напряжение на входном клеммнике вентилятора или в местах подключения шнура к его внутренним элементам. Соблюдайте осторожность при проверке: не касайтесь руками участков, находящихся под напряжением. После проверки сразу же удалите вилку из розетки.

Исправность переключателей проверяют, измеряя их сопротивление в положении «включено». Они могут выйти из строя при частой коммутации. Лучше всего сразу измерить напряжение на электродвигателе, но для этого нужно знать электрическую схему вентилятора. А также – принцип его работы и управления скоростью вращения.

Регулировка оборотов осуществляется переключением выводов от двигателя. В этом случае одна из его обмоток имеет ряд отводов (отпаек), переключением которых изменяется количество витков на статоре. При такой схеме нужно измерять до и после переключателя, чтобы выяснить, исправен ли он. Если напряжение ест, а двигатель не вращается, нужно измерить сопротивление его обмоток. Если прибор показывает обрыв, значит, в неисправности виновен двигатель.

Схема регулировки скорости вентилятора переключением выводов обмотки

Еще один элемент, неисправность которого приводит к остановке вентилятора – это фазосдвигающий конденсатор. В схемах, где он применяется, электродвигатель имеет две обмотки. Одна из них подключена к сети питания напрямую, а другая – через конденсатор, выполняющий сдвиг напряжения на ней по фазе на 90 градусов.

Схема подключения фазосдвигающего конденсатора

При неисправности конденсатора обмотка либо не получает питания, либо сдвига по фазе не происходит. В обоих случаях электродвигатель вращаться не будет. Проверить исправность конденсатора можно мультиметром в режиме измерения сопротивления. При этом нужно выбрать самый большой предел измерений. Конденсатор перед подключением прибора нужно разрядить, замкнув его выводы между собой.

Если в момент касания щупами мультиметра кратковременно появляются показания, а затем он показывает «обрыв», то конденсатор исправен. Если его показания равны нулю или бесконечности и не меняются, то конденсатор вышел из строя и требует замены.

Рабочее напряжение нового конденсатора не должно быть меньше, чем у заменяемого, а емкость – соответствовать исходной. Ее величину рассчитывают применительно к параметрам обмотки электродвигателя, если ее изменить, то угол сдвига фаз будет больше или меньше 90˚, и вентилятор не запустится, либо будет вращаться медленнее.

Внимание, не перепутайте выводы обмоток. Перед отключением отмаркируйте провода и зарисуйте, как они были подключены. Дополнительно сфотографируйте узел перед разборкой.

При обнаружении обрывов обмоток электродвигателя ремонт заканчивается. Можно попробовать отыскать место обрыва или убедиться в том, что обмотка сгорела (на это указывает потемнение цвета изоляции ее проводов). Но перемотка современных бытовых устройств экономически нецелесообразна, а чтобы провести ее в домашних условиях нужно обладать профессиональными навыками обмотчика. Поэтому устройства со сгоревшими электродвигателями можно выкинуть без угрызений совести.

Это же касается неисправностей электронных устройств регулировки оборотов вентиляторов.

Оцените качество статьи:

Устройство для разряда конденсаторов УРК-0,4-70-01-УНТЕХ

Что такое конденсатор

Конденсатор или как в народе говорят – “кондер”, образуются от латинского “condensatus”, что означает как “уплотненный, сгущенный”. Он представляет из себя пассивный радиоэлемент, который обладает таким свойством, как сохранение электрического заряда на своих обкладках, если, конечно, перед этим его зарядить каким-нибудь источником питания.
Грубо говоря, конденсатор можно рассматривать как батарейку или аккумулятор электрической энергии. Но вся разница в том, что аккумулятор или батарейка имеют в своем составе источник ЭДС, тогда как конденсатор лишен этого внутреннего источника.

Советы и предупреждения

  1. После того как процесс разряда завершен можно обернуть его выводы фольгой, чтобы эта радиодеталь оставалась разряженной.
  2. Все конденсаторы со временем могут разрядиться сами через несколько дней, при условии, что они не подключены к внешним источникам питания. Но всегда лучше считать, что они находятся в заряженном состоянии и контрольная разрядка будет совсем не лишней.
  3. Необходимо постоянно помнить, что крупные радиодетали, коммутирующие электроэнергию, очень опасны. Для работы с такими радиодеталями требуются профессиональные навыки.
  4. При работе с электрическими устройствами всегда необходимо соблюдать меры предосторожности.

Из чего состоит конденсатор

Любой конденсатор состоит из двух или более металлических обкладок, которые не соприкасаются друг с другом. Для более полного понимания, как все это устроено в конденсаторе, давайте представим себе блин.

намажем его сгущенкой

и сверху положим точно такой же блин

Должно выполняться условие: эти два блина не должны прикасаться друг с другом. То есть верхний блин должен лежать на сгущенке и не прикасаться с нижним блином. Тут, думаю, все понятно. Перед вами типичный “блинный конденсатор” :-). Вот таким образом устроены все конденсаторы, только вместо блинов используются тонкие металлические пластины, а вместо сгущенки различный диэлектрик. В качестве диэлектрика может быть воздух, бумага, электролит, слюда, керамика, и так далее. К каждой металлической пластине подсоединены проводки – это выводы конденсатора.

Схематически все это выглядит примерно вот так.

Как вы могли заметить, из-за диэлектрика конденсатор не может проводить ток. Но это относиться только к постоянному току. Переменный ток конденсатор пропускает через себя без проблем с небольшим сопротивлением, номинал которого зависит от частоты тока и емкости самого конденсатора.

Предназначение автомобильного конденсатора

Сегодня автомобильные конденсаторы широко применяются в качестве фильтра, который подавляет шум в динамиках, высокие и низкие частоты, помехи и всякого рода пульсации, которые возникают в результате скачков напряжения в электрической сети автомобильного средства.

Также их применяют для создания высокого показателя напряженности в общей электрической системе транспортного средства. Именно благодаря этому свойству данный элемент широко используется в различных отраслях промышленности.

Видеолекция о предназначении конденсатора

Емкость конденсатора

Электрические заряды

Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные – притягиваются. Физика седьмой класс).

Давайте еще раз рассмотрим простую модель конденсатора.

Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания – на другой.

Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.

Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.

Почему так происходит?

Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это зависит от материала диэлектрика.

Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.

Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем “впихнуть” в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.

Что такое емкость

Емкость конденсатора – это его способность накапливать заряд на своих пластинах в виде электрического поля.

Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака – 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь? Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:

где

С – это емкость, Фарад

Q – количество заряда на одной из обкладок конденсатора, Кулоны

U – напряжение между пластинами, Вольты

Получается, 1 Фарад – это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.

Значение в 1 Фарад – это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка “микро” – это 10-6 , “нано” – это 10-9 , пико – это 10-12 .

Маркировка

Для маркировки отечественных изделий применялась буквенная система. Сегодня распространена цифровая маркировка. В буквенной системе применялись символы:

  • К – конденсатор;
  • Б, К, С, Э и т. д – тип диэлектрика, например: К – керамический, Э – электролитический;
  • На третьем месте стоял символ, обозначающий особенности исполнения.

В данной системе маркировки иногда первую букву опускали.

В новой системе маркировки на первом месте может стоять буква К, а после неё идёт буквенно-цифровой код. Для обозначения номинала, вида диэлектрика и номера разработки используют цифры. Пример такой маркировки показан на рисунке 8. Обратите внимание на то, что на корпусе электролитического конденсатора обозначена полярность включения.

Рис. 8. Маркировка конденсаторов

  • Ёмкость от 0 до 999 пФ указывают в пикофарадах, например: 250p:
  • от 1000 до 999999 пФ – в нанофарадах: n180;
  • от 1 до 999 мкФ – в микрофарадах: 2μ5;
  • от 1000 до 999999 мкФ – в миллифарадах: m150;
  • ёмкость, больше значения 999999 мкФ, указывают в фарадах.

Плоский конденсатор и его емкость

Плоским конденсатором называют конденсатор, который состоит из двух одинаковых пластин, которые параллельны друг другу. Пластины могут быть разной формы. На практике чаще всего можно встретить квадратные, прямоугольные и круглые пластины. Давайте рассмотрим простой плоский квадратный конденсатор.

плоский конденсатор

где

d – расстояние между пластинами конденсатора, м

S – площадь самой наименьшей пластины, м2

ε – диэлектрическая проницаемость диэлектрика между обкладками конденсатора

Готовая формула для плоского конденсатора будет выглядеть так:

где

С – емкость конденсатора, ф

ε – диэлектрическая проницаемость диэлектрика

ε0 – диэлектрическая постоянная, ф/м

S – площадь самой наименьшей пластины, м2

d – расстояние между пластинами, м

Да, знаю, у вас сразу возникает вопрос: “А что такое диэлектрическая постоянная?” Диэлектрическая постоянная – это постоянная величина, которая нужная для вычислений в некоторых формулах электромагнетизма. Ее значение равняется 8, 854 × 10-12 ф/м.

Диэлектрическая проницаемость – эта величина зависит от типа диэлектрика, который находится между обкладками конденсатора. Например, для воздуха и вакуума это значение равняется 1, для некоторых других веществ можете посмотреть в таблице.

Какой можно сделать вывод из этой формулы? Хотите сделать конденсатор с огромной емкостью, делайте площадь пластин как можно больше, расстояние между пластинами как можно меньше и заправляйте вместо диэлектрика дистиллированную воду.

В настоящее время конденсаторы делают из нескольких пластин в виде слоеного торта. Это примерно выглядит вот так.

многослойный конденсатор

В этом случае формула такого конденсатора примет вид:

формула многослойного конденсатора

где n – это количество пластин

Максимальное рабочее напряжение на конденсаторе

Все конденсаторы имеют какое-то предельное напряжение, которое можно на них подавать. Дело все в том, что может произойти пробой диэлектрика, и конденсатор выйдет из строя. Чаще всего это напряжение пишут на самом корпусе конденсатора. Например, на электролитическом конденсаторе.


максимальное рабочее напряжение конденсатора

В технической документации этот параметр чаще всего обозначается, как WV, что с английского Working Voltage (рабочее напряжение), или DC WV – Direct Current Working Voltage – постоянное рабочее напряжение конденсатора.

Здесь есть один нюанс, о котором часто забывают. Дело в том, что на конденсаторе написано именно на какое постоянное напряжение он рассчитан, а не переменное. Если такой конденсатор, как на рисунке выше, с максимальным рабочим напряжением в 50 Вольт вставите в цепь переменного тока с источником питания, который выдает 50 Вольт переменного тока, то ваш конденсатор взорвется. Так как 50 Вольт переменного тока – это действующее напряжение. Его максимальное значение будет 50 × √2 = 70,7 Вольт, что намного больше, чем 50 Вольт.

Как проверить высоковольтный конденсатор микроволновки

Высоковольтный конденсатор проверяют его подключением вместе с лампой 15 Вт Х 220 В. Дальше выключают объединенные конденсатор и лампочку из розетки. При рабочем состоянии детали лампа станет светиться в 2 раза меньше, чем обычно. При нарушениях в работе лампочка ярко светит или не светится вообще.


Проверка с лампочкой

Конденсатор микроволновки имеет емкость 1.07 мф, 2200 в, потому испытать его с поддержкою мультиметра достаточно просто:

1. Необходимо подключить мультиметр так, чтобы измерять сопротивление, а именно наибольшее сопротивление. На устройстве сделать до 2000k.

2. Потом необходимо включить незаряженное приспособление к клеммам мультиметра, не дотрагиваясь их. При рабочем состоянии показания станут 10 кОм, переходящие в бесконечность (на мониторе 1).

3. Потом необходимо изменить клеммы.

4. Когда при включении его к устройству на мониторе мультиметра ничто не поменяется, это означает, приспособление в обрыве, когда будет нуль, означает, что в нем пробой. При показании в устройстве постоянного сопротивления, пусть небольшого значения, значит, в приспособлении есть утечка. Его необходимо сменить.

Проверка мультиметром


Проверка мультиметром

Эти испытания сделаны на невысоком напряжении. Часто неисправные приспособления не показывают нарушения на невысоком напряжении. Потому для испытания нужно применять или мегаомметр с напряжением одинаковым напряжению конденсатора, или будет нужен наружный источник высокого напряжения.

Мультиметром его элементарно так испытать невозможно. Он продемонстрирует лишь, что обрыва нет и короткое замыкание. Для этого необходимо в режиме омметра присоединить его к детали – в исправном состоянии он продемонстрирует невысокое сопротивление, которое за некоторое количество секунд вырастет по бесконечности.

Неисправный конденсатор имеет утечку электролита. Сделать определение емкости особым устройством не трудно. Надо его подключить, поставить на большее значение, и соприкоснуться клеммами к выводам. Сверить с нормативными. Когда отличия маленькие (± 15 %), деталь исправна, но когда их нет или значительно ниже нормы, значит, она пришло в негодность.

Для испытания детали омметром:

1. Надо снять наружную крышку и клеммы.

2. Разрядить его.

3. Переключить мультиметр для испытания сопротивления 2000 килоОм.

4. Исследуйте клеммы на присутствие механических дефектов. Плохой контакт станет негативно воздействовать на качество измерения.

5. Соедините клеммы с концами устройства и смотрите за числовыми измерениями. Когда числа начинают изменяться так: 1…10…102.1, означает, что деталь в рабочем состоянии. Когда значения не изменяются или появляется нуль, значит приспособление в нерабочем состоянии.

6. Для другого испытания приспособление надо разрядить и снова подтвердить.

Ток утечки конденсатора

Дело все в том, что какой бы ни был диэлектрик, конденсатор все равно рано или поздно разрядится, так как через диэлектрик, как ни странно, все равно течет ток. Величина этого тока у разных конденсаторов тоже разная. Электролитические конденсаторы обладают самым большим током утечки.

Также ток утечки зависит от напряжения между обкладками конденсатора. Здесь уже работает закон Ома: I=U/Rдиэлектрика . Поэтому, никогда не стоит подавать напряжение больше, чем максимально рабочее напряжение, прописанное в даташите или на самом конденсаторе.

Конденсатор в электродвигателе транспортного средства

Конденсаторы для электродвигателей авто бывают рабочими и пусковыми. Рабочие конденсаторы позволяют обеспечить корректную работу электродвигателя, а пусковые конденсаторы применяют для улучшения пускового момента.

Задачи пусковых автомобильных конденсаторов для двигателя

  • экономная эксплуатация электротехники;
  • повышение крутящего момента;
  • способность переносить высокую нагрузку;
  • обеспечение оптимального срока эксплуатации электродвигателя.

В отличие от рабочих конденсаторов, пусковые включаются во время запуска двигателя. Рабочие конденсаторы обеспечивают корректное функционирование двигателя непосредственно во время его работы.

Неполярные конденсаторы

К неполярным конденсаторам относят конденсаторы, для которых неважна полярность. Такие конденсаторы обладают симметричностью. Обозначение неполярных конденсаторов на электросхемах выглядит вот так.

обозначение конденсатора на схеме

Конденсаторы переменной емкости

Эти виды конденсаторов имеют воздушный диэлектрик и могут менять свою емкость под действием внешней силы, например, такой как рука человека. Ниже на фото советские типы таких переменных конденсаторов.

переменные конденсаторы

Современные выглядят чуточку красивее

подстроечные конденсаторы

Переменный конденсатор от подстроечного отличается лишь тем, что переменный конденсатор крутят чаще, чем подстроечный. Подстроечный крутят раз в жизни)

На схемах обозначаются так.


переменный конденсатор обозначение на схеме

Слева -переменный, справа – подстроечный.

Пленочные конденсаторы

Пленочные конденсаторы являются самыми распространенными в большом семействе конденсаторов. Они названы так потому, что вместо диэлектрика здесь используется тонкая пленка, которая может состоять из полиэстера, полипропилена, поликарбоната, тефлона и много еще из чего. Такие конденсаторы идут от номинала 5 пФ и до 100 мкФ. Они могут быть сделаны по принципу бетерброда

А также по принципу рулета

Давайте рассмотрим К73-9 советский пленочный конденсатор.


к73-9 советский конденсатор

Что же у него внутри? Смотрим.

Как и ожидалось, рулончик из фольги с диэлектриком-пленкой


что внутри конденсатора

Керамические конденсаторы

Керамические конденсаторы – это конденсаторы, которые изготавливают из керамики или фарфора, которые покрывают серебром. Берут диск квадратной или круглой формы, напыляют с с двух сторон серебро, выводят выводы и вуаля! Конденсатор готов! То есть и есть самый простой плоский конденсатор, о котором мы говорили выше в этой статье.

Хотите получишь емкость больше? Не вопрос! Складываем диски в бутерброд и увеличиваем емкость

Выглядеть керамические конденсаторы могут вот так:

керамические конденсаторы


керамические каплевидные конденсаторы

SMD конденсаторы

SMD конденсаторы – это керамические конденсаторы, которые построены по принципу бутерброда.


строение SMD конденсатора

Они используются в микроэлектронике, так как обладают крошечными размерами и удобны в плане промышленного производства с помощью роботов, которые автоматически расставляют SMD компоненты на плату.Такой тип конденсаторов вы без труда можете найти на платах своих мобильных телефонов, на материнских платах компьютеров, а также в современных гаджетах.

Виды конденсаторов

Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.

Бумажные и металлобумажные конденсаторы

Элементы используются в цепях с постоянным или слабо пульсирующим напряжением. Простота конструкции оборачивается пониженной на 10-25% стабильностью характеристик и возросшей величиной потерь.

В бумажных конденсаторах обкладки из алюминиевой фольги разделяет бумага. Сборки скручивают и помещают в корпус в форме цилиндра или прямоугольного параллелепипеда.

Приборы работают при температурах -60…+125°C, с номинальным напряжением у низковольтных приборов до 1600 В, высоковольтных — выше 1600 В и ёмкостью до десятков мкФ.

В металлобумажных приборах вместо фольги на диэлектрическую бумагу наносят тонкий слой металла. Это помогает изготовить элементы меньших размеров. При незначительных пробоях возможно самовосстановление диэлектрика. Металлобумажные элементы уступают бумажным по сопротивлению изоляции.

Электролитические конденсаторы

Конструкция изделий напоминает бумажные. Но при изготовлении электролитических элементов бумагу пропитывают оксидами металлов.

В изделиях с электролитом без бумаги оксид наносится на металлический электрод. У оксидов металлов односторонняя проводимость, что делает прибор полярным.

В некоторых моделях электролитических элементов обкладки изготавливают с канавками, которые увеличивают площадь поверхности электрода. Зазоры в пространстве между пластинами устраняют с помощью заливания электролитом. Это улучшает емкостные свойства изделия.

Большая ёмкость электролитических приборов — сотни мкФ, используется в фильтрах, чтобы сглаживать пульсации напряжения.

Алюминиевые электролитические

В приборах этого типа анодная обкладка делается из алюминиевой фольги. Поверхность покрывают оксидом металла — диэлектриком. Катодная обкладка — твердый или жидкий электролит, который подбирается так, чтобы при работе восстанавливался слой оксида на фольге. Самовосстановление диэлектрика продлевает время работы элемента.

Конденсаторы такой конструкции требуют соблюдения полярности. При обратном включении разорвет корпус.

Приборы, внутри которых располагаются встречно-последовательные полярные сборки, используют в 2 направлениях. Ёмкость алюминиевых электролитических элементов достигает нескольких тысяч мкФ.

Танталовые электролитические

Анодный электрод таких приборов изготовляют из пористой структуры, получаемой при нагреве до +2000°C порошка тантала. Материал внешне напоминает губку. Пористость увеличивает площадь поверхности.

С помощью электрохимического окисления на анод наносят слой пентаоксида тантала толщиной до 100 нанометров. Твердый диэлектрик делают из диоксида марганца. Готовую конструкцию прессуют в компаунд — специальную смолу.

Танталовые изделия используют на частотах тока свыше 100 кГц. Ёмкость создается до сотен мкФ, при рабочем напряжении до 75 В.

Полимерные

В конденсаторах используются электролит из твердых полимеров, что дает ряд преимуществ:

  • увеличивается срок эксплуатации до 50 тыс. часов;
  • сохраняются параметры при нагреве;
  • расширяется диапазон допустимых пульсаций тока;
  • сопротивление обкладок и выводов не шунтирует ёмкость.

Полярные конденсаторы

Для полярных конденсаторов очень важно не путать выводы местами при монтаже. Плюсовая ножка должны подключаться к плюсу на схеме, а минусовая – к минусу. Обозначается полярные конденсаторы также, как и их собратья. Единственное отличие – это указание полярности такого конденсатора. Выглядеть на схемах они могут вот так.

обозначение полярных конденсаторов на схеме

Электролитические конденсаторы

Электролитические конденсаторы используется в электронике и электротехнике, где требуются большие значения емкости. Также повелось название “электролиты”.


электролитические конденсаторы

Строение электролитических конденсаторов очень похоже на пленочные конденсаторы, которые также собраны по принципу рулета, но с одной только разницей. Вместо диэлектрика здесь используется оксид алюминия.

строение электролитического конденсатора

Давайте разберем один из таких электролитических конденсаторов во благо науки.

Снимаем его корпус и видим тот самый рулетик

Разматываем “рулетик” и видим, что между двумя обкладками металлической фольги у нас находится бумага, пропитанная каким-то раствором.


что внутри электролитического конденсатора

Некоторые ошибочно полагают, что бумага – это и есть тот самый диэлектрик, хотя это в корне неверно. Как она может быть диэлектриком, если она смочена в растворе, который проводит электрический ток?

На самом же деле диэлектриком в данном случае является тончайший слой оксида алюминия, который производится электрохимическим способом еще на производстве. Все это выглядит приблизительно вот так:


схема строения электролитического конденсатора

Слой оксида алюминия настолько тонкий, что можно изготавливать конденсаторы бешеной емкости с малыми габаритами. Вы ведь не забыли формулу емкости для плоского конденсатора?

где d – это и есть тот самый слой оксида алюминия. Чем он тоньше, тем больше емкость.

На полярных конденсаторах часто можно увидеть вот такой значок-стрелку, которая указывает на минусовый вывод конденсатора.


обозначение минусового вывода электролитического конденсатора

То есть в электрических схемах с постоянным током вы должны обязательно соблюдать правило: плюс на плюс, а минус на минус. Если перепутаете, то конденсатор может бахнуть.

Танталовые конденсаторы

Танталовые конденсаторы доступны как в мокром так и в сухом исполнении. Хотя, в сухом исполнении они намного более распространены. Здесь в качестве диэлектрика используется оксид тантала. Оксид тантала обладает более лучшими свойствами, по сравнению с оксидом алюминия. Если самый большой минус электролитических конденсаторов – это их большой ток утечки, то танталовые конденсаторы лишены такого недостатка. Минус танталовых конденсаторов в том, что они рассчитаны на более низкое напряжение, чем их собраться – электролиты. Танталовые конденсаторы также полярные, как и электролитические конденсаторы.

Выглядеть танталовые конденсаторы могут вот так


танталовые конденсаторы

ну или так


танталовые конденсаторы капли

Ионисторы

Есть также особый класс конденсаторов – ионисторы. Иногда их еще называют суперконденсаторами или золотыми конденсаторами. Нет, не потому, что там есть золото. Сам принцип работы ионистора ценее, чем золото. Для того, чтобы получить максимальную емкость мы должны намазать “сгущенку”(диэлектрик) тонким-тонким слоем или увеличить площадь блинов (металлических пластин). Так как без конца увеличивать слой блинов очень затратно, разработчики решили уменьшить слой диэлектрика. Так как диэлектрический слой между обкладками ионистора , то есть “слой сгущенки”, составляет 5-10 нанометров, следовательно емкость ионистора достигает впечатляющих значений! Вы только представьте, какой заряд может накопить такой суперконденсатор!

Емкость таких конденсаторов может достигать до десятка фарад. Поверьте, это очень много. Ионисторы выглядят, как обычные таблетки, а также могут выглядеть как цилиндрические конденсаторы. Для того, чтобы различить их от конденсаторов, достаточно взглянуть на емкость, которая на них указана. Если там единицы Фарад, то это однозначно ионистор!

ионистор большой ионистор

В настоящее время ионисторы стали очень широко применяться в электронике и электротехнике. Они заменяют маленькие батарейки с малым напряжением, потому что ионистор конструктивно пока что не могут сделать на напряжение более нескольких Вольт. Но можно соединить их последовательно и набрать нужное напряжение. Но удовольствие это не дешевое :-).

Они также очень быстро заряжаются, так как их сопротивление ограничено только их выводами. А исходя из закона Ома, чем меньше сопротивление проводника, тем большая сила тока течет по нему и следовательно тем быстрее заряжается ионистор. Заряжать и разряжать ионисторы можно почти бесконечно.

Создание связи по переменному току необходимо, чтобы запретить протекание постоянного тока между определенными точками схемы и обес­печить при этом свободное прохождение переменного тока. Электрон­ные компоненты, обеспечивающие связь по переменному току, например конденсаторы или трансформаторы, обычно устанавливаются на входе и выходе усилителя. Таким образом, заданный режим покоя (статический режим) транзистора не влияет на статические режимы предыдущего и последующего каскадов.

В схеме, приведенной на рис. 23.1. конденсатор связывает точки А и В по переменному току, aR

– нагрузочный резистор. Для постоянного тока конденсатор действует как разрыв цепи, полностью блокируя протекание постоянного тока между точками А и В. По этой причине конденсатор связи называют
блокировочным
или
разделительным
конденсатором.

Удовлетворительное качество связи по переменному току достигается только в том случае, когда реактивное сопротивление Х

с конденсатора на рабочей частоте много меньше сопротивления нагрузочного резистора
R.
Тогда на этом конденсаторе падает (и теряется) очень малая часть напряжения входного сигнала. Например, если
V
вх = 100 мВ, то связь по переменному току можно считать удовлетворительной, когда выходное напряжение
V
вых = 95 мВ и на разделительном конденсаторе падает 5 мВ (5%). Требуемую емкость разделительного конденсатора определяют два фактора.

1. Сопротивление загрузочного резистора R.

Считая, что удовлетвори­тельная связь но переменному току достигается, когда
Х
с
=R
/20, для
R =
1 кОм получаем
Х
с = 50 Ом.

Рис. 23.1. Установка разделительного Рис. 23.2. Влияние развязывающего конденсатора. конденсатора.

Указаны потен­циалы точки А без развязывающего конденсатора (а) и с развязывающим конденсатором (б).

Предположим, что рабочая частота f

= 300 Гц. Поскольку
Х
c
=
1/2π
fC
1, то

Если сопротивление нагрузочного резистора увеличить до 100 кОм, то Х

c
=R
/20 = 1/20·100 = 5 кОм

Таким образом, если сопротивление нагрузочного резистора увеличить в 100 раз (с 1 кОм до 100 кОм), то емкость разделительного конденсатора можно уменьшить в той же пропорции (с 10 мкФ до 0,1 мкФ).

Вообще, чем больше сопротивление нагрузочного резистора, тем мень­ше требуемая емкость разделительного конденсатора.

2. Рабочая частота.

Возьмем в качестве исходного вышеприведенный пример, где удовлетворительная связь по переменному току достига­лась при
С
= 10 мкФ и
R
= 1 кОм для
f
= 300 Гц.

Если теперь рабочую частоту увеличить до 300 кГц, то с учетом усло­вия Хс

=
R
/20 = 50Ом получаем

Таким образом, если рабочую частоту увеличить в 1000 раз (с 300 Гц до 300 кГц), то емкость разделительного конденсатора можно уменьшить в 1000 раз (с 10 мкФ до 0,01 мкФ)..1) в точке А постоянный потенциал равен 10 В, а переменный потенциал сигнала — 10 мВ. Кон­денсатор, представляющий собой разрыв цени для постоянного тока, не оказывает никакого влияния на постоянный потенциал точки А, Одна­ко если емкость этого конденсатора такова, что па рабочей частоте его реактивное сопротивление существенно меньше сопротивления резистора
R,
то конденсатор будет эффективно осуществлять короткое замыкание сигнала переменного тока на землю. Таким образом, потенциал точки А по переменному току будет равен нулю. ёмкость конденсатора
С,
обес­печивающая удовлетворительную развязку, определяется сопротивлени­ем резистора
R
и рабочей частотой — но тем же самым формулам, ко­торые использовались для расчета емкости разделительного конденса­тора.

Усилитель с ДС-связью

На рис. 23.3 приведена схема усилителя с ДС-связыо, где С} —

входной разделительный конденсатор. Емкость этого конденсатора должна быть сравнительно велика в силу низкого входного сопротивления транзистора в схеме с ОЭ (это сопротивление становится еще меньше за счет шунтиро-вания входа, усилителя резистором
R^}.
связывает выход усилителя с нагрузкой или следующим каскадом, его емкость сравнима с емкостью конденсатора Ci. Типичные значения емкостей разделитель-ьшх конденсаторов следующие:

Вначале немного теории про формовку. Электролитические и оксидно-полупроводниковые конденсаторы имеют тонкий слой диэлектрика — окиси на металле. То есть одной обкладкой является металл, на котором образован оксидный слой, а другой служит электролит или слой полупроводника. Оксидная пленка обладает односторонней проводимостью, именно поэтому при монтаже надо соблюдать полярность подключения электролитических и оксидно-полупроводниковых конденсаторов. Если этого не учитывать, оксидный слой теряет свои диэлектрические свойства и конденсатор выходит из строя.

Аналогично с конденсаторами, долго не используемыми. У них со временем оксидный слой как бы рассасывается, что служит причиной повышенного тока утечки и в конечном итоге может привести к повреждению. Если такому на первый взгляд неисправному конденсатору вовремя провести формовку, то оксидный слой у него восстановится.

Процесс формовки представляет собой обычный электролиз. После формовки параметры конденсатора восстанавливаются. В дальнейшем аппаратура периодически включается в сеть, и конденсаторы периодически подформовываются (тренируются), сохраняя тем самым свои свойства.

Другими словами, от долгого хранения у конденсаторов возникают повышенный ток утечки и потеря ёмкости. Простейший способ проверить наличие утечки конденсатора — это зарядить его пониженным постоянным напряжением и по истечении некоторого времени проверить на наличие или отсутствие заряда. Конденсатор, имеющий утечку, быстро саморазрядится, а качественный электролитический конденсатор будет держать заряд долго. Их необходимо отформовать и «разбудить» от долгого бездействия, тогда они будут хорошо работать. Формовка конденсаторов нужна обязательна, это касается в первую очередь емкостей от 2200 мкФ для низковольтных, и от 100 мкФ для высоковольтных конденсаторов.

10-50 мкФ. 0.01-0,1 мкФ.

для звуковых частот:

для радиочастот:

Рис. 23.3. Усилитель с RC

-связью с

развязывающим конденсатором С

3 в цепи эмиттера.
Рис. 23.4. Инвертирование (измене­ние на 180°) фазы сигнала в усили­теле с ОЭ.
Развязывающий конденсатор

Отрицательная обратная связь через резистор R

4 в усилителе на рис. 23.3, с одной стороны, обеспечивает необходимую стабильность усилителя по постоянному току, а с другой стороны, снижает его коэффициент усиле­ния до очень малой величины (2-3). Снижение коэффициента усиления связано с действием отрицательной обратной связи по переменному току, обусловленной падением напряжения сигнала на резисторе
R
4
.
Для устранения этой отрицательной обратной связи по переменному току и одновременного сохранения стабильности по постоянному току применя­ется эмиттерный развязывающий конденсатор
С
3.

Типичные значения емкости эмиттерного развязывающего конденса­тора того же порядка, что и для разделительного конденсатора.

Усиление

Схема, приведенная на рис. 23.3, является законченной схемой однокас­кадного усилителя с ОЭ. При подаче сигнала (например, синусоидальной формы) на вход усилителя этот сигнал передается через конденсатор С

1 на базу транзистора. В начале положительного полупериода входного сигнала потенциал базы возрастает относительно потенциала эмиттера, напряжение
V
BEувеличивается, ток эмиттера
I
e, а с ним и ток коллек­тора
I
c, возрастают, в результате уменьшается напряжение на коллекторе
V
c
.
Это означает, что положительному полу периоду входного сигнала со­ответствует отрицательный полупериод выходного сигнала. С другой сто­роны, отрицательному полупериоду входного сигнала соответствует поло­жительный полупериод изменения коллекторного напряжения. Таким образом, сигналы на входе и выходе усилителя противофазны, как по­казано на рис. 23.4. Усиление сигнала происходит в силу того, что очень малый размах напряжения
V
BEприводит к большому размаху тока транзистора, который, проходя через резистор
R
3, вызывает большой размах коллекторного напряжения.

Линия нагрузки

Выходные характеристики транзистора дают общее представление о рабо­те транзистора. Для того чтобы получить представление о работе транзи­стора в конкретной схеме, нужно начертить линию нагрузки. На рис. 23.5 изображены семейство выходных характеристик транзистора, работаю­щего в схеме усилителя на рис. 23.3, и линия нагрузки XY.

Прежде чем проводить линию нагрузки, нужно сначала зафиксиро­вать две точки, попадающие на эту линию. Лучше всего использовать точку Х на оси х

, где ток
I
c = 0, и точку Y на оси
у
, где
V
c = 0. Через эти две точки проводится прямая линия — линия нагрузки. Предполагается, что
V
c =
V
CE.

Точка

X. В этой точке ток транзистора
I
c
=
0. Транзистор находится в состоянии отсечки. Следовательно, напряжение на коллекторе
V
c =
V
CC
.
Точка

Y. Здесь коллекторное напряжение
V
c = 0. Подставляя
V
c = 0 в уравнение
V
CC =
V
c
+V
R3, получаем
V
CC =
V
R3. Но
V
R3 =
I
c
R
3, поэтому
V
CC =
I
c
R
3
.
Следовательно,

I

c =
V
CC
/ R
3
.


Рис. 23.5. Линия нагрузки.

Для величин, указанных на рис. 23.3, положение точек Х и Y будет определяться следующими параметрами:

Точка Х I

c = 0,
V
c =
V
CC = 10 В.

Точка Y V

c = 0,
I
c =
V
CC/
R
3 = 10/3,3 = 3 мА.

Таким образом, XY — это линия нагрузки для нагрузочного резистора сопротивлением R

3 = 3,3 кОм.

При использовании нагрузочного резистора меньшего номинала (2,2 кОм) получаем линию нагрузки ХYa

. Положение точки Х не изменяется по сравнению с предыдущим случаем, поскольку напряжение
V
СС остается тем же самым — 10 В. Для точки Yb получаем
I
c
=V
CC
/R
3
=
10 В/2,2кОм = 4,55мА.

Нагрузочному резистору более высокого номинала, например 4,9 кОм, соответствует линия нагрузки ХYb

с точкой Y
b
при
I
c = 10 В/4, 9 кОм ≈ 2 мА.

Графический анализ

Процесс усиления сигнала осуществляется вдоль линии нагрузки и может быть представлен графически, как показано на рис. 23.6. Точка Q есть статическая рабочая точка, представляющая режим работы усилителя по постоянному току, т. е. в отсутствие сигнала. Рабочая точка задает смещение транзистора в статическом режиме. В рассматриваемом случае смещение определяется следующими величинами:

I

b = 20 мкА,
I
c = 1,5 мА,
V
c = 5 В.

Рис. 23.6. Графическое представление работы усилителя.


Рис. 23.7. Перегрузка усилителя, приводящая к ограничению выходного сиг­нала.

При подаче сигнала базовый ток изменяется по синусоиде с амплитудой 20 мкА (от 0 до 40 мкА). Это приводит к изменению коллекторного тока I

c с размахом 2,8 мА и изменению коллекторного напряжения с размахом около 9 В.

С одной стороны размах входного сигнала ограничен линией I

b
=
0, соответствующей отсечке транзистора (точка М на линии нагрузки), а с другой стороны – линией
I
b = 40 мкА, соответствующей насыщению транзистора (точка N на линии нагрузки). Для рассматриваемого уси­лителя рабочая точка Q выбирается в середине линии нагрузки. В этом случае при подаче сигнала с амплитудой 20 мкА на базу транзистора базовый ток изменяется в пределах от 0 до 40 мкА, обеспечивая максимальную величину неискаженного выходного сигнала.


Рис. 23.8. Графическое представление работы усилителя с использованием пе­редаточной характеристики.

Любая попыт­ка превышения этой величины входного сигнала приводит к искажению формы выходного сигнала. Это хорошо видно на рис. 23.7, где иллюстри­руется случай перегрузки усилителя с результирующим ограничением синусоидального сигнала. Входной и выходной сигналы могут быть так­же представлены графически с помощью передаточной характеристики транзистора (рис. 23.8). Рабочий диапазон усилителя ограничен линей­ным участком характеристики передачи, выход за границы этого участка приводит к искажениям.

Добавить комментарий

JComments

Конденсатор в цепи постоянного тока

Итак, берем блок питания постоянного напряжения и выставляем на его крокодилах напряжение 12 Вольт. Лампочку берем тоже на 12 Вольт. Теперь в разрыв цепи вставляем конденсатор.

Нет, лампочка не горит.

А вот если исключить конденсатор из цепи и подключить напрямую к лампочке, то лампа горит.

Отсюда напрашивается вывод: постоянный ток через конденсатор не течет! То есть в цепи постоянного тока идеальный конденсатор оказывает бесконечно большое сопротивление.

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доыли секунды. Все зависит от емкости конденсатора.

Сначала лучше проверить

Для начала этот элемент нужно обесточить. Понятно, что не надо именного его лишать источника питания. Достаточно отключить электроприбор и отсоединить вилку от розетки. Если подойти к этому вопросу кардинально, то для безопасности можно на распредщитке отключить все автоматические выключатели, отвечающие за подачу электричества в помещение.

Теперь нам нужен специальный прибор — мультиметр, чтобы узнать заряжен ли конденсатор.

  1. Выбираем режим для измерения напряжения DC (постоянного тока).
  2. Ручку прибора выставляем на максимальный уровень замера напряжения.

  3. Щупы мультиметра подсоединяем к контактам электронного компонента. Из него, как правило, выступают два стержня. Вот именно к ним и нужно присоединить оба щупа детектора. Прижимать нужно достаточно плотно, чтобы на дисплее прибора появились цифровые показания. Нет никакой разницы, какой щуп подводить к какому контакту. Полученное значение получится одинаковым в обоих случаях.

Нам нужно понять какое напряжение на выводах элемента. В зависимости от показаний выбирается и способ разрядки:

  1. Если показания меньше 10 вольт необходимости в разрядке нет.
  2. Если на дисплее замеры в пределах 10–99 вольт, разрядить можно отверткой.
  3. Если значения от 100 вольт и выше рекомендуется применить разрядное устройство.

Важно! Не прикасайтесь голыми руками к выводам — остаточное напряжение может нанести удар током или ожог.

Конденсатор в цепи переменного тока

Для того, чтобы узнать, как ведет себя конденсатор в цепи переменного тока, нам надо собрать простейшую схему, которая представляет из себя делитель напряжения. Смысл опыта такой: с помощью генератора частоты мы будем менять только частоту, а амплитуду оставим неизменной. По сути красная точка нам будет показывать сигнал с генератора частоты, а желтая – сигнал на резисторе. Снимая сигнал с резистора, мы можем косвенно узнать, как ведет себя конденсатор исходя из законов делителя напряжения.

Соединение конденсаторов

Существует два способа соединения: параллельное и последовательное. При параллельном соединении общая ёмкость равна сумме ёмкостей отдельных элементов: Собщ. = С1 + С2 + … + Сn.

Для последовательного соединения расчёт ёмкости рассчитывается по формуле: Cобщ. = ( C1* C2 *…* Cm ) / ( C1 + C2+…+Cn )

Чтобы быстро посчитать общую емкость соединенных конденсаторов лучше воспользоваться нашими калькуляторами:

  1. https://www.asutpp.ru/kalkulyator-rascheta-posledovatelnogo-soedineniya-kondensatorov.html
  2. https://www.asutpp.ru/kalkulyator-rascheta-parallelnogo-soedineniya-kondensatorov.html

Формула сопротивления конденсатора

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, ХС – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14

F – частота, измеряется в Герцах

С – емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Зачем нужны щетки в электродвигателе

Замена щеток в электродвигателе требуется достаточно часто, поскольку их износ – одна из наиболее часто встречающихся неисправностей. При замене щеток для обеспечения правильной работы агрегата необходимо выполнить их притирку. Как притереть щетки электродвигателя и осуществить эту процедуру грамотно?

Процесс притирки щеток электродвигателя

Есть несколько способов притирки щеток. Выбирать, который из них использовать, следует исходя из типа двигателя и ваших предпочтений.

Первый способ.

Прежде всего, требуется грубая подгонка щеток по коллектору – ее проводят с помощью напильника и крупнозернистой бумаги. Затем:

  • Щетки устанавливаются на место, и под них подкладывается специальная шлифовальная стеклянная бумага (№ 00). Ее рабочая поверхность должна быть обращена к щеткам. Отрезок бумаги отмеряется таким образом, чтобы по длине он был равен приблизительно 1.5 длине окружности коллектора.
  • Якорь поворачивается вручную до того момента, когда бумага станет соприкасаться со всей поверхностью щеток и шлифовать ее.
  • Механизм очищается от угольной пыли и продувается сильной струей сжатого воздуха.
  • Двигатель включается с нагрузкой 25-30 % от номинальной для более тщательной пришлифовки щеток.

Так как наличие в двигателе пыли и продуктов износа щеток может привести к замыканию на массу кронштейна щеткодержателя, после выполнения притирки необходимо продуть сжатым воздухом генератор.

Второй способ.

Ваши действия должны выглядеть следующим образом:

  • На коллектор наматывается и тщательно закрепляется полоска стеклянной шкурки.
  • Крышка со вставленными в щеткодержатели щетками вращается вокруг неподвижного якоря вручную в том же направлении, в каком сам якорь вращается в собранном генераторе.

Третий способ.

Стеклянная бумага кладется на коллектор (абразивной стороной вверх) и несколько раз протягивается вперед и назад. Одновременно осуществляется не слишком сильный нажим на щетки. Процесс прекращается после того, как щетки начнут равномерно прилегать к коллектору. Ширина полоски бумаги должна быть больше ширины щетки.

Применение карборундового или наждачного полотна для выполнения притирки недопустимо, поскольку попадание абразивных частиц между пластинами коллектора может спровоцировать замыкание.

Когда требуется притирка щеток электродвигателя

Эту процедуру нужно проводить при:

  • Установке новых щеток взамен износившихся.
  • Их неравномерном износе по длине.
  • Неправильном скосе рабочей поверхности щеток при допустимой высоте.

Во избежание короткого замыкания и поломки двигателя следует регулярно проверять состояние щеткодержателей и щеток. Упругость пружин щеткодержателей проверяется с помощью рычажного или пружинного динамометра. Если показатель упругости меньше, чем указано в ТУ, щетки будут вибрировать, а коллектор быстрее изнашиваться.

Показатели правильного подбора и грамотной установки щеток – это:

  • Соответствие щеток марке двигателя.
  • Их свободное вращение на оси щеткодержателя.
  • Полное прилегание поверхности деталей к коллектору.

Признаки плохой притирки щеток

Плохую притирку щеток можно определить по следующим признакам:

  • искрение;
  • сильный шум;
  • нарушение коммутации механизма;
  • вибрация.

Правильная притирка щеток обеспечивает равномерность распределения тока по рабочей поверхности, что приводит к улучшению рабочих показателей электродвигателя.

Освоив процесс притирки щеток, вы сможете самостоятельно устранять мелкие неполадки в агрегате и проводить его профилактику, не прибегая к помощи специалистов.

16 октября 2009 г.
Автор:
А. Джексон

С электродвигателями может произойти столько всяких вещей, что в большинстве случаев их техобслуживание и ремонт лучше всего проводить в соответствующей мастерской. Однако какие-то базовые элементы обслуживания некоторых электродвигателей можно выполнить самостоятельно – а именно замену изношенных угольных щеток и чистку коллектора.

Во многих случаях эти операции можно выполнить, не демонтируя электродвигатель. Однако у некоторых электроприборов придется отсоединить провода и отвернуть крепеж, с тем чтобы добраться до обеих щеток. В зависимости от сложности отсоединения двигателя решайте, нет ли смысла предоставить это все специалистам сервиса

Универсальные электродвигатели.

Универсальные электродвигатели устанавливают во многих типах электробытовых приборов от стиральных машин и пылесосов до электроинструментов – и работающих от сети, и беспроводных. «Универсальным» двигатель назван потому, что может работать как на переменном, так и на постоянном токе. В бытовой электросети ток переменный, а постоянный ток дают батареи и выпрямители.

Типичный универсальный электродвигатель преобразует электрическую энергию в механическую с помощью явления электромагнетизма. Прохождение электрического тока по двум катушкам из провода создает магнитное поле. В двигателе эти катушки – обмотки – окружены блоком из пластинчатой стали, который концентрирует магнитное поле. Металлический блок и катушки вместе образуют электромагнит, который в электродвигателе называется обмоткой возбуждения.

Рис. 1 Универсальный электродвигатель.

1. Обмотка возбуждения 4. Коллектор
2. Якорь 5. Контакт коллектора
3. Щетка 6. Якорная обмотка

Между двумя обмотками возбуждения находится металлическая конструкция – якорь, или ротор, который является подвижной частью двигателя. Вдоль якоря намотано несколько раздельных обмоток (якорные обмотки). К двум концам каждой обмотки подсоединены два медных полосчатых контакта. Они сгруппированы в форме цилиндра на одном конце якоря; контакты одной пары расположены на цилиндре друг напротив друга. Все вместе эти контакты образуют так называемый коллектор.

Кусочки угля (угольные щетки), расположенные друг напротив друга, прижимаются к паре противоположных контактов. Подаваемый на щетки электрический ток попадает через них на пару контактов коллектора и далее – в соответствующую якорную обмотку, создавая магнитное поле. Законы магнетизма заставляют это магнитное поле взаимодействовать с магнитным полем обмотки возбуждения – «северный» полюс одного поля и «южный» полюс другого поля взаимно притягиваются, и это заставляет якорь вращаться в определенном направлении.

Рис. 2 Противоположные полюса притягиваются

Вращение перемещает щетки на другую пару контактов коллектора, создавая другое магнитное поле. Каждое новое поле взаимодействует по очереди с обмоткой возбуждения, что создает равномерное вращение якоря.

Электродвигатели постоянного тока

Универсальные двигатели постоянного и переменного тока работают на похожих принципах, но у электродвигателя постоянного тока вместо обмотки возбуждения установлены постоянные магниты.

Бесшнуровые электроинструменты, такие как дрели, лобзики и кусторезы, работают с помощью двигателей постоянного тока, которые питаются от аккумуляторов напряжением до 30 В или выше. Для обеспечения достаточной мощности обычно несколько аккумуляторов соединяются последовательно.

Смена направления вращения двигателя постоянного тока достигается простой сменой полярности напряжения на контактах электродвигателя. В электроинструментах это делается с помощью соответствующего переключателя.

Замена двигателя постоянного тока обычно бывает дешевле его ремонта. Однако, может быть, стоит найти замену щеток и почистить коллектор. Не у всех двигателей постоянного тока щетки угольные – у некоторых это просто металлические пружины, которые контактируют с коллектором.

Асинхронные электродвигатели

Универсальные двигатели можно встретить в большинстве бытовых электроприборов, но в некоторых ситуациях предпочтительнее асинхронные электродвигатели. Асинхронные двигатели относительно малошумные, так как в них нет щеток, в них нет и угольной пыли, которая засоряет двигатель.
Электродвигатель с расщепленной фазой оснащен сложным комплексом обмоток, называемых статарными обмотками, или статором (аналог обмотки возбуждения), который окружает цилиндрический ротор из алюминия и стали. Здесь нет чисто электрического соединения с ротором, и вращение вызывается с помощью другой статарной обмотки, которая называется пусковой, или стартовой обмоткой. Последовательно с пусковой обмоткой часто соединяют конденсатор, чтобы увеличить пусковой момент двигателя.

Рис. 3 Асинхронный двигатель с расщепленной фазой

1. Статорная обмотка 2. Ротор

Асинхронный электродвигатель с расщепленными полюсами похож на двигатель с расщепленной фазой, но у него только одна статарная обмотка, которая создает постоянное магнитное поле. Медные проводники между пластинами из мягкой стали направляют магнитное поле в нужном направлении и заставляют ротор вращаться.

Рис. 4 Асинхронный двигатель с расщепленными полюсами

1. Медные проводники 2. Статорная обмотка

Поскольку здесь нет щеток, которые можно было бы самостоятельно поменять, все обслуживание и ремонт асинхронных двигателей лучше предоставить специалистам.

Обслуживание универсального электродвигателя

Если между щетками и коллектором плохой контакт, то эффективность работы универсального двигателя будет снижена. Плохой контакт может быть вызван как износом щеток, так и загрязнением коллектора.

Износ или залипание щеток

Угольные щетки устанавливаются разными способами, но они всегда прижимаются к коллектору тем или иным видом пружины. Описанное далее показывает три типичных способа установки щеток с возможностью их простой замены. Перед обслуживанием электродвигателя обязательно отключите прибор от электропитания, вынув вилку из розетки или другим способом.

  1. В этом электродвигателе щетку удерживает на месте металлический колпачок. Осторожно подденьте колпачок кончиком отвертки.

Рис. 5 Подденьте металлический колпачок

  1. По мере износа щетки плотно притираются к коллектору точно по его форме, поэтому, прежде чем вынуть щетку, сделайте на ней маленькую пометку, чтобы можно было ее вернуть точно в то же положение, если вы посчитаете, что износ не достиг того уровня, когда щетки надо менять.

Рис. 6 Сделайте на щетке маленькую пометку

  1. Выньте обе щетки вместе с их пружинами. Если щетки сильно стерлись, то установите новые щетки.

Рис. 7 Выньте щетку из ее держателя

Чистка коллектора

Перед тем как установить щетки, воспользуйтесь возможностью почистить поверхность коллектора.

  1. Старой зубной щеткой очистите пыль и грязь с поверхности, а также, при наличии, из узких щелей между медными пластинами.

Рис. 8 Сметите пыль с коллектора

  1. Затем отполируйте медную поверхность контактов стекловолоконным карандашом для чистки контактов, который продается для техобслуживания радиоаппаратуры. Если на коллекторе есть признаки сильного износа или подгорания, проконсультируйтесь у специалиста сервиса, можно ли электродвигатель отремонтировать.

Рис. 9 Зачистите контакты

Щетки с внешними пружинами

У некоторых универсальных электродвигателей каждая щетка удерживается в контакте с коллектором наружной пружиной, которую надо сначала поднять, чтобы можно было вынуть щетку. Каждая щетка подсоединяется с помощью медного плетеного проводника с соединительным наконечником.

Рис. 10 Для изъятия щетки поднимите пружину

Сменные блоки щеток

Еще проще обслуживать электродвигатели, в которых использованы сменные блоки щеток.

  1. Начните с отсоединения наконечников, подсоединенных к каждому щеточному блоку. Сделайте соответствующие пометки – рядом могут быть очень похожие запасные клеммы.

Рис. 11 Отсоедините наконечник

  1. Затем выкрутите винты, крепящие пластиковый блок к корпусу двигателя.

Рис. 12 Отвинтите блок щеток

  1. Снимите все блоки и замените их новыми.

Рис. 13 Выньте и замените блок щеток

Выполнив базовое обслуживание, кистью и пылесосом с соответствующей насадкой удалите пыль и пух, приставшие к двигателю. Чистка электродвигателя совсем не косметическая операция – она уменьшает риск накопления электропроводной угольной пыли, которая может способствовать утечке тока на землю. Это может заставить сработать защиту или в конечном итоге сжечь предохранитель.

Более подробно замену щеток можно посмотреть на видеороликах:

Удачи в ремонте!

Всего хорошего, пишите to Elremont © 2008

Инструмент. В нём мелочей не бывает. Производители стремятся удешевить и упростить конструкции до предела. Используется всё больше синтетических материалов, заменителей, аналогов и пр. Но есть в электроинструменте деталь незаменимая – щетки. О них и будет разговор.

Казалось бы – что в них такого? Кусочек угольной или графитной субстанции. Но не так всё просто, как кажется на первый взгляд. Давайте начнем с самого начала – зачем они вообще нужны – щётки в электроинструменте?

Щётки – это по сути своей – токоподвод. Снимает напряжение со статора и передает его на коллектор якоря/ротора. Через щётки проходит электрический ток. Плюс к этому щетки испытывают механические нагрузки во время вращения якоря. К ним существуют и определенные требования, несоблюдение которых может привести к весьма печальным последствиям. Для того, чтобы яснее представить себе эти возможные последствия, а так же в целом разобраться с тонкостями щеточного узла, рассмотрим характеристики щеток и собственно коллекторной меди.

Щетки формируются в основном из графита или угля с добавлением разнообразных примесей. Вот основные виды щеток:

1. Угольные.

2. Графитные.

3. Угольно-графитные.

3. Омедненные.

4. Медно-графитовые.

5. Медно-угольные.

Щетки бывают жесткие и мягкие. Это важно, так как медь коллектора якоря так же бывает мягкой и твердой. Если на «мягкий» коллектор установить «жесткие» щетки – произойдет достаточно быстрый износ коллектора, что приведет к дорогостоящему ремонту – замене якоря. Если поставить «мягкие» щетки на «жесткий» коллектор – щетки очень скоро выйдут из строя – медь коллектора их попросту «съест»

Так же щетки имеют так называемое «активное» сопротивление. Это учитывается при расчете характеристик обмотки двигателя и номиналов пускорегулирующих устройств(ус-ва плавного пуска, ус-ва регулировки оборотов и т.п.)

Щеточный узел – тоже дело непростое. Он состоит из направляющего профиля, прижимного устройства и контактной группы. Есть и бесконтактные щёткодержатели, но они применяются в основном для инструмента невысокого класса и достаточно редки. Важнейшим элементом является прижим щетки. Нажатие большее, чем необходимо – приводит к нагреву коллектора и щеточного узла, что влечет за собой выход якоря из строя. Недостаточный прижим – это повышенное искрение на коллекторе, и, как следствие, так же выход из строя якоря и щеточного узла, не говоря уже о том, что ослабленная пружина может соскочить и наделать дел внутри корпуса двигателя, перерубив, к примеру, обмотку статора или якоря – это может привести и к короткому замыканию в цепи и выходу из строя двигателя.

Профессиональный, промышленный и индустриальный электроинструмент комплектуется щётками с устройством автоматического отключения. Принцип действия этого устройства прост. В тело щетки монтируется пружина с керамическим непроводящим наконечником. При износе щетки до определенной предельной величины наконечник высвобождается и пружина выталкивает его на коллектор. Цепь размыкается, двигатель останавливается. Щетки без такого устройства опасны тем, что работают до «победного»(от слова «беда»)конца. При максимальном износе на коллектор может попасть и пружина щёткодержателя, и поводок щётки – это может привести к выходу якоря из строя. Чтобы избежать подобной неприятности, периодически проверяйте состояние щеток и щеточного узла. Предельным считается износ 2/3 от первоначального размера щеток. Так же существуют щётки с дополнительными контактами, которые необходимы для нормальной работы цепей электроинструмента. При наличии в инструменте таких щеток, следует учесть, что менять их можно ТОЛЬКО на аналогичные, иначе производитель не гарантирует нормальной работы инструмента.

Сейчас во многих магазинах строительной и инструментальной специализации можно встретить отделы, предлагающие щетки для различных видов электроинструмента. Но и здесь есть нюансы. Все мы знаем, что нашу с вами страну заполонило засилие «китайского» и иного контрафакта. До рынка щеток эта зараза докатилась тоже – поддельщики всегда стремятся на спросовые ниши рынка. Качество большинства имеющихся в розничной сети щеток оставляет желать лучшего. Неспециалисту практически невозможно определить подделку – слишком много нюансов. Вот и подумайте – стоит ли рисковать «жизнью» инструмента из-за такой «мелочи», как щетки? Есть два способа гарантированно избежать ошибки при выборе щеток – это их приобретение у авторизированные дилеров и установка щёток в специализированном сервисном центре, где помимо собственно замены щеток, мастер проверит общее состояние щёточного узла и самого электроинструмента.

Каталог щеток по видам и размерам:

Почему сгорел конденсатор на электродвигателе

Однофазные двигатели оснащаются двумя типами обмотки для того, чтобы их ротор мог вращаться, поскольку только одной для этого недостаточно. Поэтому перед подключением двигателя необходимо разобраться, какой моток является основным, а какой вспомогательным. Сделать это можно несколькими способами.

По цветовой маркировке

К какому типу относится конкретный моток, можно определить по цветовой маркировке во время визуального осмотра двигателя. Как правило, красные провода относятся к рабочему типу, а вот синие – вспомогательному.

Но во всех правилах есть свои исключения, поэтому всегда необходимо обращать внимание на бирку электродвигателя, на которую наносится расшифровка всех маркировок

Однако если двигатель уже был в ремонте или на нем отсутствует бирка, данный способ проверки является не эффективным. В первом случае во время ремонтных работ могло полностью поменяться внутреннее содержимое мотора, а во втором – нет возможности безошибочно расшифровать цветные обозначения. К тому же иногда маркировка может вообще отсутствовать. Поэтому в таких ситуациях, лучше прибегнуть к другому, более достоверному способу.

По толщине проводов

Толщина проводов, которые выходят из электромашины небольшой мощности, поможет отличить пусковую катушку от рабочей. Поскольку вспомогательная работает непродолжительное время и не испытывает серьезной нагрузки, то провода, относящиеся к ней, будут более тонкими.

Но даже если она бросается в глаза, опираться только на это не стоит. Поэтому многие всегда измеряют сопротивление проводов.

При помощи мультиметра

Мультиметр – специальный прибор, позволяющий измерить сопротивление проводов, а также их целостность. Для этого необходимо следовать следующему алгоритму:

  1. Возьмите мультиметр и выберите нужную функцию.
  1. Снимите изоляцию с проводов двигателя, и соедините два любые из них со щупами прибора. Так происходит замер силы сопротивления между двумя проводами мотора.
  1. Если на экране прибора не появилось никаких числовых значений, то необходимо заменить один из проводов, и после этого повторить процедуру. Полученные показания будут относиться к выводам одного мотка.
  2. Подключите щупы измерительного прибора к оставшимся жилам и зафиксируйте показания.
  3. Сравните полученные результаты. Электропровода с более сильным сопротивлением будут относиться к пусковой катушке, а с более слабым – к рабочей.

После того, как замеры будут определены и станет понятно, какие электропровода к какой катушке относятся, рекомендовано промаркировать их любым удобным способом. Это позволит в дальнейшем пропускать процедуру измерения сопротивления при подключении двигателя.

Отличить, где находиться пусковая, а где рабочая обмотка однофазного мотора, можно несколькими способами. Однако наиболее действенным из них является измерение сопротивления электропроводов, отходящих из электромотора малой мощности, с помощью мультиметра.

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A  до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Кроме этого, стоит учитывать, что на рынке можно встретить модели от иностранных и отечественных производителей. Как правило, зарубежные имеют большую стоимость, но и надежнее. Российские варианты исполнения также часто используются при создании сети подключения электродвигателя.

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

Со всеми этими

Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВСподключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

В этой статье поговорим о конденсаторных двигателях, которые по сути являются обычными асинхронными, отличающимися лишь способом подключения к сети. Затронем тему подбора конденсаторов, разберем причины необходимости точного подбора емкости. Отметим основные формулы, которые помогут в приблизительной оценке требуемой емкости. Конденсаторным двигателем называется асинхронный двигатель , в цепь статора которого включена дополнительная емкость, с целью создать сдвиг фаз тока в обмотках статора. Зачастую это касается однофазных цепей при использовании трехфазных или двухфазных асинхронных двигателей. Обмотки статора асинхронного двигателя физически сдвинуты друг относительно друга, и одна из них включается непосредственно в сеть, в то время как вторая, либо вторая и третья подключаются к сети через конденсатор. При этом модули магнитной индукции обмоток должны получиться одинаковыми, чтобы магнитные поля обмоток статора оказались бы сдвинуты относительно друг друга так, чтобы суммарное поле вращалось по кругу, а не по эллипсу, увлекая за собой ротор с наибольшей эффективностью. Очевидно, ток и его фаза в подключенной через конденсатор обмотке связаны как с емкостью конденсатора, так и с эффективным импедансом обмотки, который в свою очередь зависит от скорости вращения ротора. При старте двигателя импеданс обмотки определяется лишь ее индуктивностью и активным сопротивлением, поэтому он относительно мал в момент пуска, и здесь нужен конденсатор большей емкости для обеспечения оптимального пуска.

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

  • Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

  • Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

  • Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Tags: автомат, асинхронный, бирка, бра, вид, выбор, двигатель, дом, е, емкость, замена, звезда, измерение, кабель, как, конденсатор, кт, магнит, маркировка, мощность, мультиметр, напряжение, номинал, паяльник, подключение, правило, провод, пуск, р, работа, размер, расчет, расшифровка, ремонт, сеть, сопротивление, схема, тип, ток, треугольник, ук, фаза, фото, щит, эффект

Пусковой конденсатор двигателя | Приложения

Конденсаторы моторные

Асинхронные двигатели

переменного тока, также известные как асинхронные двигатели, используют вращающееся магнитное поле для создания крутящего момента. Трехфазные двигатели получили широкое распространение, поскольку они надежны и экономичны. Вращающееся магнитное поле легко достигается в трехфазных асинхронных двигателях, поскольку сдвиг фазового угла между отдельными фазами составляет 120 градусов. Однако однофазные двигатели переменного тока требуют внешней схемы, которая создает сдвиг фазового угла для создания вращающегося магнитного поля.Эта схема может быть реализована с использованием усовершенствованной силовой электроники или, проще говоря, с использованием конденсатора двигателя.

На видео ниже показано простое для понимания объяснение принципа работы асинхронного двигателя переменного тока.

Однофазные асинхронные двигатели переменного тока

Однокатушечные асинхронные двигатели переменного тока

Асинхронные двигатели

переменного тока обычно используют две или более катушек для создания вращающегося магнитного поля, которое создает крутящий момент на роторе. Когда используется одна катушка, она генерирует пульсирующее магнитное поле, которого достаточно для поддержания вращения, но недостаточно для запуска двигателя с места.Двигатели с одной катушкой должны запускаться с использованием внешней силы и могут вращаться в любом направлении. Направление вращения зависит от внешней силы. Если двигатель был запущен по часовой стрелке, он будет продолжать вращаться и набирать скорость по часовой стрелке, пока не достигнет максимальной скорости, которая определяется частотой источника питания. Точно так же он продолжит вращение против часовой стрелки, если первоначальное вращение было против часовой стрелки. Эти двигатели непрактичны из-за невозможности надежно начать вращение самостоятельно.

Пусковой конденсатор асинхронных двигателей переменного тока

Одним из способов улучшения конструкции с одной катушкой является использование вспомогательной катушки последовательно с пусковым конденсатором двигателя. Вспомогательная катушка, также называемая пусковой катушкой, используется для создания начального вращающегося магнитного поля. Чтобы создать вращающееся магнитное поле, ток, протекающий через основную обмотку, должен быть в противофазе по отношению к току, протекающему через вспомогательную обмотку. Роль пускового конденсатора заключается в том, чтобы задерживать ток во вспомогательной обмотке, выводя эти два тока в противофазе.Когда ротор достигает достаточной скорости, вспомогательная катушка отключается от цепи с помощью центробежного переключателя, а двигатель остается запитанным от одной катушки, создающей пульсирующее магнитное поле. В этом смысле вспомогательную катушку в этой конструкции можно рассматривать как пусковую катушку, поскольку она используется только во время запуска двигателя.

Пусковые / рабочие конденсаторы, индукционные двигатели переменного тока

Другим способом дальнейшего улучшения конструкции однофазного асинхронного двигателя с одной катушкой является введение вспомогательной катушки, которая остается под напряжением не только во время фазы запуска двигателя, но и во время нормальной работы.В отличие от двигателя переменного тока, использующего только пусковой конденсатор двигателя, который создает пульсирующее магнитное поле во время нормальной работы, двигатели переменного тока, использующие пусковой конденсатор двигателя и рабочий конденсатор двигателя, создают вращающееся магнитное поле во время нормальной работы. Функция пускового конденсатора двигателя остается такой же, как и в предыдущем случае — он отключается от цепи после того, как ротор достигает заданной скорости с помощью центробежного переключателя. После этого вспомогательная обмотка остается запитанной через рабочий конденсатор двигателя.На рисунке ниже описан этот тип конструкции.

Конденсаторы пуска и пуска двигателя

Пусковые конденсаторы

Конденсаторы запуска двигателя используются на этапе запуска двигателя и отключаются от цепи, когда ротор достигает заданной скорости, которая обычно составляет около 75% максимальной скорости для этого типа двигателя. Эти конденсаторы обычно имеют емкость более 70 мкФ. Они бывают разных номиналов напряжения, в зависимости от области применения, для которой они предназначены.

Рабочие конденсаторы

В некоторых конструкциях однофазных двигателей переменного тока используются рабочие конденсаторы двигателя, которые остаются подключенными к вспомогательной катушке даже после того, как пусковой конденсатор отключен центробежным переключателем. Эти конструкции работают, создавая вращающееся магнитное поле. Конденсаторы для работы двигателя предназначены для непрерывного режима работы и остаются под напряжением при включении двигателя, поэтому вместо электролитических конденсаторов используются полимерные конденсаторы с низкими потерями. Значение емкости рабочих конденсаторов обычно ниже емкости пусковых конденсаторов и часто находится в диапазоне 1.От 5 мкФ до 100 мкФ. Выбор неправильного значения емкости для двигателя может привести к неравномерному магнитному полю, которое может проявляться как неравномерная скорость вращения двигателя, особенно под нагрузкой. Это может вызвать дополнительный шум от двигателя, падение производительности и повышенное потребление энергии, а также дополнительный нагрев, который может вызвать перегрев двигателя.

Приложения

Пусковые и пусковые конденсаторы двигателя используются в однофазных асинхронных двигателях переменного тока. Такие двигатели используются, когда однофазный источник питания более практичен, чем трехфазный, например, в бытовых приборах.Однако они не так эффективны, как трехфазные асинхронные двигатели переменного тока. Фактически, однофазные двигатели переменного тока в 2-4 раза менее эффективны, чем трехфазные двигатели переменного тока, поэтому они используются только для менее мощных двигателей. Типичные области применения, в которых используются конденсаторы пускового и рабочего двигателя, включают электроинструменты, стиральные машины, сушильные барабаны, посудомоечные машины, пылесосы, кондиционеры и компрессоры.

Двигатели с конденсаторным пуском

: схема и объяснение того, как конденсатор используется для запуска однофазного двигателя

Однофазный асинхронный двигатель может быть выполнен с возможностью самозапуска различными способами.Один из часто используемых методов — это двигатели с расщепленной фазой. Другой метод — это индукционные двигатели с конденсаторным пуском.

Индукционные двигатели с конденсаторным пуском

Мы знаем об активности конденсатора в чистой цепи переменного тока. Когда конденсатор вводится таким образом, напряжение отстает от тока на некоторый фазовый угол. В этих двигателях необходимая разность фаз между Is и Im достигается за счет включения конденсатора последовательно с обмоткой стартера. Конденсаторы, используемые в этих двигателях, имеют электролитический тип и обычно видны, поскольку они установлены вне двигателя как отдельный блок.(щелкните изображение, чтобы увеличить его).

Во время пуска, поскольку конденсатор включен последовательно с обмоткой пускателя, ток через обмотку пускателя Is опережает напряжение V, которое прикладывается к цепи. Но ток, протекающий через основную обмотку Im, по-прежнему отстает от приложенного напряжения V. Таким образом, чем больше разница между Is и Im, тем лучше результирующее вращающееся магнитное поле.

Когда двигатель достигает примерно 75% скорости полной нагрузки, центробежный выключатель S размыкается, отсоединяя обмотку стартера и конденсатор от основной обмотки.Из векторной диаграммы важно отметить, что разность фаз между Im и Is составляет почти 80 градусов по сравнению с 30 градусами в асинхронном двигателе с расщепленной фазой. Таким образом, асинхронный двигатель с конденсаторным пуском создает лучшее вращающееся магнитное поле, чем двигатели с расщепленной фазой. Из векторной диаграммы видно, что ток через обмотку пускателя Is опережает напряжение V на небольшой угол, а ток через основную обмотку Im отстает от приложенного напряжения. Следует понимать, что результирующий ток I небольшой и почти совпадает по фазе с приложенным напряжением V.

Крутящий момент, развиваемый асинхронным двигателем с расщепленной фазой, прямо пропорционален синусу угла между Is и Im. Также угол составляет 30 градусов в случае двигателей с расщепленной фазой. Но в случае асинхронных двигателей с конденсаторным пуском угол между Is и Im составляет 80 градусов. Тогда очевидно, что одно только увеличение угла (с 30 градусов до 80 градусов) увеличивает пусковой крутящий момент почти вдвое по сравнению со стандартным асинхронным двигателем с расщепленной фазой.Кривая характеристики «скорость-момент» показывает пусковой и рабочий моменты асинхронного двигателя с конденсаторным пуском.

Типы двигателей

Существуют различные типы двигателей с конденсаторным пуском, разработанные и используемые в различных областях. Они следующие:

  1. Одно напряжение, внешне реверсивное,
  2. Одно напряжение, нереверсивное исполнение,
  3. Реверсивные на одно напряжение и с термостатом,
  4. Одно напряжение, нереверсивное, с магнитным переключателем,
  5. Двухвольтный, нереверсивный тип,
  6. Двухвольтный, реверсивный,
  7. Одно напряжение, трехпроводное, реверсивное,
  8. Одно напряжение, мгновенно-реверсивное,
  9. Двухскоростной тип и
  10. Двухскоростной с двухконденсаторным типом.

Эти двигатели могут использоваться для различных целей в зависимости от потребностей пользователя. Пусковые характеристики, характеристики скорости / крутящего момента каждого из вышеперечисленных двигателей могут быть проанализированы перед их использованием в работе.

Моя следующая статья об однофазных двигателях с расщепленными полюсами; Вы можете прочитать это здесь.

Кредиты изображений:

www.tpub.com

www.allaboutcircuits.com

A / C-D / C Machines от A.K&B.Л. Тераджа.

Однофазные электродвигатели: характеристики и применение

Если трехфазное питание недоступно или непрактично, на помощь приходят однофазные двигатели. Хотя им не хватает более высокого КПД, чем у их трехфазных собратьев, однофазные двигатели — правильных размеров и номиналов — могут прослужить весь срок службы при минимальном обслуживании.

Иногда производственный брак может привести к преждевременному отказу двигателя. Однако большинство сбоев происходит из-за неправильного применения.Обратите особое внимание на требования к применению, прежде чем выбирать двигатель для замены вышедшего из строя или для новой конструкции. Неправильный выбор типа двигателя и мощности может привести к повторному отказу двигателя и простоям оборудования. Очевидно, что вы не хотите указывать двигатель слишком маленьким для приложения, что приведет к электрическим напряжениям, которые вызывают преждевременный отказ двигателя. Но также не следует указывать двигатель слишком мощным — либо из-за его мощности, либо из-за присущих ему конструктивных характеристик.Это также может иметь серьезные последствия. Например, двигатель с высоким заторможенным ротором и крутящим моментом пробоя может повредить оборудование, которым он управляет. Кроме того, работа двигателя при нагрузке ниже полной номинальной неэффективна, так как вы тратите деньги на потерю мощности.

Ключ: во-первых, выберите двигатель в соответствии с приложением, но, что не менее важно, необходимо понимать характеристики основных типов однофазных двигателей — характеристики, которые лежат в основе согласования двигателя с применением.

Как правило, многофазный двигатель с короткозамкнутым ротором переменного тока, подключенный к многофазной линии, развивает пусковой момент.Двигатель с короткозамкнутым ротором, подключенный к однофазной сети, не развивает пусковой крутящий момент, но, будучи запущенным каким-либо внешним способом, он работает примерно как многофазный двигатель. Многие типы однофазных двигателей различаются, главным образом, способами их запуска.

Двухфазный

Электродвигатель с расщепленной фазой, также называемый электродвигателем с асинхронным пуском и асинхронным двигателем, вероятно, является самым простым однофазным электродвигателем, предназначенным для промышленного использования, хотя и в некоторой степени ограниченным. Он имеет две обмотки: пусковую и главную, Рисунок 1 .Пусковая обмотка сделана из провода меньшего калибра и меньшего числа витков относительно основной обмотки, чтобы создать большее сопротивление, таким образом, поле пусковой обмотки находится под другим электрическим углом, чем у основной обмотки, и заставляет двигатель вращаться. Основная обмотка из более толстой проволоки обеспечивает работу двигателя в остальное время.

Двигатель с расщепленной фазой использует механизм переключения, который отключает пусковую обмотку от основной обмотки, когда двигатель достигает примерно 75% от номинальной скорости.В большинстве случаев это центробежный переключатель на валу двигателя.

Простая конструкция двигателя с расщепленной фазой обычно делает его менее дорогим, чем другие типы однофазных двигателей для промышленного использования. Однако это также ограничивает производительность. Пусковой крутящий момент низкий, обычно от 100 до 175% от номинальной нагрузки. Кроме того, двигатель развивает высокий пусковой ток, примерно от 700 до 1000% от номинального. Следовательно, продолжительное время пуска приводит к перегреву пусковой обмотки и выходу ее из строя; поэтому не используйте этот двигатель, если вам нужен высокий пусковой момент.

Другие характеристики двигателя с расщепленной фазой: Максимальный рабочий крутящий момент составляет от 250 до 350% от нормального. Кроме того, тепловая защита затруднена, потому что высокий ток заторможенного ротора по сравнению с рабочим током затрудняет поиск устройства защиты с достаточно коротким временем срабатывания, чтобы предотвратить перегорания пусковой обмотки. И эти двигатели обычно рассчитаны на одно напряжение, что ограничивает гибкость применения.

Хорошие применения для двигателей с разделенной фазой включают небольшие измельчители, небольшие вентиляторы и нагнетатели, а также другие приложения с низким пусковым моментом и потребляемой мощностью от 1/20 до 1/3 л.с.Избегайте применений, требующих высокой частоты цикла или высокого крутящего момента.

Конденсаторный пуск / индукционный пуск

Вот настоящий двигатель широкого применения для промышленных условий. Думайте об этом как о двигателе с расщепленной фазой, но с усиленной пусковой обмоткой, которая включает в себя конденсатор в цепи для обеспечения пускового «наддува», Рисунок 2 . Как и двигатель с расщепленной фазой, двигатель с конденсаторным пуском также имеет пусковой механизм — механический или твердотельный электронный переключатель. Это отключает не только пусковую обмотку, но и конденсатор, когда двигатель достигает 75% номинальной скорости.

Двигатели с конденсаторным пуском / асинхронные двигатели имеют ряд преимуществ перед двигателями с расщепленной фазой. Конденсатор включен последовательно с пусковой цепью, поэтому он создает больший пусковой момент, обычно от 200 до 400% от номинальной нагрузки. А пусковой ток, обычно от 450 до 575% от номинального, намного ниже, чем у разделенной фазы из-за большего провода в пусковой цепи. Это позволяет увеличить продолжительность цикла и надежную тепловую защиту.

Двигатель с запуском от конденсатора / индукционным пуском дороже, чем сопоставимый двигатель с расщепленной фазой, из-за дополнительной стоимости пускового конденсатора.Но область применения намного шире из-за более высокого пускового момента и меньшего пускового тока. Используйте двигатели в широком спектре приложений с ременным приводом, таких как небольшие конвейеры, большие нагнетатели и насосы, а также во многих приложениях с прямым или редукторным приводом. Это рабочие лошадки промышленных двигателей общего назначения.

Конденсатор постоянный разделенный

Двигатель с постоянным разделенным конденсатором (PSC), Рис. 3 , не имеет ни пускового переключателя, ни конденсатора строго для запуска.Вместо этого он имеет рабочий конденсатор, постоянно включенный последовательно с пусковой обмоткой. Это делает пусковую обмотку вспомогательной обмоткой, когда двигатель достигает рабочей скорости. Поскольку рабочий конденсатор должен быть рассчитан на непрерывное использование, он не может обеспечить пусковой импульс пускового конденсатора. Типичный пусковой крутящий момент двигателей PSC низкий, от 30 до 150% от номинальной нагрузки, поэтому эти двигатели не предназначены для применения в условиях, когда запускаются с трудом. Однако, в отличие от двигателей с расщепленной фазой, двигатели PSC имеют низкий пусковой ток, обычно менее 200% от номинального тока нагрузки, что делает их идеальными для приложений с высокой частотой цикла.Момент пробоя варьируется в зависимости от типа конструкции и области применения, хотя обычно он несколько ниже, чем у двигателя с капстартом.

Двигатели

PSC имеют несколько преимуществ. Им не нужен пусковой механизм, поэтому их можно легко реверсировать. Конструкцию можно легко изменить для использования с регуляторами скорости. Они также могут быть разработаны с учетом оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. И они считаются самыми надежными из однофазных двигателей, в основном потому, что не требуется пусковой выключатель.

Двигатели с постоянными разделенными конденсаторами имеют широкий спектр применения в зависимости от конструкции. К ним относятся вентиляторы, воздуходувки с низким начальным крутящим моментом и устройства с прерывистой цикличностью, такие как регулирующие механизмы, приводы ворот и открыватели гаражных ворот, многие из которых также нуждаются в мгновенном реверсировании.

Конденсаторный пуск / конденсаторная работа Этот тип, , рис. 4 , сочетает в себе лучшее из конденсаторного двигателя / асинхронного двигателя и двигателя с постоянным разделением конденсаторов. В нем есть пусковой конденсатор, включенный последовательно со вспомогательной обмоткой, как у конденсаторного пускового двигателя, для высокого пускового момента.И, как и двигатель PSC, он также имеет рабочий конденсатор, который включен последовательно со вспомогательной обмоткой после того, как пусковой конденсатор отключен от цепи. Это допускает высокий момент пробоя или перегрузки.

Еще одно преимущество двигателя с конденсаторным пуском / конденсаторным запуском: он может быть рассчитан на более низкий ток полной нагрузки и более высокий КПД. Среди прочего, это означает, что он работает при более низкой температуре, чем другие типы однофазных двигателей сопоставимой мощности.

Единственным недостатком двигателя с запуском от капсюля / запуском по капле является его более высокая цена — в основном из-за большего количества конденсаторов и пускового выключателя.Но это электростанция, способная работать с приложениями, слишком требовательными для любого другого типа однофазного двигателя. К ним относятся деревообрабатывающее оборудование, воздушные компрессоры, водяные насосы высокого давления, вакуумные насосы и другие приложения с высоким крутящим моментом, требующие от 1 до 10 л.с.

Шестой столб

В отличие от всех рассмотренных выше типов однофазных двигателей, двигатели с расщепленными полюсами имеют только одну главную обмотку и не имеют пусковой обмотки, Рис. 5 . Запуск осуществляется с помощью конструкции, которая кольцевит непрерывной медной петлей вокруг небольшой части каждого полюса двигателя.Это «затеняет» эту часть полюса, заставляя магнитное поле в кольцевой области отставать от поля в неокрашенной части. Реакция двух полей заставляет вал вращаться.

Поскольку электродвигатель с экранированными полюсами не имеет пусковой обмотки, пускового переключателя или конденсатора, он электрически прост и недорог. Кроме того, скорость можно регулировать просто путем изменения напряжения или с помощью многоточечной обмотки. С механической точки зрения конструкция двигателя с расщепленными полюсами позволяет производить крупносерийное производство. Фактически, это обычно считаются «одноразовыми» двигателями — их намного дешевле заменить, чем ремонтировать.

Двигатель с расщепленными полюсами имеет много положительных характеристик, но также имеет ряд недостатков. Его низкий пусковой крутящий момент обычно составляет от 25 до 75% крутящего момента при полной нагрузке. Это двигатель с высоким скольжением и скоростью вращения на 7–10% ниже синхронной скорости. Кроме того, он очень неэффективен, обычно ниже 20%.

Низкая начальная стоимость подходит для двигателей с расщепленными полюсами для маломощных или легких условий эксплуатации. Возможно, наиболее часто они используются в многоскоростных вентиляторах для домашнего использования. Но низкий крутящий момент, низкая эффективность и менее прочные механические характеристики делают двигатели с экранированными полюсами непрактичными для большинства промышленных или коммерческих применений, где нормой является более высокая частота цикла или непрерывная работа.

Приведенная выше информация содержит рекомендации по определению правильного типа двигателя для вашего приложения. Однако есть особые случаи и приложения, в которых допустимо отклонение от этих рекомендаций. Обязательно обратитесь к производителю двигателя за технической поддержкой в ​​этих областях.

Конденсаторы

Пусковой конденсатор. Электролитический пусковой конденсатор помогает двигателю достичь наиболее выгодных фазовых углов между пусковой и главной обмотками для достижения максимального момента заторможенного ротора на каждый ампер заторможенного ротора.Он отключается от цепи пуска, когда двигатель достигает примерно 75% скорости полной нагрузки.

Пусковой конденсатор рассчитан на кратковременный режим работы. Продолжительное приложение напряжения к конденсатору приведет к преждевременному выходу из строя, если не немедленному разрушению.

Типичные характеристики пусковых конденсаторов двигателя находятся в диапазоне от 100 до 1000 микрофарад (мкФ) и от 115 до 125 В переменного тока. Однако для специальных приложений требуются конденсаторы на напряжение от 165 до 250 В переменного тока, которые физически больше, чем конденсаторы с более низким номинальным напряжением при той же емкости.Емкость — это мера того, сколько заряда конденсатор может хранить относительно приложенного напряжения.

Рабочий конденсатор. Они сконструированы так же, как пусковые конденсаторы, за исключением электролита. Они предназначены для непрерывной работы в цепи запуска конденсаторного двигателя / двигателя с конденсаторным пуском. Они выдерживают более высокие напряжения в диапазоне от 250 до 370 В переменного тока. У них также меньшая емкость, обычно менее 65 мкФ.

Кевин Хейнеке — инженер-электрик в группе двигателей переменного тока Leeson Electric Corp., Графтон, Висконсин. Он проработал в Лисоне 8 лет и имеет степень инженера-электрика в инженерной школе Милуоки, а также степень младшего специалиста по электромеханической технологии в техническом колледже Морейн-Парк.

Статьи по теме

Двигатели и приводы

Для чего используется конденсатор в электродвигателе?

Конденсатор двигателя, такой как пусковой конденсатор или приводной конденсатор (включая двухтактный конденсатор), представляет собой электрический конденсатор, который изменяет ток одной или нескольких обмоток однофазного асинхронного двигателя CA для создания вращающегося магнитного поля.Существует два распространенных типа моторных конденсаторов: приводные конденсаторы и пусковые конденсаторы. Емкость обозначена в микрофарадах (мкФ). Старые конденсаторы могут быть обозначены устаревшими терминами «mfd», что означает «микрофарад», а «MFD» — «миллифарад».

Конденсаторы двигателя

используются в кондиционерах, гидромассажных ваннах, моторизованных воротах, больших вентиляторах или сушильных шкафах с принудительной подачей воздуха. «Двухтактный конденсатор» используется в некоторых компрессорных установках кондиционера для увеличения мощности как двигателей вентиляторов, так и двигателей компрессоров.

Пусковые конденсаторы

Провода стартера ненадолго увеличивают крутящий момент двигателя и позволяют двигателю двигаться быстро и быстро.Пусковой конденсатор остается в цепи достаточно долго, чтобы быстро привести двигатель в движение с заданной скоростью, обычно около 75% от максимальной скорости, затем он удаляется из цепи, часто с помощью центробежного переключателя, который переводит его скорость. После этого двигатель работает более эффективно с рабочим конденсатором.

Пусковые конденсаторы имеют номиналы более 70 мкФ с четырьмя основными классами напряжения: 125 В, 165 В, 250 В и 330 В. Примеры конденсаторов двигателя: конденсатор от 35 до 370 В или 88-108 мкФ при 250 В. вольт пусковой конденсатор.
Пусковые конденсаторы более 20 мкФ всегда являются алюминиевыми электролитическими конденсаторами, не поляризованными с нетвердыми электролитами, и поэтому применимы только для короткого времени запуска двигателя.

Двигатель не будет работать должным образом, если центробежный выключатель сломан. Если переключатель всегда «разомкнут», конденсатор стартера не является частью цепи, препятствуя запуску двигателя. Если переключатель всегда «замкнут», пусковой конденсатор всегда включен, что может привести к его разрушению. Если двигатель не запускается, конденсатор гораздо более вероятен, чем выключатель.

Рабочие конденсаторы

Некоторым двигателям переменного тока требуется «конденсатор» для питания вторичной фазной катушки (вспомогательной катушки) для создания вращающегося магнитного поля во время работы двигателя.

Рабочие проводники предназначены для непрерывной работы при включенном двигателе, поэтому не используются электролитические конденсаторы и используются конденсаторы с полимерами с низкими потерями. Конденсаторы — это в основном конденсаторы из полипропиленовой пленки, которые находятся под напряжением все время, когда двигатель работает.Рабочие проводники имеют номинал от 1,5 до 100 мкФ с классом напряжения 370 В или 440 В.

Если установлена ​​неправильная емкость, это вызовет неравномерное магнитное поле вокруг ротора. Это приводит к колебаниям ротора на неровностях, вызывая неравномерное вращение, особенно под нагрузкой. Это колебание может вызвать шум двигателя, может увеличить потребление энергии, вызвать снижение производительности и перегрев двигателя

Что должен знать каждый инженер-конструктор о конденсаторах двигателя

Энтони Колон, Genteq

Если говорить о конденсаторных продуктах и ​​множестве производителей в мире, есть ли разница в качестве? Краткий ответ: да.Конденсатор — это электрический компонент, который временно хранит электрический заряд. Самая простая форма конденсатора — это две проводящие пластины, разделенные изоляционным материалом или диэлектриком. Когда на проводящие пластины подается напряжение, конденсатор начинает накапливать заряд для возможного высвобождения энергии.

Многие двигатели в сегменте HVACR снабжены рабочим конденсатором. Металлизированный пленочный конденсатор, предназначенный для непрерывной работы, позволяет однофазному электродвигателю переменного тока работать с высокой эффективностью, всегда оставаясь под напряжением и подключенным к электрической цепи двигателя.Типичный рабочий конденсатор находится в диапазоне от 2 мкФ до 80 мкФ и рассчитан на 370 В переменного тока или 440 В переменного тока. Рабочий конденсатор надлежащего размера увеличит эффективность работы двигателя за счет обеспечения надлежащего «фазового угла» между напряжением и током для создания вращательного электрического поля, необходимого для двигателя.

Почему так важно качество

Ключом к качеству конденсатора, помимо использования качественных материалов при его производстве, являются конструкция, системы контроля качества и испытания производительности на протяжении всего производственного процесса, которые гарантируют, что конденсатор будет соответствовать требованиям промышленных стандартов для долгосрочной работы.Большинство, если не все конденсаторы, будут тестировать одно и то же в готовом виде, но в течение срока службы конденсатора между производителями будет разница в производительности. Именно здесь отраслевой стандарт может помочь предоставить руководство по оценке качества и долговременной надежности оцениваемого или аттестованного конденсатора.

Отраслевые стандарты

За прошедшие годы было разработано несколько отраслевых стандартов, но наиболее строгим, тщательным и широко признанным является EIA-456-A.Это основа большинства стандартов надежности OEM для конденсаторов.

EIA-456-A был создан Альянсом электронной промышленности (EIA). Этот стандарт в основном используется в США и является всеобъемлющим стандартом для металлизированных пленочных конденсаторов переменного тока. Он не только охватывает приложения, работающие с двигателями, но также включает конденсаторы, используемые в системах освещения с высокой интенсивностью разряда, а также в приложениях общего назначения, таких как блоки питания и блоки коррекции коэффициента мощности.

EIA-456-A установил стандарт надежности, включающий испытание на срок службы (HALT), в котором конденсаторы подвергаются 125% номинального напряжения и температуре на 10 ° C выше номинальной в течение 2000 часов. Этот тест моделирует 60 000 часов полевого срока службы.

Например, конденсатор, рассчитанный на 5 мкФ / 440 В переменного тока, с рабочей температурой 70 ° C, испытывается при 550 В переменного тока и 80 ° C в течение 2000 часов. Если вы оцениваете 5 000 часов работы конденсатора в год, конденсатор на 60 000 часов может прослужить около 12 лет в полевых условиях.EIA-456-A требует, чтобы частота отказов в первый год составляла не более 0,50 процента, и рейтинг выживаемости не менее 94 процентов по истечении 60 000 часов эксплуатации.

На рис. 1 показано количество времени тестирования и его срок службы в полевых условиях.

Общая стоимость владения

Двумя ключевыми составляющими совокупной стоимости владения приобретенным продуктом являются начальная цена покупки и стоимость гарантии. Первоначальная закупочная цена просто состоит из авансовых затрат на получение продукта, в то время как стоимость гарантии — это сопутствующие расходы на преждевременные отказы в полевых условиях после установки, когда компания должна будет исправить проблему.

На рис. 2 показаны продукты нескольких производителей конденсаторов, которые были выбраны случайным образом и протестированы с помощью цифрового мультиметра TPI 135. Следует отметить, что все 3 конденсатора дают одинаковые показания. Типично видеть, как производитель указывает емкость конденсатора на этикетке продукта с номиналом в микрофарадах с допуском +/- процентов. Наиболее распространенный допуск, предусмотренный в сегменте HVACR для конденсаторов, составляет +/- 6 процентов. Все три показания находятся в пределах допуска 45 мкФ +/- 6 процентов.Конденсатор считается проходящим, если его показания в микрофарадах находятся в пределах диапазона допуска — в данном случае от 42,3 мкФ до 47,7 мкФ. Как показано на Рисунке 2, все конденсаторы соответствуют критериям.

К сожалению, первоначальные показания не отражают долгосрочную надежность продукта. Тест EIA-456-A HALT — это то, как мы определяем надежность. В следующем примере предполагается, что гарантийный срок для продукта, в котором используется конденсатор, покрывает как детали, так и работу в первый год.По истечении первого года гарантия распространяется только на детали. Три конденсатора, показанные на рисунке 2, были испытаны на соответствие стандарту EIA-456-A. Для каждого из трех производителей были протестированы десять частей одного и того же рейтинга. Ниже приведены результаты испытаний каждого конденсатора за один, пять и десять лет имитированной полевой надежности. Как указывалось ранее, расчетное время работы конденсатора в год составляет 5000 часов.

На рис. 3 показано моделирование одного, пяти и десяти лет эксплуатации конденсатора и показано, что со временем частота отказов конденсатора начинает увеличиваться в зависимости от производителя.Результаты тестирования демонстрируют, что после 12 месяцев работы в полевых условиях (предполагалось, что 5 000 часов работы в год) у одного производителя не было отказов, у одного — 40 процентов отказов, а у третьего — 10 процентов.

Хотя Mfg C имел только один сбой, на рисунке 4 показаны очень реальные эффекты 10-процентной частоты отказов, а также истинная общая стоимость владения одного отказавшего конденсатора для бизнеса. Анализ результатов на Рисунке 4 показывает, что кажущаяся низкая частота отказов в 10 процентов обойдется бизнесу примерно в 3500 долларов только на гарантийных расходах.

Как показано на Рисунке 5, более дорогие конденсаторы будут стоить дороже, но при этом покупается качество и надежность. Если конденсаторы не соответствуют указанным характеристикам и характеристикам надежности, это может повлиять на всю систему. Неисправный конденсатор приведет к увеличению нагрева двигателя, износу подшипников и изоляции и увеличению уровня шума. И в конечном итоге это приведет к отказу двигателя.

Продукты

, такие как конденсаторы, могут показаться логичным местом для экономии нескольких долларов за счет перехода на самый дешевый продукт в сегменте HVACR.Хотя вы можете сэкономить несколько долларов на первоначальных затратах, связанные с этим гарантийные расходы в конечном итоге приведут к созданию конденсатора с самой высокой общей стоимостью. Вдобавок к этим затратам существуют нематериальные долгосрочные последствия, связанные с отказами на местах, такие как репутация компании в отрасли, повышенное внимание к сбоям в продуктах поставщика по сравнению с улучшениями в конструкции OEM и потерями. продажи из-за возможных сбоев на местах.

Энтони Колонин из Genteq является автором этой статьи для Appliance Design.

Читать статью полностью

Пусковые и рабочие конденсаторы двигателя.

ГЛАВНАЯ> РЕСУРСЫ> Конденсаторы запуска и работы двигателя

Что такое конденсаторы двигателя?

Конденсатор двигателя — это особый тип конденсатора, который работает в сочетании с асинхронными двигателями переменного тока. эти конденсаторы отвечают за запуск двигателей переменного тока или питание их для поддержания их работы.Конденсаторы двигателя доступны в трех различных типах: пусковой конденсатор, Рабочий конденсатор и двойной рабочий конденсатор. У каждого типа есть свое конкретное приложение, для которого он используется.

Пусковой конденсатор, подключенный к двигателю переменного тока, посылает на двигатель толчок, чтобы запустить его. Затем рабочий конденсатор, подключенный к двигателю переменного тока, посылает регулярные серии толчков, которые поддерживают двигатель.Между тем двойной рабочий конденсатор отвечает за питание двух отдельных двигателей. Чаще всего конденсаторы двигателя используются в кондиционерах; Эти конденсаторы работают вместе с тремя различными двигателями: двигателем компрессора, двигателем вентилятора и двигателем вентилятора.

К популярным производителям относятся:

  • Genteq
  • Aerovox
  • CDE
  • Barker Microfarads Inc.(ИМТ)
Схема конденсатора двигателя

Пусковые конденсаторы

Пусковые конденсаторы отвечают за увеличение пускового момента двигателя переменного тока, который, в свою очередь, быстро включает и выключает двигатель переменного тока. Пусковые конденсаторы остаются в цепи достаточно долго, чтобы двигатель достиг определенной скорости (обычно 75% полной мощности), а затем вынимается из цепи центробежным выключателем.После запуска электродвигатели переменного тока более эффективно работают с рабочими конденсаторами.

Пусковые конденсаторы — это электрохимические устройства, состоящие из плотно намотанной алюминиевой фольги, разделенной слоями бумаги, которые пропитаны проводящим электролитом. Травление фольги перед формованием и намоткой увеличивает как эффективную площадь поверхности фольги, так и емкость на единицу объема готового конденсатора.Вся сборка помещена в корпус из литого пластика, устойчивого к воздействию влаги и масел. Пусковые конденсаторы рассчитаны на работу при температуре окружающей среды от -40 ° C до + 65 ° C и при частоте от 50 Гц до 60 Гц (применение на более высоких частотах не рекомендуется).

Пусковые конденсаторы имеют фиксированную емкость и напряжение. Обычно они имеют диапазон емкости выше 70 мкФ.
Наиболее распространенные напряжения:

Примечание. Любой пусковой конденсатор номиналом более 20 мкФ представляет собой неполяризованный алюминиевый электролитический конденсатор с нетвердым электролитом.Это означает, что это применимо только для материнского использования.

Рабочие конденсаторы

Для работы многих однофазных двигателей переменного тока необходимо вращающееся магнитное поле. Рабочий конденсатор отвечает за питание второй фазной обмотки (вспомогательной катушки) в двигателе переменного тока, что, в свою очередь, создает вращающееся магнитное поле, которое поддерживает работу двигателя.

Рабочие конденсаторы предназначены для непрерывного использования во время работы двигателя переменного тока. в отличие от пусковых конденсаторов, которые включены в цепь только на короткое время, чтобы запустить двигатель. Вот почему полимерные конденсаторы с низкими потерями используются в качестве рабочих конденсаторов из-за более длительного срока службы и меньших потерь тока, в отличие от электролитических конденсаторов, которые идеально подходят для кратковременного использования.

Рабочие конденсаторы бывают двух разных типов: мокрого и сухого. Конденсатор для влажного режима работы заполнен жидкостью, предотвращающей перегрев конденсатора. Сухой стиль имеет тот же диэлектрик, но он не заполнен жидкостью, что делает его вес значительно меньше, чем мокрый. В настоящее время большинство рабочих конденсаторов поставляются с пленочным полипропиленовым или полиэфирным диэлектриком.

Рабочие конденсаторы имеют фиксированные емкость и напряжение. Емкость составляет от 1,5 мкФ до 100 мкФ.
Наиболее распространенные напряжения:

Конденсаторы двойного действия

Двойные рабочие конденсаторы — это рабочие конденсаторы, которые могут питать два электродвигателя вместо одного.Этот конденсатор в основном экономит ваше пространство при его использовании, поскольку он объединяет два конденсатора в одном корпусе. Конденсаторы двойного хода обычно имеют не менее трех выводов или клемм, обозначенных буквами «C», «FAN» и «HERM».

  • C ommon
  • ВЕНТИЛЯТОР
  • HERM герметичный компрессор

Они рассчитаны на два значения емкости, что позволяет использовать конденсатор для двух разных применений одновременно.Например, 20 мкФ + 5 мкФ при 370 В переменного тока. Конденсаторы двойного хода часто встречаются в кондиционерах. Они используются для питания как двигателя вентилятора, так и двигателя компрессора.

Ресурсы

Конденсаторы запуска / работы / двойной работы двигателя можно найти в больших вентиляторах, тепловых печах с принудительной подачей воздуха, кондиционерах, воротах с электроприводом и водяных насосах для джакузи.

Щелкните здесь, чтобы просмотреть наш перечень конденсаторов Motor Run .
Щелкните здесь, чтобы просмотреть наш перечень конденсаторов Motor Start .

В чем разница между двигателем с 1 конденсатором, 2 конденсаторами и без конденсаторов

На этот вопрос нелегко ответить, потому что я могу вспомнить около двух десятков различных конструкций электродвигателей переменного тока в верхней части моей головы, в большинстве из которых не используются конденсаторы . Поскольку вы спрашиваете на этом форуме, я предполагаю, что вы хотите узнать о двигателях большинства токарных, фрезерных, ленточных пил и т. Д.…

Вот:

Двигатели без крышки обычно являются двигателями с разделенной фазой, в них используется вторичная обмотка с обмоткой другого размера для создания вращения. Двигатели с расщепленной фазой набирают скорость дольше и имеют меньший крутящий момент, чем конденсаторные двигатели. Обычно встречается на небольших устройствах, требующих недорогих надежных двигателей. Обратите внимание, что в некотором старом оборудовании плоские конденсаторы скрыты под корпусом двигателя. Это может быть опасно, потому что люди не видят корпус конденсатора. Они думают, что двигатель не ударит их только для того, чтобы получить толчок и порезаться концевой фрезой или токарным инструментом.

Двигатели с одной крышкой могут быть двигателями с пусковым конденсатором или двигателями с рабочим конденсатором. Во-первых, двигатель Start Cap, это, по сути, двигатели с разделенной фазой, в которых используется конденсатор, который помогает двигателю быстрее набирать обороты. Когда двигатель достигает прибл. На 75-80% его полных оборотов центробежный механический переключатель выводит конденсатор из цепи. Двигатель с рабочим конденсатором использует свой конденсатор для создания вращающегося магнитного поля для создания вращения. Конденсатор на двигателе рабочего конденсатора находится под напряжением, пока на двигатель подается питание.

Двигатели с двумя крышками почти всегда являются двигателями с пусковым конденсатором.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*