Частота вращения двигателя: Частота вращения электродвигателя | Полезные статьи

Содержание

Частота вращения электродвигателя | Полезные статьи

Частота вращения электродвигателя напрямую влияет на его производительность и уровень энергопотребления. Поэтому регулирование частоты вращения электродвигателя является востребованной в промышленности функцией, которая стала доступной с появлением специальных силовых полупроводниковых приборов — тиристоров, а также транзисторов IGBT.

Рисунок 1. Один из видов преобразователей частоты вращения электродвигателей На сегодняшний день различные способы управления асинхронными электромоторами широко применяются в промышленности, ведь изменяемая частота вращения электродвигателя позволяет не только экономить энергию, но и существенно усовершенствовать управление различными технологическими процессами.

Стоит отметить, что если требуется регулировка скорости, гораздо чаще используются двигатели постоянного тока.

Поэтому использовать преобразователь частоты электродвигателя в данном случае нет необходимости. Управление такого двигателя осуществляется регулированием напряжения, благодаря чему он отличается простотой эксплуатации. При этом двигатели постоянного тока отличаются высокой стоимостью, сложной конструкцией и не всегда подходящими для промышленной эксплуатации характеристиками.

С асинхронными двигателями все наоборот: они надежны, сравнительно недороги и имеют хорошие эксплуатационные характеристики. Но с ними можно использовать только гораздо более дорогостоящие и сложные регуляторы скорости вращения. Впрочем, с появлением биполярных транзисторов с изолированным затвором данная проблема стала гораздо менее острой, поэтому асинхронные двигатели с регулируемой частотой вращения также довольно широко применяются в промышленных масштабах.

Самостоятельное определение частоты вращения электродвигателя

Не зная частоты вращения электродвигателя, во многих случаях нет возможности эксплуатировать его. Если документация к мотору отсутствует, приходится думать, как определить частоту вращения электродвигателя самостоятельно. Сделать это можно, воспользовавшись пошаговой инструкцией:

  1. Современные асинхронные электродвигатели делятся на три группы, по количеству оборотов в минуту. Первая группа — двигатели с частотой до 1000 об/мин. Вторая группа — до 1500 оборотов. Третья группа — до 3000 оборотов в минуту.
  2. Чтобы определить частоту вращения электродвигателя, нужно выявить, к какой группе он относится. Для этого необходимо открыть его крышку и найти катушку обмотки.
  3. Далее нужно примерно определить размеры катушки по отношению к кольцу статора. Точные расчеты и замеры здесь не требуются.
  4. Если катушка по размеру способна закрыть собой примерно половину кольца статора, частота вращения электродвигателя составляет 3000 об/мин. Если катушка покрывает около трети самого кольца, то электродвигатель относится ко второй группе. Если размер катушки равен четверти кольца — число оборотов не превышает 1000.

Это только примерный подсчет, но даже такие данные уже помогут определить основные характеристики, возможности, а значит, и сферу применения исследуемого электродвигателя.

Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту [email protected] с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей

Номинальные частоты вращения электрических машин

1. Номинальные частоты вращения генераторов и двигателей постоянного тока должны соответствовать указанным в табл.1

Таблица 1 Номинальные частоты вращения машин постоянного тока

Номинальная частота вращения, об/мин

Генераторы

Двигатели

25
50
75
100
125
150
200
300
400
500
600
750
1000
1500
(2200)
3000
4000
(5000)
6000
7500
10000
12 500
15 000
20 000
30 000
40 000
60 000









X
X
X
X
X
X
(X)
X
X
(X)
X
X
X
X
X



X
X
X
X
X
X
X
X
X
X
X
X
X
X
(X)
X
X
(X)
X
X
X
X
X
X
X
X
X

 

Примечания:
1. Номинальные частоты вращения генераторов постоянного тока, когда их приводными двигателями являются асинхронные двигатели, могут быть меньше указанных в таблице на частоту вращения, определяемую величиной номинального скольжения приводного двигателя.
2. Номинальные частоты вращения, заключенные в скобки, применять не рекомендуется.
3. Допускается применение номинальных частот вращения, отличных от указанных в таблице, для двигателей, предназначенных для привода шахтного подъема и механизмов металлургического производства, для генераторов с Непосредственным приводом от авиационных и автомобильных двигателей.
4. Номинальные частоты вращения двигателей, предназначенных для работы в электроприводе механизмов металлургических агрегатов и на подъемнотранспортных механизмах, должны соответствовать ГОСТ 184-61, малогабаритных автотракторных электродвигателей — ГОСТ 9443-67.

2. Номинальные частоты вращения электрических машин переменного тока (до 15 000 об/мин) при частотах тока, предусмотренных ГОСТ 6697-67 в диапазоне от 50 до 1000 Гц, должны соответствовать: для синхронных двигателей и генераторов — указанным в табл. 2, для асинхронных трехфазных, двухфазных и однофазных двигателей — указанным в табл. 3.
3. Номинальные частоты вращения электрических машин переменного тока при частотах тока, предусмотренных ГОСТ 6697-67 в диапазоне до 25 Гц, должны соответствовать синхронным частотам вращения, получающимся в результате исполнения электрических машин с числом полюсов:

  • 2 и 4 для синхронных генераторов и двигателей;
  • 2, 4, 6 и 8 для асинхронных двигателей (трех-, двух- и однофазных).

4. Применение номинальных частот вращения, отличных от указанных в пп. 2 и 3, допускается:

  • для электрических машин переменного тока на частоты, отличающиеся от стандартных в технически обоснованных случаях;
  • для генераторов переменного тока с непосредственным приводом от авиационных двигателей;
  • для двигателей магнитной записи и аппаратуры связи, применяемых в системах автономной синхронизации.

Таблица 2 Номинальные частоты вращения синхронных машин

Номинальная частота вращения, об/мин

Синхронные двигатели (Д) и генераторы (Г) частоты, Гц

50

100

200

400

1000

Д

Г

Д

Г

Д

Г

Д

Г

Д

Г

100
125
150
166,6
187,5
214,3
250
300
375
428,6
500
600
750
1 000
1 500
3 000
4 000
6 000
8 000
10 000
12 000
15 000

X
X
X
X
X

X
X
X

X
X
X
X
X
X






X
X

X
X
X
X
X
X
X
X
X
X
X
X




















Х

Х
















Х
Х
Х

Х



















(Х)
Х


Х















Х
Х

Х
Х

Х















(Х)
(Х)
(Х)
Х
Х

Х















Х
Х

Х

Х
Х
Х
















(Х)
(Х)
Х


Х















Х
Х





Примечания:
1. Номинальные частоты вращения, заключенные в скобки, применять не рекомендуется.
2. Для гидрогенераторов с частотой 50 Гц и мощностью свыше 10 000 кВт допускается применение номинальных частот вращения ниже 125 об/мин.

Таблица 3 Номинальные частоты вращения асинхронных электродвигателей

Номинальная частота вращения (синхронная), об/мин

Асинхронные двигатели частоты, Гц

50

100

200

400

1000

100
125
150
166,6
187,5
250
300
375
500
600
750
1000
1500
3000
4000
6000
8000
10 000
12 000
15 000

(X)
(X)
(X)
(X)
(X)
X
X
X
X
X
X
X
X
X


















X

X


















X


X













(X)
(X)
(X)
X
X

X














(X)
(X)
(X)

X
X
X

Примечания:
1. Номинальные частоты вращения, заключенные в скобках, применять не рекомендуется.
2. Номинальные асинхронные частоты вращения могут быть меньше указанных в таблице на частоту вращения, определяемую величиной номинального скольжения.

5. Номинальное скольжение асинхронных трехфазных электродвигателей с нормальным, скольжением должно быть (в процентах синхронной скорости вращения) не более:
При мощности двигателя от 0,1 до 0,6 кВт ………..10
То же свыше 0,6 до 2,2 кВт ………………………….. 7
То же свыше 2,2 до 10 кВт …………………………… 5,5
То же свыше 10 кВт ……………………………………. 3,5
Номинальное скольжение асинхронных трехфазных двигателей мощностью до 0,1 кВт, асинхронных двухфазных, однофазных и двигателей с повышенным скольжением стандартом не устанавливается.
6. Номинальные частоты вращения универсальных коллекторных двигателей должны быть следующие: 2700; 5000; 6000; 8000; 12 000; 14 000 об/мин.
7. Допускаемые отклонения от номинальной частоты вращения могут составлять 0,001-5% номинальной частоты вращения и регламентируются ГОСТ 10683-63 для конкретных видов электрических машин и в зависимости от частоты тока.
8. Номинальные частоты вращения электрических машин специального исполнения (электродвигателей для привода гребных винтов; возбудителей; шаговых; импульсных; тяговых и др.; электрогенераторов автотракторных; для взрывных работ и др.) должны соответствовать стандартам или техническим условиям на эти машины и могут отличаться от указанных в данном параграфе.

Формула расчета частоты вращений

При проектировании оборудования необходимо знать число оборотов электродвигателя. Для расчёта частоты вращения есть специальные формулы, различные для двигателей переменного и постоянного напряжения.

Тахометр

Синхронные и асинхронные электромашины

Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

Синхронная скорость

Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

Скольжение

В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • f – частота сети,
  • p – число пар полюсов,
  • s – скольжение.

Формула расчёта скорости асинхронного двигателя

Такие устройства есть двух типов:

  • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
  • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Внимание! Скорость вращения коллекторных электродвигателей, работающих от сети переменного тока, не зависит от частоты сети.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Видео

Оцените статью:

Ненормальная частота вращения двигателя | Неисправности машин асинхронных двигателей

Страница 3 из 6

2-7. НЕНОРМАЛЬНАЯ ЧАСТОТА ВРАЩЕНИЯ ДВИГАТЕЛЯ
2-7-1. Двигатель не идет в ход.
Отсутствует ток в статоре, что может быть из-за перегорания предохранителей или выключения неисправного автоматического выключателя.
Поставить новые предохранители; исправить автоматический выключатель.
2-7-2» Двигатель не идет в ход, при разворачивании от руки работает толчками и ненормально гудит; в одной фазе статора нет тока.
Обрыв в одной фазе сети или внутренний обрыв в обмотке статора при соединении фаз звездой (явления, происходящие в двигателе при внутреннем обрыве обмотки статора и соединении фаз треугольником, описаны в п. 2-7-11).

Если обрыв фазы происходит во время работы двигателя, то последний может продолжать работать с номинальным вращающим моментом, но частота вращения при этом сильно понижается, а сила тока настолько увеличивается, что при отсутствии надлежащей максимальной защиты может перегореть обмотка статора или ротора.
Проверить вольтметром напряжение на зажимах статора. Если имеется обрыв в одной фазе сети или напряжение во всех трех фазах несимметрично (например, в случае перегорания предохранителя или обрыва в одной фазе первичной обмотки трансформатора), то устранить неисправность сети. Если сеть исправна, то имеется обрыв в обмотке статора   (нахождение  обрыва  в  обмотке см. в приложении 8). 2-7-3. Двигатель не идет в ход, несмотря на то, что напряжение на зажимах статора номинальное, а сила тока во всех трех фазах статора одинакова; все три напряжения на кольцах, измеренные при неподвижном разомкнутом роторе, равны (при двухфазном роторе два напряжения между средним и крайними кольцами равны между собой, а напряжение между двумя крайними кольцами больше первых двух в 1,4 раза).
А. Обрыв в двух (или в трех) фазах пускового реостата или в соединительных проводах между ротором и пусковым реостатом.
Отыскать при помощи мегомметра или контрольной лампы место обрыва и исправить.
Б. Сильное одностороннее притяжение ротора к статору из-за большой разработки вкладышей подшипников, смещения подшипниковых щитов или подшипниковых стояков,
2-7-4. При включении двигателя в сеть ротор не вращается — «прилипает»; выведенный из такого состояния, он самостоятельно разворачивается и продолжает нормально работать. Такое явление наблюдается главным образом в короткозамкнутых двигателях.
Неудачно выбраны числа пазов статора и ротора. Особенно сильно проявляется «прилипание» при равенстве чисел пазов статора и ротора. Неудачное соотношение чисел зубцов ведет к резкому снижению начального момента двигателя. См. сноску в п. 2-7-7.
Установить ротор, имеющий иное число пазов. Чтобы избежать явления «прилипания» и «застревания» (см. п. 2-7-7), заводы-изготовители применяют также скашивание пазов ротора по отношению к пазам статора, т. е. располагают пазы ротора под небольшим углом к оси вала [26]. 2-7-5. Двигатель с фазным ротором идет в ход при разомкнутой цепи ротора.

Короткое замыкание в роторе. См. п. 2-5-3.
Следует отметить, что иногда двигатель идет в ход и при исправной обмотке ротора от вращающего момента, развиваемого от гистерезиса и вихревых токов, а также при наличии широких бандажей на роторе. Вращающий момент двигателя при этом очень мал. В этом случае ничего предпринимать не нужно, так как двигатель вполне исправен. 2-7-6. Двигатель с короткозамкнутым ротором хорошо идет в ход без нагрузки, с нагрузкой в ход не идет. Нагрузка при пуске велика.

Уменьшить нагрузку при пуске. 2-7-7. Двигатель с короткозамкнутым ротором не достигает нормальной частоты вращения, а «застревает» и начинает устойчиво работать при низкой частоте вращения, которая в несколько раз меньше номинальной (составляет l/7,  1/4, 1/3 и т. д. номинальной; знаменатели дробей представляют собой нечетные числа, не делящиеся на 3). Чаще всего это происходит при частоте вращения, составляющей номинальной. Однако если ротор принудительно привести во вращение с частотой, превышающей указанное значение, то он разворачивается до номинальной частоты вращения и продолжает нормально работать.
Отклонение формы кривой распределения магнитной индукции в зазоре от синусоиды. Основной причиной этих отклонений является неправильное сочетание чисел пазов статора и ротора для данного числа полюсов. При этом в кривой магнитной индукции появляются так называемые высшие гармоники индукции 5, 7, 11, 13-го и т.д. порядка (несинусоидальную кривую можно представить состоящей из основной синусоиды — первого порядка и синусоид высшего порядка, имеющих частоты, в 5, 7, 11 и т. д. раз превышающие основную). Указанные гармоники создают поля, вращающиеся в пространстве с частотой вращения, меньшей (в 5, 7, И и т.д. раз), чем частота вращения магнитного поля от основной гармоники. Вращающие моменты, создаваемые высшими гармониками, искажая форму кривой момента, могут оказать тормозящее действие на двигатель при его разгоне.
На рис. 2-1 показана кривая / изменения вращающего момента двигателя при наличии 7-й гармоники индукции; в кривой появляется провал. Бели величина этого провала настолько велика, что пусковой вращающий момент Мпуск, развиваемый двигателем, окажется недостаточным для преодоления статического момента нагрузки AfCY в процессе разгона, то, достигнув точки а, двигатель начнет устойчиво работать с частотой вращения, примерно равной 1/7 номинальной.

 


Рис. 2-1.

Кривая момента М асинхронного двигателя в зависимости от скольжения при наличии высших гармоник

Кривая 2 на рис. 2-1 соответствует нормальному вращающему моменту, когда отсутствуют высшие гармоники в кривой магнитной индукции.
Заменить ротор другим либо устранить 7-ю гармонику индукции, перемотав обмотку статора, для чего применить двухслойную обмотку с сокращенным шагом (порядка.  Кривая 3 соответствует моменту 7-й гармоники индукции
2-7-8. При номинальной нагрузке двигатель вращается с частотой, не достигающей номинальной.
A. Напряжение на зажимах двигателя понижено.
Повысить напряжение до номинального или, если это невозможно, уменьшить нагрузку во избежание перегрева двигателя. Б. Плохой контакт в цепи ротора. См. п. 2-5-2.
B. Велико сопротивление в цепи ротора (длинные или тонкие провода между ротором и пусковым реостатом, невыведен-ный или неисправный реостат и т. п.).
Увеличить сечение проводов; исправить реостат; перенести пусковой реостат ближе к двигателю. Г. Обмотка статора вместо треугольника соединена звездой.

Соединить обмотку статора треугольником. 2-7-9. Частота вращения ротора ниже номинальной и сильно колеблется даже при небольшой нагрузке двигателя; ток в статоре сильно пульсирует.
1 Следует отметить, что заводы-изготовители принимают меры для предотвращения явлений «застревания» и «прилипания» (см. п. 2-7-4), а также шумов (см. п. 2-9-3). Поэтому в машинах заводского изготовления эти явления весьма редки. Все они наблюдаются главным образом в тех случаях, когда для изменения номинальной частоты вращения обмотку статора перематывали на соответственно другое число полюсов, при этом соотношение чисел пазов статора и ротора оказалось неблагоприятным. С этим же явлением можно встретиться при замене ротора другим, взятым от другой машины.
Плохой контакт в цепи ротора. См. п. 2-5-2.
2-7-10. Двигатель работает устойчиво при половинной номинальной частоте вращения и сильно гудит, особенно при пуске. Будучи развернут до номинальной частоты вращения, он продолжает работать нормально, но при повышении нагрузки частота вращения вновь падает до половины номинальной.
Обрыв в одной фазе ротора. Обрыв может быть в обмотке ротора, в щеточном аппарате, в пусковом реостате или в соединениях между ротором и пусковым реостатом.
Определить при помощи мегомметра или контрольной лампы место обрыва и устранить его.
2-7-11. Двигатель хорошо идет в ход и хорошо работает с номинальной нагрузкой, ио сила тока в фазах различна (в одной фазе на 73 % больше, чем в двух других фазах) и частота вращения ротора ниже номинальной. Обмотка одной фазы статора остается холодной.
Внутренний обрыв в одной фазе обмотки статора при соединении фаз треугольником. Вследствие этого получается открытый треугольник и двигатель хорошо идет в ход. Но так как работают только две фазы, то мощность двигателя понижается на !/з- Нагревание двигателя при этом зависит от нагрузки и может остаться в пределах нормы (явления, происходящие в двигателе при внутреннем обрыве обмотки статора и соединении фаз звездой см. в п. 2-7-2).
Найти место обрыва ; если оно внутри катушки, то заменить последнюю новой или перемотать ее.
2-7-12. Двигатель плохо идет в ход и сильно гудит; сила тока во всех трех фазах различна и при холостом ходе двигателя превышает номинальную.
А. Одна фаза обмотки статора «перевернута» (рис. 2-2 и 2-3). Это большей частью случается у двигателей, имеющих шесть выводов обмотки; причина — неправильное соединение между собой выводов на доске зажимов или неправильная маркировка выводов.
Сделать соединения выводов на доске зажимов согласно схеме соединения, приложенной к двигателю, а при отсутствии ее — по буквенным обозначениям выводов обмотки, руководствуясь нормальной схемой, указанной в приложении 1.
Если буквенные обозначения отсутствуют и невозможно проверить схему соединения обмотки, то правильное соединение выводных концов обмотки можно найти по приложению 2.


Рис. 2-2. Правильное (а) и неправильное   (б)  соединение фаз звездой
Рис. 2-3. Правильное (о) и неправильное (б) соединение фаз треугольником
Б. Переключатель неправильно соединен с двигателем. Это может быть у двигателей с короткозамкнутым ротором, пуск которых производится переключением обмотки статора со звезды на треугольник посредством специального переключателя.
Проверить и правильно соединить переключатель с двигателем.

Стабилизатор частоты вращения коллекторных двигателей

Cтабилизатор частоты вращения — регулятор с положительной обратной связью по току. Информацию о частоте вращения коллекторного двигателя можно извлечь из потребляемого им тока. Этот ток содержит переменную составляющую, первая гармоника которой имеет частоту, равную частоте вращения двигателя, умноженную на число пластин коллектора. Двигатели, которые чаще всего применяются в магнитофонах, имеют три пластины коллектора. Поэтому эта частота равна утроенной частоте вращения двигателя. Именно на этом принципе и построен описываемый регулятор.

Принципиальная схема стабилизатора частоты вращения

Для получения сигнала обратной связи в цепь питания двигателя включен датчик тока R1. Ток, потребляемый двигателем, создает на этом резисторе падение, которое имеет переменную составляющую около 100 мВ peak-to-peak (график 1). Основная гармоника выделяется с помощью простейшего ФНЧ R2C1 и через разделительный конденсатор C2 поступает на вход усилителя, собранного на ОУ U1A. Коэффициент усиления задан резисторами R4R5 так, чтобы усилитель работал в режиме ограничения. На его выходе формируетя практически прямоугольный сигнал с частотой, равной утроенной частоте вращения двигателя (график 2). Этот сигнал дифференцируется с помощью цепочки C3R6R7R8 (график 3). Отрицательный выброс ограничивается диодом VD1. Далее сигнал поступает на компаратор, в роли которого использован ОУ U1B. Опорное напряжение задается с помощью делителя R9R10. На выходе компаратора формируются прямоугольные импульсы постоянной длительности (график 4). Постоянная составляющая такой импульсной последовательности пропорциональна частоте следования импульсов, т.е. частоте вращения двигателя. Импульсная последовательность интегрируется с помощью цепочек R11R12C5 и R13C6. Постоянное напряжение, пропорциональное частоте вращения, поступает на пропорционально-интегрирующий регулятор, собранный на ОУ U1C. Для получения образцового напряжения применен регулируемый стабилитрон U2. Нужную частоту вращения устанавливают регулировкой этого напряжения с помощью переменного резистора R19. Выход ОУ U1C умощнен комплементарным эмиттерным повторителем на транзисторах VT1VT2. Казалось бы, направление тока питания двигателя всегда одно и то же и достаточно было бы одиночного эмитерного повторителя, который обеспечивал бы вытекающий ток. Но на самом деле с двухтактным эмиттерным повторителем гораздо лучше поведение системы во время переходных процессов (при пуске двигателя или при резких колебаниях нагрузки на валу).

Форма сигналов в контрольных точках

Нужно отдельно остановиться на проблеме устойчивости системы автоматического регулирования. В данной ситуации дело усложняется тем, что на устойчивость влияют и механические параметры системы, которые количественно учесть очень трудно. Поэтому в некоторых случаях придется подобрать АЧХ регулятора с помощью элементов R16C7 или даже ограничить коэффициент усиления, включив параллельно этой цепочке резистор. Подбор нужно вести по критерию устойчивости регулятора как в установившемся режиме, так и во время переходных процессов. Для этого нужно с помощью осциллографа контролировать напряжение питания двигателя. При включении оно должно плавно достичь номинального значения, причем без колебательного процесса. Если при работающем я такждвигателе изменить нагрузку на валу, напряжение питание должно принять новое значение без колебательного процесса.

Полную версию этой статьи можно найти в журнале «Схемотехника», №4 за 2001 год. Автор — Л.Ридико

Низковольтные электродвигатели

Низковольтные электродвигатели

Концерн «Русэлпром» изготавливает низковольтные асинхронные электродвигатели общепромышленного применения по стандартам ГОСТ Р и CENELEC, а также двигатели взрывозащищенного исполнения и специального назначения. Каждая серия электродвигателей представляет собой широкую номенклатуру исполнений по мощности, частоте вращения, питающему напряжению и конструкции. Современный технический уровень и высокое качество используемых материалов и комплектующих гарантируют эффективность, надежность, безопасность, и удобство эксплуатации.

Основные характеристики двигателей в базовом исполнении:

  • Мощность, кВт: 1,9 — 1600
  • Частота вращения, об/мин: 3000 — 176,5
  • Напряжение питания переменного тока, В: 220, 380, 660, 1140 и другие, в том числе нестандартные
  • Габарит (в.о.в.), мм: 132 — 710
  • Степень защиты от внешних воздействий: IP54, IP55
Наименование Мощность,
кВт
Синхронная частота
вращения, об/мин
Напряжение, В

5АМХ132M2

11

3000

220/380; 380; 380/660

АИРМ132M2

11

3000

220/380; 380; 380/660

5АМХ160S2

15

3000

220/380; 380/660

5А160S2

15

3000

220/380; 380/660

7AVER160S2IE2

15

3000

220/380; 380/660

5АМХ160M2

18,5

3000

220/380; 380/660

5А160M2

18,5

3000

220/380; 380/660

7AVER160M2IE2

18,5

3000

220/380; 380/660

5АМХ180S2

22

3000

220/380; 380/660

АИР180S2

22

3000

220/380; 380/660

7AVER180S2IE2

22

3000

220/380; 380/660

5АМХ180M2

30

3000

220/380; 380/660

АИР180M2

30

3000

220/380; 380/660

7AVER180M2IE2

30

3000

220/380; 380/660

5А200M2

37

3000

220/380; 380/660

7AVER200M2IE2

37

3000

220/380; 380/660

5А200L2

45

3000

220/380; 380/660

7AVER200L2IE2

45

3000

220/380; 380/660

5А225M2

55

3000

220/380; 380/660

5АМ250S2

75

3000

220/380; 380/660

5АМ250M2

90

3000

220/380; 380/660

5АМ280S2

110

3000

380/660

5АМ280M2

132

3000

380/660

5АМ315S2

160

3000

380/660

5АМ315MA2

200

3000

380/660

5АМ315MB2

250

3000

380/660

ДАН-355S-2У3

315

3000

380; 660

5АМХ132S4

7,5

1500

220/380; 380; 380/660

АИРМ132S4

7,5

1500

220/380; 380; 380/660

5АМХ132M4

11

1500

220/380; 380; 380/660

АИРМ132M4

11

1500

220/380; 380; 380/660

5АМХ160S4

15

1500

220/380; 380/660

5А160S4

15

1500

220/380; 380/660

7AVER160S4IE2

15

1500

220/380; 380/660

5АМХ160M4

18,5

1500

220/380; 380/660

5А160M4

18,5

1500

220/380; 380/660

7AVER160M4IE2

18,5

1500

220/380; 380/660

5АМХ180S4

22

1500

220/380; 380/660

АИР180S4

22

1500

220/380; 380/660

7AVER180S4IE2

22

1500

220/380; 380/660


Наши конкурентные преимущества:

  • концерн разрабатывает и изготавливает электрические машины по индивидуальным заказам без увеличения сроков изготовления
  • более высокий КПД относительно продукции иных производителей России и стран СНГ
  • изготовление электродвигателей с промежуточной нестандартной мощностью, что сокращает издержки без потери качества и гарантийного срока
  • показатель уровня обслуживания покупателей 95%
  • изготовление электродвигателей под вашей торговой маркой
  • условия оплаты и поставки с учетом особенностей склада на вашей территории
  • процедура trade in, которая распространяется не только на двигатели, но и на агрегаты

При заказе вы можете выбрать:

  • изготовление сертифицированных двигателей для работы в составе частотно-регулируемого привода
  • подшипники различных производителей – SKF, FAG или отечественные. При необходимости в двигателе могут устанавливаться токоизолированные подшипники
  • смазку различных производителей. Унификация еще на этапе поставки смазки с принятой на предприятии эксплуатации позволяет запускать в эксплуатацию двигатель без замены смазки и требующейся при этом промывки подшипник
  • необходимую конфигурацию мест под датчики вибрации. Наиболее частыми являются заказы двигателей с местами под датчики вибрации и датчики ударных испульсов SPM, SLD. При заказе нами предлагается удобная графическая схема выбора осей измерения вибрации. Для установки уровней вибрации «Предупреждение» и «Отключение» рекомендуется использовать нормы, установленные ГОСТ Р ИСО 10816-3
  • диаметр кабельного ввода силовой коробки выводов
  • овальные установочные размеры в лапах
  • необходимый цвет двигателя или поставку в загрунтованном виде
  • протокол приемо-сдаточных испытаний

Частота вращения двигателя это

Подписка на рассылку

Частота вращения электродвигателя напрямую влияет на его производительность и уровень энергопотребления. Поэтому регулирование частоты вращения электродвигателя является востребованной в промышленности функцией, которая стала доступной с появлением специальных силовых полупроводниковых приборов — тиристоров, а также транзисторов IGBT.

Рисунок 1. Один из видов преобразователей частоты вращения электродвигателей На сегодняшний день различные способы управления асинхронными электромоторами широко применяются в промышленности, ведь изменяемая частота вращения электродвигателя позволяет не только экономить энергию, но и существенно усовершенствовать управление различными технологическими процессами.

Стоит отметить, что если требуется регулировка скорости, гораздо чаще используются двигатели постоянного тока.

Поэтому использовать преобразователь частоты электродвигателя в данном случае нет необходимости. Управление такого двигателя осуществляется регулированием напряжения, благодаря чему он отличается простотой эксплуатации. При этом двигатели постоянного тока отличаются высокой стоимостью, сложной конструкцией и не всегда подходящими для промышленной эксплуатации характеристиками.

С асинхронными двигателями все наоборот: они надежны, сравнительно недороги и имеют хорошие эксплуатационные характеристики. Но с ними можно использовать только гораздо более дорогостоящие и сложные регуляторы скорости вращения. Впрочем, с появлением биполярных транзисторов с изолированным затвором данная проблема стала гораздо менее острой, поэтому асинхронные двигатели с регулируемой частотой вращения также довольно широко применяются в промышленных масштабах.

Самостоятельное определение частоты вращения электродвигателя

Не зная частоты вращения электродвигателя, во многих случаях нет возможности эксплуатировать его. Если документация к мотору отсутствует, приходится думать, как определить частоту вращения электродвигателя самостоятельно. Сделать это можно, воспользовавшись пошаговой инструкцией:

  1. Современные асинхронные электродвигатели делятся на три группы, по количеству оборотов в минуту. Первая группа — двигатели с частотой до 1000 об/мин. Вторая группа — до 1500 оборотов. Третья группа — до 3000 оборотов в минуту.
  2. Чтобы определить частоту вращения электродвигателя, нужно выявить, к какой группе он относится. Для этого необходимо открыть его крышку и найти катушку обмотки.
  3. Далее нужно примерно определить размеры катушки по отношению к кольцу статора. Точные расчеты и замеры здесь не требуются.
  4. Если катушка по размеру способна закрыть собой примерно половину кольца статора, частота вращения электродвигателя составляет 3000 об/мин. Если катушка покрывает около трети самого кольца, то электродвигатель относится ко второй группе. Если размер катушки равен четверти кольца — число оборотов не превышает 1000.

Это только примерный подсчет, но даже такие данные уже помогут определить основные характеристики, возможности, а значит, и сферу применения исследуемого электродвигателя.

Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.

Электрические машины переменного тока нашли широкое распространение, как в сфере промышленности (шаровые мельницы, дробилки, вентиляторы, компрессоры), так и в домашних условиях (сверлильный и наждачный станки, циркулярная пила).

Основная их часть является бесколлекторными машинами, которые в свою очередь разделяются на асинхронные и синхронные.

Асинхронные и синхронные электрические машины обладают одним замечательным свойством под названием обратимость, т.е. они могут работать как в двигательном режиме, так и в генераторном.

Но чтобы дальше перейти к более подробному их рассмотрению и изучению, необходимо знать принцип их работы. Поэтому в сегодняшней статье я расскажу Вам про принцип работы асинхронного двигателя. После прочтения данного материала Вы узнаете про электромагнитные процессы, протекающие в электродвигателях.

Принцип работы трехфазного асинхронного двигателя

С устройством асинхронного двигателя мы уже знакомились, поэтому повторяться второй раз не будем. Кому интересно, то переходите по ссылочке и читайте.

При подключении асинхронного двигателя в сеть необходимо его обмотки соединить звездой или треугольником. Если вдруг на выводах в клеммнике отсутствует маркировка, то необходимо самостоятельно определить начала и концы обмоток электродвигателя.

При включении обмоток статора асинхронного двигателя в сеть трехфазного переменного напряжения образуется вращающееся магнитное поле статора, которое имеет частоту вращения n1. Частота его вращения определяется по следующей формуле:

  • f — частота питающей сети, Гц
  • р — число пар полюсов

Это вращающееся магнитное поле статора пронизывает, как обмотку статора, так и обмотку ротора, и индуцирует (наводит) в них ЭДС (Е1 и Е2). В обмотке статора наводится ЭДС самоиндукции (Е1), которая направлена навстречу приложенному напряжению сети и ограничивает величину тока в обмотке статора.

Как Вы уже знаете, обмотка ротора замкнута накоротко, у электродвигателей с короткозамкнутым ротором, или через сопротивление, у электродвигателей с фазным ротором, поэтому под действием ЭДС ротора (Е2) в ней появляется ток. Так вот взаимодействие индуцируемого тока в обмотке ротора с вращающимся магнитным полем статора создает электромагнитную силу Fэм.

Направление электромагнитной силы Fэм можно легко найти по правилу левой руки.

Правило левой руки для определения направления электромагнитной силы

На рисунке ниже показан принцип работы асинхронного двигателя. Полюса вращающегося магнитного поля статора в определенный период обозначены N1 и S1. Эти полюса в нашем случае вращаются против часовой стрелки. И в другой момент времени они будут находится в другом пространственном положении. Т.е. мы как бы зафиксировали (остановили) время и видим следующую картину.

Токи в обмотках статора и ротора изображены в виде крестиков и точек. Поясню. Если стоит крестик, то значит ток в этой обмотке направлен от нас. И наоборот, если точка, то ток в этой обмотке направлен к нам. Пунктирными линиями показаны силовые магнитные линии вращающегося магнитного поля статора.

Устанавливаем ладонь руки так, чтобы силовые магнитные линии входили в нашу ладонь. Вытянутые 4 пальца нужно направить вдоль направления тока в обмотке. Отведенный большой палец покажет нам направление электромагнитной силы Fэм для конкретного проводника с током.

На рисунке показаны только две силы Fэм, которые создаются от проводников ротора с током, направленным от нас (крестик) и к нам (точка). И как мы видим, электромагнитные силы Fэм пытаются повернуть ротор в сторону вращения вращающегося магнитного поля статора.

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен от нас (крестик).

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен к нам (точка).

Совокупность этих электромагнитных сил от каждого проводника с током создает общий электромагнитный момент М, который приводит во вращение вал электродвигателя с частотой n.

Отсюда и произошло название асинхронный двигатель. Частота вращения ротора n всегда меньше частоты вращающегося магнитного поля статора n1, т.е. отстает от нее. Для определения величины отставания введен термин «скольжение», который определяется по следующей формуле:

Выразим из этой формулы частоту вращения ротора:

Пример расчета частоты вращения двигателя

Например, у меня есть двигатель типа АИР71А4У2 мощностью 0,55 (кВт):

  • число пар полюсов у него равно 4 (2р=4, р=2)
  • частота вращения ротора составляет 1360 (об/мин)

Определим частоту вращения поля статора этого двигателя при частоте питающей сети 50 (Гц):

Найдем величину скольжения для этого двигателя:

Кстати, направление движения вращающегося магнитного поля статора, а следовательно, и направление вращения вала электродвигателя, можно изменить. Для этого необходимо поменять местами любые два вывода источника питающего трехфазного напряжения. Об этом я упоминал Вам в статьях про реверс электродвигателя и чередование фаз.

Принцип работы асинхронного двигателя. Выводы

Зная принцип работы асинхронного двигателя, можно сделать вывод, что электрическая энергия преобразуется в механическую энергию вращения вала электродвигателя.

Частота вращения магнитного поля статора, а следовательно и ротора, напрямую зависит от числа пар полюсов и частоты питающей сети. Если число пар полюсов ограничивается типом двигателя (р = 1, 2, 3 и 4), то частоту питающей сети можно изменить в большем диапазоне, например, с помощью частотного преобразователя.

Если в нашем примере частоту питающей сети увеличить всего на 10 (Гц), то частота вращения магнитного поля статора увеличится на 300 (об/мин).

Опыт по установке и монтажу частотных преобразователей у меня есть, но не большой. Несколько лет назад на городском водоканале мы проводили замену двух высоковольтных двигателей насосов холодной воды на низковольтные двигатели с частотными преобразователями. Но это уже отдельная тема для разговора. Сейчас покажу Вам несколько фотографий.

Вот фотография старого высоковольтного двигателя напряжением 6 (кВ).

А это новые двигатели напряжением 400 (В), установленные вместо старых высоковольтных.

Вот шкафы частотных преобразователей. На каждый двигатель свой шкаф. К сожалению, изнутри сфотографировать не успел.

Подписывайтесь на рассылку новостей с моего сайта, чтобы не пропустить самое интересное. В ближайшее время я расскажу Вам про пуск и способы регулирования частоты вращения трехфазных асинхронных двигателей двигателей, схемы их подключения и многое другое.

3.8. Частота вращения двигателя — указанная изготовителем максимальная частота вращения двигателя, ограниченная регулятором (при установке рычага управления в положение максимальной подачи топлива).

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

Смотреть что такое «частота вращения двигателя» в других словарях:

частота вращения двигателя, соответствующая максимальному крутящему моменту — 3.11 частота вращения двигателя, соответствующая максимальному крутящему моменту: Частота вращения двигателя, соответствующая максимальному крутящему моменту, на упоре топливной рейки, включающая в себя дополнительный крутящий момент, создаваемый … Словарь-справочник терминов нормативно-технической документации

Максимальная частота вращения двигателя — Наибольшая допустимая при эксплуатации частота вращения коленчатого вала двигателя Источник: ГОСТ 10150 88: Двигатели судовые, тепловозные и промышленные. Общие технические условия … Словарь-справочник терминов нормативно-технической документации

Номинальная частота вращения двигателя — 3.5. Номинальная частота вращения двигателя частота вращения коленчатого вала (об/мин), при которой согласно документации изготовителя двигатель должен развивать номинальную мощность. Источник: ГОСТ 27247 87: Машины землеройные. Метод определения … Словарь-справочник терминов нормативно-технической документации

минимально устойчивая частота вращения двигателя на холостом ходу — 3.10 минимально устойчивая частота вращения двигателя на холостом ходу: Минимальная частота вращения коленчатого вала двигателя на холостом ходу, допустимая в эксплуатации. Источник … Словарь-справочник терминов нормативно-технической документации

объявленная частота вращения двигателя — 3.8 объявленная частота вращения двигателя: Частота вращения двигателя, соответствующая объявленной мощности. Для некоторых применений двигателей объявленная частота вращения называется номинальной частотой вращения. Источник … Словарь-справочник терминов нормативно-технической документации

объявленная промежуточная частота вращения двигателя — 3.9 объявленная промежуточная частота вращения двигателя: Частота вращения двигателя, составляющая менее 100 % объявленной частоты вращения, заявленной изготовителем, с учетом требований, установленных для конкретного применения двигателя.… … Словарь-справочник терминов нормативно-технической документации

Минимально устойчивая частота вращения двигателя под нагрузкой — Минимальная частота вращения коленчатого вала двигателя под нагрузкой, допустимая в эксплуатации Источник: ГОСТ 10150 88: Двигатели судовые, тепловозные и промышленные. Общие технические условия … Словарь-справочник терминов нормативно-технической документации

максимальная частота вращения двигателя внутреннего сгорания — 3.6 максимальная частота вращения двигателя внутреннего сгорания [электродвигателя]: Примечание Максимальную частоту вращения двигателя внутреннего сгорания [электродвигателя] устанавливают при регулировке машины в соответствии с требованиями… … Словарь-справочник терминов нормативно-технической документации

номинальная частота вращения двигателя S — 3.4 номинальная частота вращения двигателя S (rated engine speed): Частота вращения коленчатого вала (число оборотов в минуту), при которой двигатель развивает максимальную полезную мощность, установленную производителем. Источник: ГОСТ ИС … Словарь-справочник терминов нормативно-технической документации

Датчик частоты вращения двигателя

После покупки или лизинга вашего нового Lexus в Earnhardt Lexus вам будет интересно узнать, что поддерживает ваш красивый автомобиль в отличном состоянии. Частично ответ зависит от блока управления двигателем (ЭБУ) и датчиков, которые он контролирует в вашем двигателе. Один из самых важных — датчик оборотов двигателя.

Важно обращать внимание на то, как работает ваша машина, и быть готовым, если вы заметите, что что-то не так. Независимо от марки или модели, у нас вы можете запланировать сертифицированный ремонт авто.У наших механиков есть инструменты и оборудование, необходимые для проведения точного ремонта любого типа автомобиля или внедорожника.

Что такое блок управления двигателем

Вы можете думать о блоке управления двигателем как о мозге вашего автомобиля. В вашем новом Lexus есть ряд датчиков, которые взаимодействуют с блоком управления двигателем (ECU) или модулем управления двигателем (ECM), чтобы поддерживать оптимальную производительность вашего автомобиля. ЭБУ регулирует четыре основные части ваших систем Lexus: соотношение воздух-топливо, скорость холостого хода, изменение фаз газораспределения и момент зажигания.Некоторые из датчиков в вашем Lexus включают датчики массового расхода воздуха, датчики кислорода и датчики топлива и воздуха.

Что такое датчик скорости двигателя?

Датчик скорости двигателя, также известный как датчик скорости трансмиссии, является одним из датчиков, который взаимодействует с ЭБУ, чтобы поддерживать ваш Lexus в отличном рабочем состоянии. Работа датчика скорости двигателя заключается в вычислении скорости вращения колес и, в конечном итоге, в определении скорости вашего движения.

Где находится датчик оборотов двигателя и какой свет двигателя ему соответствует?

Датчик расположен на трансмиссии автомобиля, поэтому его иногда называют датчиком скорости трансмиссии.Он отправляет информацию на ваш спидометр и компьютер вашего двигателя, чтобы сообщить коробке передач, когда нужно переключиться. Если спидометр в вашем Lexus не работает или есть индикатор проверки двигателя, который сопровождает проблемы с переключением, обязательно позвольте техническому специалисту Earnhardt Lexus осмотреть ваш автомобиль.

Автомобили Lexus имеют хорошие рейтинги безопасности, но если они не работают должным образом, путешествие может стать опасным. Для безопасности вашего автомобиля важно не игнорировать контрольные лампы двигателя. К тому времени, когда загорятся эти огни, проблема станет серьезной и может повредить другие компоненты вашего автомобиля.

Как работает датчик оборотов двигателя?

Совершенная трансмиссия Lexus работает точно благодаря датчикам частоты вращения двигателя. Современные трансмиссии имеют датчики для расчета передаточного числа на основе непосредственных данных, а не только прогнозов, сделанных инженерами при создании трансмиссии.

В то время как монитор выходного вала сообщает, сколько нужно толкать колеса, монитор входного вала передает информацию, необходимую ЭБУ для расчета этой выходной мощности.Это позволяет лучше уловить, как скорость, новая мощность и остаточная мощность толкают колеса и перемещают Lexus.

Если у вас есть какие-либо вопросы относительно датчика частоты вращения двигателя в вашем Lexus, свяжитесь с Earnhardt Lexus или нашим отделом обслуживания, чтобы узнать больше. У нас есть специалисты, которые помогут со всеми вашими потребностями Lexus!

Влияние оборотов двигателя, скорости заправки и фаз горения на термическое расслоение, необходимое для ограничения интенсивности детонации HCCI

Образец цитирования: Sjöberg, M.и Дек, Дж., «Влияние оборотов двигателя, скорости заправки и фаз горения на термическое расслоение, необходимое для ограничения интенсивности детонации HCCI», Технический документ SAE 2005-01-2125, 2005, https://doi.org/10.4271 / 2005-01-2125.
Загрузить Citation

Автор (ы): Магнус Сьёберг, Джон Э. Дек

Филиал: Сандийские национальные лаборатории

Страниц: 15

Событие: 2005 Встреча SAE Brasil по топливу и смазочным материалам

ISSN: 0148-7191

e-ISSN: 2688-3627

Также в: Журнал транзакций двигателей SAE 2005-V114-3

40 Свода федеральных правил, § 1042.140 — Максимальная мощность двигателя, рабочий объем, удельная мощность и максимальная частота вращения двигателя при использовании. | CFR | Закон США

В этом разделе описывается, как определить максимальную мощность двигателя, рабочий объем и удельную мощность двигателя для целей данной части. Обратите внимание, что максимальная мощность двигателя может отличаться от определения «максимальной испытательной мощности» в § 1042.901. В этом разделе также указывается, как определить максимальную используемую частоту вращения двигателя для двигателей категории 3.

(a) Максимальная мощность двигателя конфигурации двигателя — это точка максимальной мощности торможения на кривой номинальной мощности для конфигурации двигателя, как определено в этом разделе.Округлите значение мощности до целых киловатт.

(b) Номинальная кривая мощности конфигурации двигателя — это соотношение между максимальной доступной мощностью торможения двигателем и частотой вращения двигателя для двигателя с использованием процедур сопоставления согласно 40 CFR, часть 1065, на основе проектных и производственных спецификаций производителя для двигателя. Эта информация также может быть выражена кривой крутящего момента, которая связывает максимально доступный крутящий момент двигателя с частотой вращения двигателя.

(c) Рабочий объем каждого цилиндра в конфигурации двигателя — это предполагаемый рабочий объем каждого цилиндра.Рабочий объем двигателя является произведением площади внутреннего поперечного сечения цилиндров, длины хода и количества цилиндров. Рассчитайте предполагаемый рабочий объем двигателя из проектных спецификаций для цилиндров, используя достаточно значащие цифры, чтобы определить рабочий объем с точностью до 0,02 литра. Определите окончательное значение, усекая цифры, чтобы установить рабочий объем цилиндра с точностью до 0,1 литра. Например, для двигателя с круглыми цилиндрами с внутренним диаметром 13.0 см и длина хода 15,5 см, округленное смещение будет: (13,0 / 2) 2 × (π) × (15,5) ÷ 1000 = 2,0 литра.

(d) Кривая номинальной мощности и предполагаемый рабочий объем должны находиться в пределах диапазона фактических кривых мощности и рабочих объемов серийных двигателей с учетом нормальной изменчивости производства. Если после начала производства будет установлено, что либо ваша номинальная кривая мощности, либо предполагаемый рабочий объем не соответствуют серийным двигателям, мы можем потребовать от вас внести поправки в вашу заявку на сертификацию в соответствии с § 1042.225.

(e) В этой части ссылки на конкретное значение мощности двигателя основаны на максимальной мощности двигателя. Например, группа двигателей с максимальной мощностью двигателя менее 600 кВт может называться двигателями мощностью менее 600 кВт.

(f) Рассчитайте удельную мощность семейства двигателей в кВт / л, разделив неокругленную максимальную мощность двигателя на неокругленный рабочий объем двигателя на цилиндр, а затем разделив на количество цилиндров. Округлите вычисленное значение до ближайшего целого числа.

(g) Рассчитайте максимальную испытательную скорость для кривой номинальной мощности, как указано в 40 CFR 1065.610. Это максимальная частота вращения двигателя, используемая для расчета стандарта NOX в § 1042.104 для двигателей категории 3. В качестве альтернативы вы можете использовать более низкое значение, если частота вращения двигателя будет ограничена при фактическом использовании этим более низким значением.

Основы работы с двигателем

Основы работы с двигателем

Ханну Яэскеляйнен, Магди К. Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Аннотация : Поршневые двигатели внутреннего сгорания — подкласс тепловых двигателей — могут работать в четырех- и двухтактных циклах. В каждом случае двигатель может быть оборудован системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI). Возможен ряд других классификаций двигателей на основе мобильности двигателя, применения, топлива, конфигурации и других параметров конструкции.Теоретически процесс сгорания можно смоделировать, применяя законы сохранения массы и энергии к процессам в цилиндре двигателя. Основные конструктивные и рабочие параметры двигателей внутреннего сгорания включают степень сжатия, рабочий объем, зазор, выходную мощность, указанную мощность, термический КПД, указанное среднее эффективное давление, среднее эффективное давление при торможении, удельный расход топлива и многое другое.

Тепловые двигатели

Определение и классификация

Тепловые двигатели — это машины преобразования энергии — они преобразуют химическую энергию топлива в работу, сжигая топливо в воздухе для производства тепла.Это тепло используется для повышения температуры и давления рабочего тела, которое затем используется для выполнения полезной работы. Тепловые двигатели можно классифицировать как:

  1. Двигатели внутреннего сгорания, или
  2. Двигатели внешнего сгорания.

Их также можно разделить на возвратно-поступательные и вращательные. В поршневых двигателях рабочая жидкость используется для линейного перемещения поршня. Затем поступательное движение обычно преобразуется во вращательное с помощью кривошипно-скользящего механизма (шатун / коленчатый вал).В роторном двигателе рабочая жидкость вращает ротор, соединенный с выходным валом.

Двигатели внутреннего сгорания

В двигателях внутреннего сгорания (ДВС) рабочее тело состоит из воздуха, топливовоздушной смеси или продуктов сгорания самой топливно-воздушной смеси. Поршневые двигатели с возвратно-поступательным движением являются, пожалуй, наиболее распространенной формой известных двигателей внутреннего сгорания. Они приводят в движение автомобили, грузовики, поезда и большинство морских судов. Они также используются во многих небольших служебных приложениях.Они могут работать на жидком топливе, таком как бензин и дизельное топливо, или на газообразном топливе, таком как природный газ и сжиженный нефтяной газ. Двумя общими подкатегориями поршневых двигателей с возвратно-поступательным движением являются двухтактный и четырехтактный двигатель . Примеры роторных двигателей внутреннего сгорания включают роторный двигатель Ванкеля и газовую турбину.

Общие цели при проектировании и разработке всех тепловых двигателей включают: максимизацию работы (выходную мощность), минимизацию потребления энергии и уменьшение загрязняющих веществ, которые могут образовываться в процессе преобразования химической энергии в работу.На рисунке 1 показаны основные узлы поршневых двигателей внутреннего сгорания. Конструкция магистрального двигателя является наиболее распространенной, хотя термин «магистральный двигатель» редко используется за пределами отрасли крупных двигателей. Конструкция крейцкопфа в настоящее время используется только в больших тихоходных двухтактных двигателях. Впускные и выпускные клапаны для простоты опущены, однако стоит отметить, что в некоторых конструкциях двухтактных двигателей используются впускные и выпускные отверстия, а не клапаны.

Рисунок 1 . Основные узлы поршневых (а) и крейцкопфных (б) двигателей

Как двух-, так и четырехтактный поршневой двигатель внутреннего сгорания может быть оборудован системой сгорания с искровым зажиганием (SI) или с воспламенением от сжатия (CI).

Обычно системы с искровым зажиганием характеризуются предварительно смешанным зарядом (т.е. топливо и воздух смешиваются перед зажиганием) и внешним источником зажигания, таким как свеча зажигания. Предварительное смешивание может происходить во впускном коллекторе или в цилиндре. Хотя предварительно смешанный заряд имеет относительно однородное пространственное распределение воздуха и топлива в большинстве случаев, это распределение также может быть неоднородным. Возгорание инициируется искрой, и пламя распространяется наружу вдоль фронта от места искры.Сгорание в двигателях SI считается кинетическим, поскольку вся смесь воспламеняется, а скорость горения определяется тем, насколько быстро химическая реакция может поглотить эту смесь, начиная с источника воспламенения.

Обычные дизельные двигатели характеризуются впрыском топлива непосредственно в цилиндр примерно в то время, когда требуется зажигание. В результате заправка воздуха и топлива в этих двигателях очень неоднородна: одни регионы являются чрезмерно богатыми, а другие — обедненными.Между этими крайностями смесь топлива и воздуха будет существовать в различных пропорциях. При впрыске топливо испаряется в этой высокотемпературной среде и смешивается с горячим окружающим воздухом в камере сгорания. Температура испарившегося топлива достигает температуры самовоспламенения и самовоспламеняется, чтобы начать процесс сгорания. Температура самовоспламенения топлива зависит от его химического состава. В отличие от системы SI, сгорание в двигателях с воспламенением от сжатия может происходить во многих точках, где соотношение воздух-топливо и температура могут поддерживать этот процесс.Говорят, что основная часть процесса сгорания в двигателях с ХИ регулируется смешиванием, потому что скорость регулируется путем образования воспламеняющихся смесей воздуха и топлива в камере сгорания.

В некоторых случаях различие между модулями SI и CI может быть нечетким. В связи с необходимостью снижения выбросов и расхода топлива были разработаны системы сгорания, которые могут использовать некоторые особенности двигателей SI и CI; например, самовозгорание предварительно смешанных смесей бензина, дизельного топлива или их смеси.

Газовые турбины, рис. 2, являются еще одним примером двигателей внутреннего сгорания. Однако, в отличие от поршневых двигателей с возвратно-поступательным движением, сгорание происходит отдельно в специальной камере сгорания.

Рисунок 2 . Микрогазовая турбина для расширителей диапазона в транспортных средствах средней и большой грузоподъемности

(Источник: Wrightspeed Inc.)

Двигатели внешнего сгорания

В двигателях внешнего сгорания рабочее тело полностью отделено от топливовоздушной смеси.Тепло от продуктов сгорания передается рабочему телу через стенки теплообменника. Паровая машина — хорошо известный пример двигателя внешнего сгорания.

Примером поршневого двигателя внешнего сгорания является двигатель Стирлинга, в котором тепло добавляется к рабочему телу при высокой температуре и отводится при низкой температуре. Тепло, добавляемое к рабочему телу, может быть получено практически от любого источника тепла, такого как сжигание ископаемого топлива, дерева или любого другого органического материала.

Цикл Ренкина, на котором основаны многие конструкции паровых двигателей, является еще одним примером двигателя внешнего сгорания. Тепло, поступающее от внешнего источника, повышает температуру жидкости, такой как вода, до тех пор, пока она не превратится в пар, который используется для перемещения поршня или вращения турбины. Паровые двигатели приводили в движение автомобили в США с 1900 по 1916 год; однако к 1924 году они почти исчезли. Паровые грузовики были популярны в Англии до середины 1930-х годов. В то время как паровые локомотивы во многих странах постепенно заменялись тепловозами на протяжении большей части 20 -го -го века, некоторые из них оставались в основной эксплуатации и в 21-м, 90 -144-м, -м веке.Причины отказа от парового двигателя в качестве основного двигателя в мобильных приложениях заключались в размере и количестве основных компонентов, необходимых для их работы, таких как печь, котел, турбина, клапаны, а также их сложных элементов управления [422] . Паровая турбина, которая до сих пор работает на многих стационарных электростанциях, является примером роторного двигателя внешнего сгорания.

В 21, и веке, акцент на повышении эффективности двигателей вызвал новый интерес к циклу Ренкина для мобильных приложений — в форме рекуперации отработанного тепла выхлопных газов (WHR).В то время как в некоторых из этих устройств используется пар, в других используются органические жидкости, которые лучше подходят для применений с относительно низкой температурой выхлопных газов транспортных средств. Из-за комбинации цикла Ренкина и органической рабочей жидкости эти системы часто называют системами рекуперации отходящего тепла с органическим циклом Ренкина (ORC).

###

Датчик частоты вращения двигателя | efignition

Датчик частоты вращения коленчатого вала двигателя является наиболее важным датчиком системы управления двигателем.Помимо скорости, этот датчик вместе со спусковым колесом определяет положение коленчатого вала.

В дополнение к датчику положения коленчатого вала можно также использовать датчик фазы распределительного вала.

Датчики доступны в 3 вариантах.

  • Датчик переменного сопротивления
  • Датчик эффекта Холла
  • Датчик OPTO

Датчик VR

Этот датчик состоит из магнита, вокруг которого намотана катушка.При перемещении металлического предмета к датчику магнитное поле изменится. То же самое происходит, когда мы отрываем металл от датчика. Изменяющееся магнитное поле в катушке датчика будет генерировать напряжение. Если металлический предмет движется к нему, напряжение будет положительным, если металлический предмет удалится от него, напряжение будет отрицательным. Таким образом, сигнал, поступающий от датчика, представляет собой переменное положительное и отрицательное напряжение. Переменное напряжение. Мы видим новую пазуху на каждый зуб спускового колеса.

Напряжение, создаваемое этим датчиком, отличается. При начальной скорости это будет примерно 1 Вольт (измерено в положении переменного тока). Оно может достигать 100 вольт, если двигатель делает много оборотов.

Датчик VR

Датчик эффекта Холла

Реагирует на магнетизм. Этот датчик имеет собственный магнит, а также часть электроники, которая реагирует на приближение магнита. В случае датчика ХОЛЛ со встроенным магнитом металл спускового колеса гарантирует, что магнетизм достигает датчика.Большинство датчиков ЗАЛА переключаются на землю, если поблизости есть металл. Этот сигнал прерывается, если поблизости нет металла. Таким образом, датчик не генерирует синусоидальную волну, и напряжение невозможно измерить. Для подачи сигнала переключения требуется «подтягивающий» резистор.

Датчик HALL

Датчик VR или HALL

Обычно мы используем датчик VR в качестве датчика коленчатого вала. В качестве датчика фазы распредвала мы обычно используем датчик ЗАЛ. Иногда мы можем видеть разницу между этими датчиками, но вы можете точно измерить ее.

Датчик ЗАЛ ВСЕГДА имеет 3 подключения. А именно питание (+), масса (-) и сигнал (0).

Датчик VR иногда имеет 2 соединения, а если это тип с проводом, он обычно имеет 3 соединения. Вы можете измерить катушку между двумя соединениями. Это даст сопротивление от 150 до 1200 Ом. На третьем потоке ничего не меряешь. Это экранирование провода. Экран гарантирует отсутствие помех в сигнале из-за влияния другой проводки.В случае с ЭБУ этот экран должен быть заземлен. Мы измеряем гораздо более высокие значения сопротивления с помощью датчика ЗАЛ.

Датчик OPTO

Это датчик блокировки света. Это встречается в некоторых японских автомобилях. Например, в системе Mitsubishi 4G63, которая использовалась, в частности, в первой Mazda MX-5. С точки зрения подключения при идентификации он ведет себя так же, как датчик ЗАЛ.

Датчик OPTO

Что означает число оборотов в минуту в автомобилях? | Новости

АВТО.COM — об / мин обозначает количество оборотов в минуту, и оно используется как мера того, насколько быстро любая машина работает в данный момент времени. В автомобилях число оборотов в минуту измеряет, сколько раз коленчатый вал двигателя совершает один полный оборот в минуту, и вместе с этим, сколько раз каждый поршень поднимается и опускается в своем цилиндре.

По теме: что означает «GT» в автомобилях?

Обороты двигателя автомобиля увеличиваются при нажатии на педаль акселератора, как и мощность — по крайней мере, до определенного предела. Двигатель не обязательно развивает максимальную мощность на самых высоких оборотах.В технических характеристиках двигателя обычно указывается пиковая мощность в лошадиных силах, за которой следуют обороты, при которых она происходит, например, 252 л.с. при 5600 об / мин. Крутящий момент, мера мгновенной крутящей силы двигателя, обычно достигается при более низких оборотах и ​​может проявляться как диапазон в двигателях с турбонаддувом или наддувом, например, 273 фунт-фут при 1600–4500 об / мин.

Во многих автомобилях есть тахометр для индикации оборотов двигателя, обычно измеряемых тысячами. Вверху диапазона тахометра находится зона, называемая красной линией, обычно она выделяется буквально красной линией.Увеличение оборотов двигателя за пределами красной черты может привести к повреждению. Это действительно проблема только для автомобилей, оснащенных механической коробкой передач; автомобили с автоматической коробкой передач запрограммированы на переключение до того, как частота вращения двигателя достигнет этой точки. Это тоже будет зависеть от того, насколько сильно вы нажимаете на педаль акселератора.

При нормальном вождении автоматическая коробка передач будет переключаться при любых оборотах двигателя, обеспечивающих наилучшее сочетание эффективности и плавности, что делает тахометр ненужным (даже если на него приятно смотреть).Водители с механической коробкой передач должны овладеть этим навыком, и тахометр может в этом помочь. В более новых автомобилях с механической коробкой передач ограничитель оборотов не позволяет двигателю выйти за красную черту, что исключает потенциальные повреждения, но водитель должен оправиться от порой резкого прерывания и переключиться на более высокую передачу.

Потрясающая производительность и управляемость: Shelby GT500 2020 достигает ускорения суперкара с мощностью 760 лошадиных сил и 7-ступенчатой ​​коробкой передач с двойным сцеплением

  • Достижение 0-100-0 из 10.За 6 секунд Shelby GT500 отправляет водителей на интуитивные ощущения от вождения, которые обычно присущи экзотическим суперкарам, благодаря 760-сильному двигателю, сверхбыстрой 7-ступенчатой ​​коробке передач с двойным сцеплением Tremec и самым большим передним тормозам среди всех отечественных спортивных купе
  • Его первая в своем классе 7-ступенчатая коробка передач с двойным сцеплением обеспечивает более стабильную мощность и крутящий момент по сравнению с механическими коробками передач, а его управляемый компьютером механизм может переключаться на повышенную передачу всего за 80 миллисекунд — быстрее, чем мгновение ока, — что делает его лучшим самая мощная трансмиссия Mustang за всю историю
  • Пять режимов движения Shelby GT500
  • полностью оптимизируют возможности трансмиссии с двойным сцеплением и активных систем ходовой части — от сверхплавного переключения дороги в нормальном режиме до принудительных переключений под нагрузкой в ​​режиме сопротивления — обеспечивая индивидуальность для любого типа вождения


ДОИРБОРН, Мичиган., 5 августа 2019 г.
— Новый Mustang Shelby GT500, самый мощный из когда-либо созданных автомобилей Ford для уличного движения, использует передовые технологии мощной мощности и трансмиссии для достижения уровня производительности суперкара. Его первая в своем классе 7-ступенчатая трансмиссия с двойным сцеплением, разработанные для гонок стратегии управления и продвинутые режимы движения создают автомобиль, не похожий на любое другое отечественное спортивное купе.

Его 760-сильный 5,2-литровый двигатель V8 является самым мощным и мощным двигателем V8 с наддувом в мире. С 625 футов.-фунт. крутящего момента, передаваемого через 7-ступенчатую коробку передач с двойным сцеплением Tremec® TR-9070 DCT, Shelby GT500 достигает 0-100-0 за 10,6 секунды, в том числе благодаря самым большим передним тормозам среди всех отечественных спортивных купе (16,5-дюймовые роторы ) и доступные колеса из углеродного волокна, каждое из которых обернуто в шину Michelin Pilot Sport Cup 2 со спецификацией Ford Performance.

Помимо чистой мощности и сверхбыстрого переключения передач, передовые системы управления оптимизируют возможности шасси и трансмиссии для создания различных режимов движения — или индивидуальности — для получения максимальной производительности от каждого аспекта производительного оборудования Shelby GT500.

«Диапазон резкого ускорения сопротивления, плавное смещение дороги и удивительно плавное переключение на трассе еще раз подчеркивают, насколько возвышена душа Shelby GT500 в нашем самом продвинутом Мустанге», — сказал Эд Кренц, главный программный инженер Ford Performance. «Наша первая в сегменте трансмиссия Tremec с двойным сцеплением с легкостью справляется с 760-ю лошадиными силами и оснащена усовершенствованной системой управления, которая расширяет пять режимов движения GT500 и обеспечивает ощущение от вождения, которое раньше использовалось только для экзотических суперкаров.”


Трансмиссия с двойным сцеплением обеспечивает
При использовании 625 фут-фунт. Для эффективного управления крутящим моментом на асфальте требуется трансмиссия и трансмиссия, которые могут не только справляться с огромной мощностью. Инженеры Ford Performance в сотрудничестве с Tremec разработали коробку передач, которая обеспечивает максимальный контроль водителя с потрясающе быстрым переключением передач и улучшенными характеристиками в широком спектре условий вождения. Решение этой команды — 7-ступенчатая коробка передач с двойным сцеплением Tremec TR-9070 DCT.

«Во многом это похоже на использование двух трансмиссий в одной», — сказал Пэт Морган, менеджер по силовым агрегатам Ford Performance. «С одной стороны, он обеспечивает высокую скорость движения по прямой с минимальным прерыванием крутящего момента, но при этом обеспечивает невероятную точность и управляемость на трассе, обеспечивая максимальную стабильность и предсказуемость на пределе бокового ускорения».

Для надежной и плавной передачи крутящего момента трансмиссия с двойным сцеплением TR-9070 DCT оснащена новой системой мокрого сцепления с пятью фрикционными дисками в нечетном шестеренчатом блоке с общей площадью поверхности 155 квадратных дюймов.В пакете с четными передачами шесть фрикционных дисков обеспечивают площадь поверхности 136 квадратных дюймов. Трансмиссионная жидкость наносится на поверхности сцепления только во время тепловых событий для оптимального охлаждения и минимальных паразитных потерь. Семь непоследовательных косозубых передач переднего хода с усовершенствованными синхронизаторами с тройным конусом тщательно согласованы с кривой крутящего момента двигателя и предварительно выбираются электрогидравлическим механизмом переключения передач с использованием энергоэффективных соленоидов с малой утечкой, которые могут переключаться за 80 миллисекунд в спортивном режиме. .

Внутри системы управления время решает все. Точки переключения передач и модуляция сцепления управляются системой мехатроники с компьютерным управлением, которая одновременно считывает десятки факторов транспортного средства и окружающей среды, включая обороты двигателя и трансмиссии, входные данные водителя и g ( сил), а также положения сцепления и вилки переключения — для предварительного выбора и включите оптимальную передачу для любой дорожной ситуации. Установленные на рулевом колесе подрулевые переключатели напрямую подключены к коробке передач, чтобы избежать задержек в системе связи с CAN-шиной и инициировать переключение за 130 миллисекунд, что еще больше повышает скорость реакции и ощущение подключения.

«Вопреки распространенному мнению, быстрое переключение передач не всегда означает улучшение дорожных характеристик», — сказал Морган. «В любой дорожной ситуации мы подражали тому, что делают профессиональные водители, будь то плавное и точное переключение пяток и носков профессионального гонщика на треке или более мощное переключение под нагрузкой, как у гонщиков. Каждый раз мы придумываем идеальную смену ».


Режимы движения добавляют больше индивидуальности

Shelby GT500 2020 имеет пять режимов движения, которые еще больше улучшают работу водителя с помощью переключателя режимов, установленного на консоли.Он мгновенно меняет индивидуальность автомобиля от умеренного «нормального» автомобиля к «трековому» автомобилю с более агрессивным откликом на педаль газа и переключениями передач. Система изменяет практически все аспекты поведения автомобиля, включая амортизацию, контроль устойчивости, модуляцию антиблокировочной тормозной системы и ощущение рулевого управления — даже звук и изменение приборной панели. В трансмиссии TR-9070 DCT с двойным сцеплением режимы движения влияют на точки переключения передач и ощущения.

В нормальном режиме система выбирает передачи и время переключения для умеренного, повседневного вождения и плавного переключения.В спортивном режиме характер переключения меняется, время переключения сокращается примерно на 20 процентов, в то время как нажатие дроссельной заслонки более отзывчиво, а диапазоны оборотов расширяются до кривой максимального крутящего момента.

Выбор режима трека или перетаскивания дополнительно изменяет характеристики переключения на чистую производительность. Для максимальной скорости движения по прямой при переключении передач используются переключения с повышенным крутящим моментом для бесперебойной подачи мощности, аналогично переключениям под нагрузкой, которые создают дополнительный крутящий момент между переключениями на повышенную передачу. Тем не менее, возьмите Shelby GT500 в поворот, и трансмиссия сразу же адаптируется к плавному, быстрому и плавному переключению, чтобы обеспечить максимальный боковой g в поворотах за счет минимизации помех трансмиссии.

Режимы движения в сторону, управление запуском с возможностью выбора оборотов и электронная блокировка линии с помощью Track Apps® позволяют использовать стратегии синхронной трансмиссии, которые обеспечивают оптимальные пробеги на четверть мили, в то время как постоянно включенное управление псевдозапуском обеспечивает энергичные запуски в любое время без необходимости выбора режим привода.

«Каждый аспект вождения Shelby GT500 меняется в зависимости от режима — будь то отзывчивость дроссельной заслонки и щелчки переключений, которые вы чувствуете, сидя в штанах, или« треск и гул выхлопа »в режимах производительности.Это полный мультисенсорный интуитивный опыт, — сказал Морган.

Выходная мощность передается на независимую заднюю подвеску с ограниченным проскальзыванием Torsen 3,73: 1 через карданный вал из углеродного волокна для уменьшения вращательной массы и крутильных искажений, а также более крупные полуоси
и измененную ступицу задней подвески для дополнительной прочности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*