Частотник своими руками схема: Частотный преобразователь своими руками — как сделать преобразователь частоты

Содержание

Частотный преобразователь своими руками — как сделать преобразователь частоты

Регулирование частоты вращения ротора и момента на валу двигателей переменного тока частотой напряжения на обмотках – один из самых перспективных способов управления. Такой метод позволяет сократить потребление электроэнергии, снизить износ двигателей и механизмов, осуществлять плавный пуск без скачков тока. Частотное управление также позволяет отказаться от заслонок, задвижек, муфт и других механических средств регулирования технологических параметров и изменения скорости вращения вала.

Для регулирования частоты напряжения, которое подается на статор электродвигателя, используют частотные преобразователи. Наибольше распространение получили устройства на базе инверторов напряжения.

Такие частотные преобразователи состоят из выпрямителя, звена постоянного тока, инвертора.

Трехфазное напряжение сети преобразуются в постоянное, в звене постоянного тока на базе емкостного элемента сглаживаются пульсации, в инверторе постоянное напряжение трансформируется в переменное другой частоты.

Частота на входе регулируется поочередным открыванием и запиранием электронных ключей. Импульсы, изменяющие состояние полупроводниковых коммутаторов, задаются с управляющего устройства. Ключи выполнены на базе силовых транзисторов или тиристоров. Наиболее распространенная элементная база – биполярные транзисторы с изолированным затвором IGBT или тиристоры GTO, GCT, IGCT , SGCT.

Преобразователи частоты применяются в электроприводах практически всех отраслей промышленности, в бытовых станках и других сферах.

Современный частотник это не только регулятор частоты вращения электродвигателя. Оборудование совмещает функции ПИ и ПИД-регуляторов, электроаппаратов защиты от аварий и аномальных режимов работы. Преобразователи частоты также обеспечивают индикацию рабочих параметров, связь с комплексными или местными системами автоматизации по распространенным протоколам связи, фиксируют неисправности и поломки, передают данные на удаленные устройства.

Простые преобразователи частоты для станков бытового применения можно сделать своими руками. Для этого необходимы базовые знания промышленной электроники, теоретической электротехники, а также иметь навыки построения схем, пайки.

Любительские преобразователи частоты в основном используют для непосредственного задания скорости электропривода небольшой мощности. Самостоятельно разработать и собрать устройство с функциями автоматического регулятора и другими параметрами промышленного оборудования довольно сложно. Рассмотрим преобразователь частоты, разработанный и собранный самостоятельно.

Схема и описание любительского частотника на IGBT транзисторах

Производители элементов для силовой электроники выпускают интеллектуальные силовые модули и микроконтроллеры для управления такими приводами, что существенно упрощает задачу.

До появления комплексных элементов силовую часть и управляющий блок с генератором импульса приходилось собирать самостоятельно.

В представленной схеме применяется микроконтроллер ATmega48 и силовой блок IRAMS10UP60B со встроенным драйвером и возможностью управления по 3 каналам широтно-импульсного модулятора.

Управляющий блок реализует скалярное управление приводом, с увеличением частоты напряжения на выходе увеличивается его величина.

Заводские настройки контроллера предназначены для работы с двигателем на номинальное напряжение 220 В частотой 50 Гц. Скорость изменения частоты при разгоне составляет 15 Гц/ сек, до номинальной скорости электродвигатель разгоняется за 3 секунды, до частоты 150 Гц – за 10 секунд.

Добавочное напряжение на намагничивание установлено 10% от номинального. Время намагничивания и торможения постоянным током постоянно и составляет 1 сек. Добавочное напряжение при намагничивании и в режиме торможения изменяется одновременно.

При подаче напряжения заряжается конденсатор в звене постоянного тока. Как только напряжение на конденсаторе достигает 220 В, привод можно запускать. Для индикации готовности к пуску предусмотрена сигнальная цепь из светодиода и реле предзаряда. Как только конденсатор заряжается, контакты реле замыкаются, загорается светодиод, сигнализирующий о готовности привода.

Для управления преобразователем предусмотрено 6 выходов. Первые 2 – прямое и обратное вращение вала с номинальной частотой. Выходы с 3 по 6 – подача напряжения фиксированной частоты, которая задается резисторами R1, R2, R3, R4.

При регулировке частоты резисторами во время работы двигателя изменять частоту вращения нельзя. Частота меняется только после повторной подачи команды на 1 или 2 выход. Данные с регулировочных сопротивления считываются микроконтроллером только при отсутствии сигналов с 1 и 2 выхода.

Для плавного изменения скорости при работающем электроприводе требуется включить в цепь джампер. При этом R1 остается активным, а при помощи R4 можно задавать частоту выходного напряжения 5 до 100Гц.

При регулировке частоты необходимо учитывать, что максимальном уровню сигнала 5 В на входе микроконтроллера соответствует верхнее значения частоты – 200 Гц. Для настройки масштабирования напряжения в звене постоянного тока 1:100 предусмотрен резистор R5. Для измерения уровня управляющего сигнала предусмотрены резисторы R1, R2, R3, R4 с общим отрицательным контактом.

Настройка самодельного преобразователя частоты

Перед настройкой преобразователя проверяют правильность и качество установки электронных комплектующих. Далее проверяют делитель напряжения для звена постоянного тока (цепь R2). 1 В на соответствующим выходе микроконтроллера должен соответствовать 100 В звена постоянного тока.

Далее приступают к настройке привода. Силовые модули имеют установленную заводскую конфигурацию для двигателей на 220 и 380 В номинальной частотой 50 Гц. Чтобы их активировать, требуется:

  • Подать питание на преобразователь и контроллер.
  • Дождаться готовности (должен загореться светодиод).
  • Удерживать кнопку В1 пока светодиод не начнет мигать, затем отпустить ее.
  • Выбрать 1 скорость, когда светодиодный индикатор перестанет мигать, снять команду.

В этом случае будут активированы настройки по умолчанию: номинальное напряжение электродвигателя – 220 В; 50 Гц, добавочное напряжение для намагничивания и торможения – 10%, скорость изменения частоты при разгоне и торможении – 15 Гц/сек.

Настройка на номинальную частоту 30 Гц осуществляется аналогично, разница в выборе выхода. В этом случае команда подается на выход 2.

Для задания 1 и 2 скорости настроечными резисторами необходимо не подавать напряжение на вход выбора 1 или 2 скорости до задания параметров регулировочными резисторами. Далее нажать и удерживать кнопку В1 до тех пор, пока светодиод не начнет моргать, выставить значения частоты (скорости) всеми резисторами. Затем удерживать кнопку В1 до исчезновения мигания светодиода. При этом настройки будут зафиксированы.

К такому приводу можно подключать двигатели до 0,75 кВт. Мощность электродвигателей зависит от емкости конденсатора в звене постоянного тока, на каждый 2 кВт необходимо 1000 мкФ. Для исключения повреждений силового модуля рекомендуется ставить дроссель на выходе. Индуктивный элемент ограничивает скорость нарастания тока и защищает преобразователь.

Возможности самодельного преобразователя частоты

Частотник, собранный по данной схеме, обеспечивает:

  • Задание частоты напряжения на выходе в пределах от 5 до 200 Гц.
  • Изменение скорости частоты от 5 до 50 Гц/cек.
  • 4 фиксированные частоты с возможностью настройки в диапазоне 5-200 Гц.
  • Добавочное напряжение на намагничивание и торможение от 0 до 20% от номинального (по умолчанию 10%).
  • 2 встроенные готовые настройки.
  • Регулировку скорости на ходу двигателя построечным потенциометром.
  • Индикацию готовности привода (предзаряда конденсатора в звене постоянного тока).
  • Возможность регулирования характеристики U/F (скалярное управление).

Устройство также контролирует температуру силовых транзисторов IGBT, величину напряжения DC звена, сигнализирует о недопустимых значениях этих параметров, обеспечивает аварийную остановку электропривода. При необходимости возможно реализовать защиту от сверхтоков.

Частотники, собранные своими руками, вполне можно использовать для маломощных приводов бытового назначения. Устройства обеспечивают необходимые функции и режимы работы такого оборудования.

Частотный преобразователь своими руками — с асинхронным приводом

Содержание

  1. Частотный преобразователь своими руками
  2. Главные преимущества привода с регулировкой частоты:
  3. Быстродействующая защита
  4. Принципиальная схема блока питания:
  5. Программа формирования задержек
  6. Тестирование устройства
  7. Характеристики:

Частотный преобразователь своими руками — представляю вам небольшую статью о асинхронном двигателе и частотном преобразователе, который мне ранее приходилось делать. Вот и теперь потребовался хороший привод для циркулярной пилы. Конечно можно было бы взять в магазине фирменный частотник, но все-таки вариант самостоятельного изготовления оказался для меня наиболее приемлемым.

К тому же, качество регулировки скорости привода пилорамы не требовало абсолютной точности. Однако с нагрузками ударного типа и длительными перегрузками он должен справляться. К тому же хотелось сделать управление наиболее простым, без всяких там параметров, а просто установить пару кнопок.

Главные преимущества привода с регулировкой частоты:

  • Создаем из однофазного напряжения 220v полновесные три фазы 220v, сдвиг у которых будет 120°, при этом получаем абсолютный вращательный момент с мощностью на валу
  • Повышенный момент старта с плавным запуском без максимального пускового тока
  • Нет сильного замагничивания и излишнего перегрева мотора, как это бывает когда применяются конденсаторы
  • При необходимости можно свободно управлять скоростью вращения и менять направление

Ниже показана принципиальная схема устройства:

Трехфазный мост выполнен на гибридных IGBT транзисторах c диодами обратной проводимости. В целом это представляет собой бустрепное управление микроконтроллером PIC16F628A, осуществляемое с помощью специализированных оптодрайверов HCPL-3120. Во входном тракте установлен конденсатор гашения напряжения, выполняющего функцию мягкой зарядки электролитических конденсаторов в цепи постоянного напряжения.

Быстродействующая защита

Далее по схеме он зашунтирован электромагнитным реле, при этом на PIC16F628A подается цифровой логический уровень готовности. В схеме предусмотрена быстродействующая защита по току от короткого замыкания и критической перегрузке мотора, выполненная по триггерной схеме. Все это управляется при помощи двух кнопок и одного переключателя, который изменяет направление вращения вала.

Частотный преобразователь своими руками, в частности участок силовых напряжений был собран методом навесного монтажа, а контроллер размещен на печатной плате, которая показана ниже:

Постоянные резисторы с номиналом 270к, шунтирующие конденсаторы установленные в цепи затвора IGBT, запаял со стороны дорожек, так как упустил из виду сделать для них площадки. Их конечно можно заменить на smd.

Здесь показано фото печатной платы контроллера после распайки компонентов:

А это с противоположной стороны

Для подачи напряжения питания в модуль управления был изготовлен стандартный обратноходовой импульсный источник питания.

Принципиальная схема блока питания:

Чтобы изготовить частотный преобразователь своими руками в принципе можно использовать практически любой источник питания с выходным напряжением 24v. Однако, этот блок питания должен быть стабилизированный и с задержкой напряжения на выходе с момента исчезновения напряжения сети, хотябы в пределах 3-х секунд. Это обусловлено тем, что двигатель смог отключится в случае возникновения ошибки по DC. Достигается подбором электролитического конденсатора С1 с большим значением емкости.

Ну, а теперь нужно подробнее разобраться в самом важном компоненте данного устройства — в программе микроконтроллера. В интернете подходящей для меня информации по этому вопросу я не нашел, хотя были предложения установить специальные фирменные контроллеры. Но как я уже говорил, мне принципиально нужно было установить, что-то собственной разработки. Приступил во всех подробностях анализировать ШИМ модуляцию, в какое время и каким способом открыть определенный транзистор…

Программа формирования задержек

Выяснились некоторые закономерности и получился образец несложной программы формирования задержек. При ее использовании получается произвести достаточно хорошую синусоидальную ШИМ с возможностью изменять напряжение. Естественно контроллер делать какие либо вычисления не успевал, задержки не давали того эффекта, который был нужен. Следовательно, такой вариант обсчитывания ШИМ на микроконтроллере PIC16F628A я забраковал сразу.

В результате образовалась констант матрица, а ее уже отрабатывал PIC16F628A. Они формировали и диапазон частоты и напряжение питания. Конечно эта работа по созданию данного устройства несколько затянулась. Циркуляркой уже полным ходом пилили на конденсаторах, когда появился необходимый вариант прошивки. Первоначально тестировал схему на моторе от вентилятора, мощностью 180 Вт. Вот фото прибора на стадии экспериментальных работ:

Тестирование устройства

Чуть позже, в процессе испытания программа подвергалась усовершенствованию, а после запуска двигателя мощностью на 4 кВт я практически был удовлетворен итогом своей работы. Защита от короткого замыкания прекрасно срабатывает, полутора-киловаттный мотор на 1440об/мин с диском 300мм свободно справлялся с приличными брусками. Шкивы были установлены одинаковые, что на двигатель, что на вал циркулярки. При попадании пилы на сучок сетевое напряжение немного падало, хотя двигатель продолжал работать.

По ходу работы потребовалось немного натянуть ремень, поскольку при увеличении нагрузки он начинал скользить на шкиве. В дальнейшем применили двойную передачу. Но на этом решил не останавливаться, поэтому сейчас начал усовершенствовать программу, в итоге она будет значительно эффективней. Принцип работы ШИМ-контролера немного усложняется, появится больше режимов, появится ресурс раскручивания выше номинального значения.

В конце статьи файлы для того самого простого варианта устройства, которое прекрасно работает с циркулярной пилой уже больше года.

Характеристики:

  • Частота на выходе: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ-контроллера синхронная, с возможностью изменения. Диапазон частот в пределах 1750-3350Гц.; Скалярное управление частотным преобразователем, мощность мотора около 4кВт. Самая меньшая частота работы при разовом нажатии кнопки «Пуск» — составляет 10Гц.
  • Во время удержании кнопки нажатой появляется разгоняющий момент, а когда кнопка отпускается, то частота буде той, до какой смог разогнаться. Частота по максимуму — 50Гц информирует светодиодный индикатор. Номинальное время разгоняющего момента составляет 2 секунды.
  • Индикатор «Готов» сообщает о готовности устройства к старту двигателя.

Файлы:
Программа ШИММ1.0r для PIC16F628(A)
Плата управления в SPLANe

Подключение трехфазного электродвигателя к однофазной сети

3-х фазный двигатель можно использовать для работы от бытовой сети переменного тока одной фазы напряжением 220 вольт. Возможна переделка, даже если нет большого опыта электромонтажных работ при минимальном навыке монтажа. Стоимость дополнительных элементов схемы невелика.


Типы соединений обмоток

Трехфазный двигатель содержит статор — неподвижную часть с неподвижными проволочными витками. Они смещены относительно друг друга по окружности на 120 угловых градусов. Переменный ток, проходя по обмоткам, создает изменяющееся магнитное поле, толкающее подвижную часть двигателя — ротор, или, как его раньше называли — якорь.

Возможны два способа включения обмоток между собой:

  • Звезда — первые концы обмоток соединяются между собой, а ко вторым выводам катушек подключаются фазные жилы сети.

  • Треугольник — витки соединены последовательно друг за другом, конец третьей обмотки соединяется с началом первой. Схематично сформируйте треугольник, к вершинам которого подсоедините фазы.


Этапы работы:

1. Внимательно осмотрев электродвигатель, найти розетку (обычно алюминиевую табличку) с информацией о параметрах. Не нужно браться за переделку двигателя мощностью более 1 кВт (1кВт). Надпись DY 220/400 означает, что двигатель можно включать как по «треугольнику» (D), так и по «звезде» (Y). Рабочее напряжение 220 вольт одно/или 400 трехфазное. Клеммы с маркировкой L (1 ÷ 3) для подключения фаз.
2. Стандартно катушки 3-х фазного электродвигателя включаются «звездой». Изменение положения полосовых перемычек создаст узор «треугольник».
3. После этого к фазному проводу подключается L1, а к L3 — нулевой провод. Подключаем средний вывод (L2) к конденсатору смещения, второй вывод которого подключаем к фазе или нулю. Это определяет направление вращения якоря. Для двигателя мощностью 100 Вт потребуется емкость 8÷10 мкФ, для 0,25 кВт нужен конденсатор 20 мкФ.
4. Удобно быстро менять направление вращения, переключая конденсатор с фазного провода на ноль. Биполярный переключатель будет подавать питание на двигатель.

Подключение к однофазной сети

Снимите крышку распределительной коробки двигателя, получив доступ к перемычкам.
Предварительно открутив гайки крепления, изменить положение перемычек, изменив схему соединения обмоток на «треугольник». После этого надежно затяните гайки и установите на место крышку коробки, отметив соединения проводов фаз 1, 2 и 3.

Определить среднюю обмотку, разрезать сердечник, зачистить изоляцию. Прижать концы клеммным ушком, если есть, подключить конденсатор в разрыв.

Удобно и надежно коммутировать цепь с помощью клеммных пар. Подключив провода от двигателя и конденсатора к разъему, с другого конца подается земля, фаза и ноль. Аккуратное затягивание клеммных винтов обеспечит надежный электрический контакт.

ВАЖНО! Двигатель имеет желто-зеленый проводник. Он соединен с корпусом. Подключенный через третьи контакты вилки и розетки шнура к земле, он предохраняет от пробоя напряжения по массе двигателя. К нему нельзя подключать другие провода электрической сети — только желто-зеленый конец сетевой вилки .
Работу схемы можно проверить, подключив провод от конденсатора к фазе и включив питание 220. Если все детали исправны, двигатель должен вращать ротор в одну сторону.
Сняв питание, переключаем конденсатор на нулевой провод — двигатель вращается в обратную сторону. Выбрав подходящее направление, оставьте желаемое соединение постоянным.

Оперативную смену стороны вращения на противоположную, обеспечит переключатель подключения конденсатора к фазе или нулю.
ВАЖНО! Изменение направления допускается только после отключения питания и полной остановки ротора.

Охрана

Переделка электродвигателя подключенного к сети 220 вольт работы. Неосторожное обращение, неаккуратность в работе связаны с угрозой жизни или здоровью. Не оставляйте соединения без надлежащей изоляции. Ограничьте доступ посторонних к установке до ее завершения.

Посмотреть видео


Преобразователи частоты для асинхронных двигателей: принцип действия и работа

Сегодня в промышленности часто используются преобразователи частоты для асинхронных двигателей. Стоит отметить, что такие двигатели имеют в своей конструкции три обмотки, которые соединяются по схеме «звезда» или «треугольник». Но у них есть один недостаток – очень сложно регулировать скорость вращения ротора. Но это было раньше. Теперь, когда на помощь приходит микро- и силовая электроника, эта задача упрощается. Поворотом переменного резистора можно изменять скорость вращения в широких пределах.

Для чего нужен преобразователь частоты?

Функций у этого устройства много, но чаще всего используется небольшое количество. По сути, для управления асинхронным двигателем нужно уметь регулировать не только скорость вращения, но и время разгона и торможения. Кроме того, любая система требует защиты. Необходимо, чтобы преобразователь частоты учитывал ток, потребляемый асинхронным двигателем.

Частое использование частоты в системах вентиляции. Несмотря на кажущуюся легкость крыльчатки вентилятора, нагрузки на ротор очень велики. И мгновенное ускорение невозможно. Бывают также ситуации, в которых необходимо увеличить скорость вращения, чтобы поток воздуха стал больше или меньше. Но это только пример, преобразователь частоты часто используется в других системах. С помощью частотника можно синхронизировать скорость конвейера, состоящего из нескольких лент.

Принцип работы инвертора

В основе лежит микропроцессорное управление и несколько схем преобразования переменного и постоянного напряжения. Несколько процессов происходят с напряжением, которое подается на вход питания устройства. Работа преобразователя частоты не сложная, достаточно рассмотреть три шага. Сначала происходит выпрямление. Во-вторых, фильтрация. В-третьих, инвертирование — это преобразование постоянного тока в переменный.

Только на последнем этапе возможно изменение свойств и параметров тока. Варьируя токовые характеристики, можно регулировать скорость вращения ротора асинхронного двигателя. В инверторном каскаде используются мощные сборки транзисторов. Эти элементы имеют три вывода – два силовых и один управляющий. Величина подаваемого на последний сигнала зависит от ВАХ на выходе частотника.

Как заменить инвертор?

Преобразователи частоты для асинхронных двигателей стали применяться относительно недавно. Но наука к ним шла постепенно, сначала меняли скорость вращения ротора с помощью шестерен или вариатора. Правда, это управление было очень громоздким, а мощность привода тратилась впустую из-за ненужных механизмов. Ременная передача помогла увеличить скорость вращения, но здесь указать окончательный параметр было очень сложно. По этим причинам использование преобразователя частоты намного выгоднее, поскольку позволяет избежать потерь мощности. Но самое главное — дает возможность изменять параметры привода без внесения каких-либо изменений в механику.

Какой диск выбрать для домашнего использования?

Стоит отметить, что подключение возможно к сети однофазного и трехфазного тока. Все зависит от конкретной модели ПЧ, а точнее от того, какой тип инверторной схемы инвертора использовался в производстве. Чтобы понять принцип работы, достаточно взглянуть на устройство устройства. Самый первый узел – это выпрямитель, который собран на полупроводниковых диодах. Это мостовая схема для преобразования однофазного или трехфазного переменного тока в постоянный. Для использования в доме нужно выбирать те модели частотников, ввод которых подключен к однофазной сети переменного тока. Выбор связан с тем, что в частные дома провести трехфазную сеть проблематично, да и невыгодно, так как необходимо использовать более совершенные электросчетчики.

Основные узлы ПЧ

Мало что было сказано о том, что представляет собой схема преобразователя частоты. Но для детального изучения необходимо рассмотреть его подробнее. На первом этапе осуществляется преобразование — выпрямление переменного тока. Вне зависимости от того, сколько фаз подано на ввод (три или одна), на выходе выпрямителя вы получите постоянное однополярное (один плюс и один минус) напряжение 220 вольт. Это так много между фазой и нулем.

Далее идет блок фильтров, который помогает избавиться от всех переменных выпрямленного тока. И на самом последнем этапе происходит инвертирование — из постоянного тока делается переменный с помощью силовых транзисторов, управляемых микроконтроллером. Как правило, преобразователи частоты для асинхронных двигателей имеют монохромный ЖК-дисплей, на котором отображаются необходимые параметры.

Могу ли я сделать устройство самостоятельно?

Изготовление этого устройства связано со многими трудностями. Вам необходимо изучить основы программирования микроконтроллеров, чтобы расширить возможности устройства. Важно учитывать все основные требования. Например, возможность автоматического аварийного отключения при превышении максимально допустимого тока, потребляемого двигателем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*