Движение воды в радиаторе отопления: Направление движения воды в системе отопления

Содержание

Циркуляция воды в батареях отопления. Блог компании Heizer

Циркуляция воды в батареях отопления – обязательное условие функционирования системы обогрева. При прекращении движения теплоносителя прекратится транспортировка тепла от теплогенератора к приборам отопления.

Для того, чтобы понять, для чего необходима циркуляция радиаторов отопления, нужно знать, как работает батарея отопления. Принцип ее работы заключается в постоянной передаче тепла через стенки устройства воздуху отапливаемого помещения. Горячий теплоноситель от котла движется внутри секций батареи, нагревает материал ее стенок. Через наружную конструкцию секций радиатора движется воздух, получает тепло от разогретой поверхности прибора отопления.

Такой способ передачи теплоты называется конвективным. Кроме него, батарея отопления отдает тепло посредством лучевой теплоотдачи – теплового излучения. Чем выше температура поверхности батареи – тем интенсивнее нагрев.

Для увеличения площади теплообмена батареи оборудуются оребрением. Теплоноситель отдает тепло конструкции радиатора и движется к котлу, где вновь нагревается. Процесс работает по замкнутому циклу.

Циркуляция теплоносителя в системе водяного отопления реализуется 2 способами:

1.       Принудительным, с помощью циркуляционного насоса;

2.       Естественным (он же гравитационный).

Самым распространенным видом систем водяного отопления считается закрытая конфигурация. Конструктивная особенность ее состоит в том, что она герметична и включает в свой состав циркуляционный насос (или несколько насосов), отвечающий за движение теплоносителя по системе. Агрегат подбирается на основе расчетов, учитывающих тепловую мощность системы, ее отдельных элементов, гидравлическое сопротивление компонентов схемы.

Основными характеристиками насоса являются напор (м.вод.ст. или кгс/см2) и производительность по воде (м

3/час). Их величина должна обеспечивать преодоление гидравлического сопротивления элементов системы – радиаторов, арматуры, трубопроводов, теплообменника котла и обеспечивать подачу необходимого количества теплоносителя в единицу времени. Наличие насоса придает конструктивные особенности комплексу – трубопроводы здесь имеют небольшое сечение.

Системы отопления с естественной циркуляцией менее распространены, чаще всего их сооружают при постоянных перебоях в подаче электроэнергии. Для движения теплоносителя по трубам и радиаторам здесь используется разница плотностей холодной и горячей воды.

Вода, нагреваясь в котле, приобретает меньшую плотность (и соответственно – вес), стремится подняться вверх. Она поднимается по разгонному коллектору и поступает в систему отопления. Ее место занимает холодная вода из обратного трубопровода. Такая циркуляция происходит на постоянной основе (при работе котла).

Главный конструктивный признак отопления с гравитационной циркуляцией – диаметр труб составляет величину не менее 40 мм, в качестве приборов отопления чаще всего используются чугунные радиаторы – они обладают большим проходным сечением.

Естественная циркуляция реализуется только в частных домах. В централизованных схемах движение теплоносителя всегда принудительное.

Главными препятствиями для обеспечения качественной циркуляции являются воздушные пробки, отложения на внутренней поверхности радиаторов и ошибки при расчетах мощности циркуляционного насоса.

Системы отопления с естественной циркуляцией

Это одни из самых простых и, пожалуй, самые распространенные системы отопления для небольших загородных домов и квартир с индивидуальным отоплением. Системы весьма долговечны (при правильной эксплуатации 40 и более лет без капитального ремонта) и используют только природные физические законы, не требуя дополнительных источников энергии или дорогостоящего оборудования.

Недостатком таких отопительных систем являются: сокращенный радиус действия (до 30 м по горизонтали), обусловленный небольшим циркуляционным давлением; замедленное включение в действие из-за большой теплоемкости воды и низкого циркуляционного давления, и повышенная опасность замерзания воды в расширительном бачке, смонтированном в неотапливаемом помещении.

Принципиальная схема системы отопления с естественной циркуляцией состоит из котла (водоподогревателя), подающего и обратного трубопроводов, нагревательных приборов и расширительного бачка. Нагретая в котле вода поступает по подающему трубопроводу и стоякам в нагревательные приборы, отдает им часть своего тепла, затем по обратному трубопроводу возвращается в котел, где вновь подогревается до необходимой температуры, и далее цикл повторяется. Все горизонтальные трубопроводы системы делаются с наклоном в сторону движения воды: нагретая вода, поднявшись по стояку вследствие температурного расширения и выдавливания более холодной водой обратки, растекается по горизонтальным отводам самотеком, охлажденная вода также самотеком поступает обратно в котел. Уклоны трубопроводов способствуют и отводу пузырьков воздуха к расширительному баку: газ легче воды, поэтому он стремится вверх, а наклонные участки трубопроводов помогают ему нигде не задерживаться и поступать в расширитель, а затем в атмосферу. Расширительный бачок создает постоянное давление в системе, принимает увеличивающийся при нагревании объем воды, а при охлаждении отдает воду обратно в трубопровод.

Вода в системе отопления поднимается за счет расширения при нагревании и под действием гравитационного давления, движение (циркуляция) возникает вследствие разности плотностей нагретой (поднимающейся по подающему стояку) и охлаждённой воды (спускающейся по обратному). Гравитационное давление расходуется на движение теплоносителя и преодоление сопротивлений в сети трубопроводов. Эти сопротивления вызываются трением воды о стенки труб, а также наличием в системе местных сопротивлений. К местным сопротивлениям относятся: ответвления и повороты трубопроводов, арматура и сами нагревательные приборы. Чем больше сопротивлений возникает в трубопроводе, тем больше должно быть гравитационное давление. Для снижения трения применяются трубы увеличенных диаметров.

Циркуляционный напор Pц = h(ρо— ρг) зависит (рис. 1):

  1. От разности отметок центра котла и центра нижнего отопительного прибора (h), чем больше разность высот между центрами котла и прибора, тем лучше будет циркулировать теплоноситель;
  2. От плотности горячей (ρг) и охлажденной воды (ρо).
рис. 1. Принципиальная схема отопления с естественной циркуляцией теплоносителя

Как появляется циркуляционный напор? Представим, что в котле и радиаторах отопления температура теплоносителя меняется скачкообразно по центральным осям этих приборов, что, кстати, недалеко от истины. То есть в верхних частях котла и радиаторов находится горячая вода, а в нижних — охлажденная. Горячая вода имеет меньшую плотность, а следовательно, меньший вес, чем охлажденная вода. Мысленно срежем верхнюю часть отопительного контура (рис. 2) и оставим только нижнюю часть. И что же мы видим? А то, что мы имеем дело с двумя сообщающимися сосудами, хорошо знакомым нам из школьной физики. Верх одного сосуда находится выше верха другого; вода под действием сил гравитации стремится переместиться из верхнего сосуда в нижний. Отопительный контур — замкнутая система, вода в нем не выплескивается, как в сообщающихся сосудах, а стремится «успокоиться» (занять один уровень). Таким образом, высокий столб охлажденной тяжелой воды после радиаторов постоянно выталкивает низкий столб воды перед котлом и подталкивает горячую воду — возникает естественная циркуляция. Иными словами, чем выше находится центр радиаторов относительно центра кола, тем больше циркуляционный напор. Высота установки — это, первый показатель напора. Уклоны подающих трубопроводов в сторону радиаторов и обратки от радиаторов к котлу только способствуют этому процессу, помогая воде преодолевать местные сопротивления в трубах.

рис. 2. Графическая схема возникновения циркуляционного напора

В частных домах лучше всего размещать котел ниже отопительных приборов, например, в подвале. При квартирном отоплении, когда котел устанавливается непосредственно в квартире почти на одном уровне с радиаторами, для увеличения циркуляционного напора котел лучше устанавливать «в яму» прямо на плиты перекрытия, выпилив вокруг него пол. Разумеется, «в яме» должны быть сделаны противопожарные мероприятия: плиты выровнены тонкой стяжкой, уложены листы асбеста и железа.

Второй показатель, от которого зависит циркуляционный напор, это разница между плотностями охлажденной и горячей воды. Здесь необходимо заметить, что системы с естественной циркуляцией теплоносителя относятся к саморегулирующимся системам. При проведении качественного регулирования, то есть при изменении температуры нагрева воды, самопроизвольно возникают количественные изменения — изменяется расход воды. Из-за изменения плотности горячей воды будет увеличиваться (уменьшаться) естественное циркуляционное давление, а следовательно, и количество циркулирующей воды. Другими словами, когда на улице холодно, становится холодно и в доме, включая котел на полную мощность, мы увеличиваем нагрев воды, значительно уменьшая ее плотность. Придя в отопительные приборы, вода отдает теплоту охлажденному воздуху в помещении, ее плотность при этом сильно повышается. А если взглянуть на ту часть формулы (рис. 1), которая стоит в скобках, мы видим, что чем больше разность между плотностями охлажденной и горячей воды, тем больше циркуляционный напор. Следовательно, чем сильнее нагрета вода в котле и чем сильнее она остывает в радиаторе, тем быстрее она начинает «бегать» (циркулировать) по системе отопления и это происходит до тех пор, пока воздух в помещении не прогреется. После чего вода начинает остывать в радиаторах медленнее, плотность ее уже не сильно отличается от плотности воды, вышедшей из котла, и циркуляционный напор начинает постепенно снижаться. Водичка уже не «бегает» по трубам, как «угорелая» стремясь нагреть помещение, а степенно перекатывается в них. Но как только температура в помещении начнет снижаться, например, из-за резкого похолодания или просто из-за открытой по забывчивости входной двери, циркуляционный напор начнет повышаться и водичка «побежит» по трубам веселее, стремясь выровнять температуру. Таким образом и происходит саморегуляция системы: одновременное изменение температуры и количества воды обеспечивает необходимую теплоотдачу отопительных приборов для поддержания ровной температуры помещений.

Системы водяного отопления с естественной циркуляцией бывают двухтрубные с верхней и нижней разводками, а также однотрубные с верхней разводкой.

 

Циркуляция теплоносителя в системе отопления

→ →

Циркуляция теплоносителя в системе отопления

 

Циркуляция теплоносителя в системе отопления.
Самым важным элементом системы с принудительной циркуляцией является насос, который заставляет двигаться (циркулировать) теплоноситель. Эти насосы так и называются — циркуляционные. Мощность насоса должна быть достаточной для преодоления сопротивления (трения) в трубе. Чем труба толще, тем меньше сопротивление и меньшая мощность насоса нужна. Но толстые трубы неудобны, некрасивы в комнатах и существенно дороже. В результате обычно соблюдают разумный баланс между диаметром труб и мощностью насоса. Существуют точные расчеты для соблюдения соответствия между диаметром трубы, качеством и стоимостью отопительной системы. Практически же для бытовых систем отопления подходят всего 2-3 типа компактных циркуляционных насосов.

Что делает насос в системе отопления с принудительной циркуляцией?
Насос побуждает двигаться воду (теплоноситель) в системе отопления, преодолевая сопротивление в трубе. Он не должен рассчитываться из условия поднятия воды на высоту здания (самое распространенное заблуждение!). Сколько горячей воды в системе отопления поднялось, столько же холодной опустилось.

Система отопления всегда замкнута, теплоноситель движется по кругу. Попробуем привести пример. Если перевернуть велосипед и хорошенько крутануть колесо, оно может крутиться очень долго, если оно установлено на хорошем подшипнике. Его остановит только трение в подшипнике. В каждый момент времени у любого поднимающегося кусочка колеса есть симметричный уравновешивающий кусочек, опускающийся с противоположной стороны.

Вода в замкнутой системе отопления подобна такому колесу. Насос преодолевает только трение, и вода движется по кругу. Именно поэтому циркуляционные насосы для частного дома (т.е. для бытовых систем отопления) имеют небольшую мощность, и, следовательно, низкое электропотребление — около 100 ватт, как лампочка. Если насос выключить, то вода через какое-то время, как и вращающееся колесо, остановится, а если не выключать, то вода будет двигаться постоянно. На этом основана возможность управления подачей тепла от котла в радиаторы дома. Насос может быть включенным на полную мощность, либо быть выключенным, либо работать вполсилы.

Насосы немецких фирм Grundfos и Wilo, в основном используемые при монтаже бытовых систем отопления, имеют три ступени мощности. Это позволяет даже при отсутствии дополнительной автоматики управлять системой. Если в доме жарко, а насос работает в полную силу, можно уменьшить мощность насоса, поток теплоносителя в системе станет меньше, температура на отопительных приборах понизится. Можно подключить насос к электролинии через термодатчик. Насос в этом случае будет автоматически включаться только тогда, когда температура в доме опустилась ниже желаемой. Такой датчик называют еще термостатом.


Устройство циркуляционного насоса


Как устроен и как монтируется циркуляционный насос?

Циркуляционный насос состоит из чугунного корпуса, внутри которого расположен ротор (вращающаяся часть) и насаженная на ротор крыльчатка. Ротор вращается — крыльчатка продвигает воду. Одно из основных правил монтажа насоса в системе: ось вращения ротора обязательно должна быть расположена горизонтально.
При правильном монтаже циркуляционные насосы практически бесшумны. Вы сможете определить, работает ли насос, только по легкой вибрации, когда дотронетесь до него рукой.


Системы с естественной циркуляцией

Что такое система с естественной циркуляцией?
В системе с естественной циркуляцией насоса нет. Роль насоса в ней выполняет сила, возникающая за счет разности плотности (веса) теплоносителя в подающей и обратной трубах. Как это происходит? Теплоноситель (например, вода) в котле нагревается. Плотность горячей воды меньше, т.е. она легче, чем холодная, и движется вверх по одной толстой трубе (подающему стояку). Затем горячая вода растекается по нескольким нисходящим трубам (обратным стоякам), «пронизывающим» здание, к отопительным приборам сверху вниз, и охлаждается, отдавая тепло. Плотность холодной воды увеличивается, вода тяжелеет и возвращается к котлу по обратному трубопроводу.
Циркуляция в такой системе возникает за счет разницы веса горячего теплоносителя в подающем стояке и холодного — после остывания в приборах и обратном трубопроводе. Чем больше диаметр вертикальных стояков, тем больше побудительная сила естественной циркуляции. При движении и вверх, и вниз вода преодолевает сопротивление в трубе (трение). Чем толще труба, тем меньше сопротивление. Труба толще — сопротивление меньше.

Что предпочесть?

Какая система лучше, с принудительной или естественной циркуляцией?

Выбирать Вам.
Система с принудительной циркуляцией более комфортна, теплом в такой системе можно управлять. Вы можете установить нужную вам температуру в каждой комнате, и она будет автоматически поддерживаться. Качество такой системы выше. Есть возможность скрыть все трубопроводы в пол или стены. Но эта система требует наличия электричества (или того, чтобы электричество не выключалось более чем на сутки.)
Система с естественной циркуляцией не поддается автоматическому регулированию, она «съедает» больше топлива и требует монтажа труб большого диаметра, которые несколько дороже и не очень эстетичны в интерьере. Регулировать такую систему можно обычно только вручную: пригасить горелку в котле, если в комнатах жарко, а когда станет холодно, снова увеличить огонь.
Если Вы хотите чаще общаться с Вашим котлом или Вас устраивает постоянный перегрев воздуха в комнатах или в Вашем доме очень часто и надолго выключается электричество, система с естественной циркуляцией — для Вас. Если же Вы предпочитаете удобное и комфортное отопление, выбирайте систему с принудительной циркуляцией.

Cистемы отопления с принудительной циркуляцией

Циркуляция в системе отопления дома может быть естественной и принудительной. Системы с естественной циркуляцией позволяют обогревать только одноэтажный дом сравнительно небольших размеров, являются менее эффективными и функциональными. Поэтому наиболее широкое применение сегодня имеют системы, в которых осуществляется принудительная циркуляция теплоносителя.

ТМ Ogint представляет современные радиаторы для эффективной работы отопления данного типа. Также мы выпускаем и реализуем качественные монтажные комплектующие и трубопроводную арматуру.

Состав системы с принудительной циркуляцией

Современная система водяного отопления с принудительной циркуляцией состоит из следующих основных компонентов:

  • котел. Возможно использование любых типов котельного оборудования;
  • разводка трубопровода;
  • отопительные приборы. Оптимальным выбором будут радиаторы Ogint. Наиболее высокую эффективность обеспечивают алюминиевые радиаторы Ogint — Classic, Delta Plus и Alpha, которые оптимально приспособлены к работе в автономных системах;
  • циркуляционный насос, который может устанавливаться отдельно или быть вмонтированным в котел;
  • закрытый расширительный бак.

Принцип работы и особенности системы с принудительной циркуляцией

Главной особенностью систем этого типа является то, что циркуляция теплоносителя поддерживается не за счет естественной разницы давлений, а принудительным путем при помощи циркуляционного насоса. Этот насос развивает необходимое давление, обеспечивая стабильную скорость движения воды по трубам. Он может устанавливаться как на подающей, так и на обратной магистрали.

Более предпочтительной является установка насоса на обратной магистрали, поскольку здесь он не подвергается воздействию высоких температур, что повышает его эксплуатационный ресурс.

Принудительный принцип движения теплоносителя позволяет использовать практически любые типы котлов для отопления частного дома. При этом оборудование может работать с умеренным температурным режимом: не требуется сильный нагрев воды для обеспечения ее циркуляции.

Важной составляющей является расширительный бак, который принимает излишки теплоносителя при его расширении. В данном случае используется герметичный бак, поэтому система также называется закрытой. Бак оснащается мембранным клапаном, который открывается при увеличении давления в системе выше определенного значения. Вода поступает в бак, давление в системе снижается до нормы, и клапан закрывается. При снижении давления в трубопроводе мембранный клапан открывается и выпускает воду в систему. Таким образом поддерживается стабильное давление, которое необходимо для нормальной и безопасной работы отопления.

Схема разводки труб при принудительной циркуляции может быть самой разной. Может применяться как однотрубная, так и двухтрубная разводка. Для одноэтажных зданий используется горизонтальная система. Схема отопления двухэтажного дома с принудительной циркуляцией будет вертикальной (с использованием вертикальных стояков). Также эта схема позволяет отапливать и здание большей этажности.

По принципу движения теплоносителя система может быть тупиковой (встречной) и попутной. Встречная является более простой и дешевой. Попутная схема движения теплоносителя обеспечивает оптимальную сбалансированность системы особенно при значительной протяженности трубопроводов, например, если отапливается большой трехэтажный дом.

Выбор радиаторов осуществляется, исходя из показателей эффективности и надежности. Оптимальным вариантом будут алюминиевые радиаторы Ogint, которые обладают максимальной теплоотдачей и небольшим внутренним объемом.

Преимущества и недостатки систем с принудительной циркуляцией

Системы отопления с принудительным движением теплоносителя получили широкое распространение благодаря следующим преимуществам:

  • возможность организации эффективного отопления при большой протяженности трубопроводов;
  • быстрый нагрев всех радиаторов в системе;
  • меньший диаметр труб для подключения котла и радиаторной системы, что существенно снижает затраты на материалы;
  • работа котла с оптимальным температурным режимом, что дает экономию энергоносителя и увеличивает ресурс оборудования;
  • простота монтажа за счет отсутствия необходимость обеспечивать уклон трубопроводов;
  • отсутствие необходимости постоянно контролировать уровень теплоносителя — система замкнутая, и вода не испаряется;
  • в качестве теплоносителя может использоваться антифриз;
  • широкий выбор возможных вариантов разводки труб;
  • эффективная и быстрая регулировка давления.

Имеются у отопления с принудительной циркуляцией и некоторые недостатки.

Главным недостатком является то, что система этого типа всегда зависит от электроснабжения, поскольку при аварийных отключениях электроэнергии циркуляционный насос не работает. Чтобы обеспечить стабильное отопление и предотвратить замерзание теплоносителя в таких аварийных ситуациях, рекомендуется использовать резервный электрогенератор.

Также недостатком систем с принудительной циркуляцией можно назвать наличие дополнительного механизма (циркуляционного насоса), который подвержен износу и может выходить из строя.

В системах с большой протяженностью трубопроводов размер расширительного бака может быть очень значительным. Дело в том, что закрытый бак заполняется не более чем на 30-60% объема. В результате могут потребоваться дополнительные решения по размещению бака.

В целом же, системы с принудительной циркуляцией — это оптимальное решение для большинства частных домов. Также они могут применяться и в квартирах. Использование передовых радиаторов Ogint позволит добиться максимальной эффективности в работе отопления.

Попутное и тупиковое движение теплоносителя. Петля Тихельмана

Для создания автономных систем отопления сегодня чаще всего выбирается двухтрубная разводка, которая позволяет поддерживать равномерную температуру каждого радиатора и эффективно регулировать ее. В зависимости от характера движения теплоносителя в подающей и обратной магистрали, для ее реализации может быть выбрана тупиковая (встречная) или попутная схема. Каждый из этих вариантов имеет свои достоинства и минусы и лучше подходит для определенных условий монтажа. Использование попутной схемы или петли Тихельмана в некоторых случаях представляет собой единственный способ создания эффективного и стабильно работающего отопления. Разберем характерные особенности, плюсы и минусы этой схемы двухтрубной разводки.

Как работает петля Тихельмана

Наиболее распространенной в бытовых сетях является тупиковая схема движения теплоносителя. Ее принцип действия заключается в том, что нагретая вода от котла по подающей магистрали поступает в каждый радиатор, а на выходе из контура отопительного прибора по обратной магистрали сразу направляется к отопительному котлу. Таким образом потоки воды в «подаче» и «обратке» движутся навстречу друг другу. В данном случае подающая магистраль проходит от котла до последнего прибора, а обратная магистраль — в обратном направлении, начиная от последней батареи до котла.

Принципиальной особенностью системы попутного типа является то, что и в подающей, и в обратной трубе теплоноситель движется в одном и том же направлении. Обычно такая схема используется в сетях с нижней разводкой. При этом предусматривается прокладка не двух, а трех труб:

  • подающий трубопровод;
  • обратный трубопровод;
  • трубопровод для возврата теплоносителя из обратной магистрали к котлу.

В данном случае «подача» также проходит от котла до последнего отопительного прибора. Обратная магистраль проходит от первого до последнего отопительного прибора. Таким образом теплоноситель движется по ней в том же направлении, что и по напорному трубопроводу. От последнего отопительного прибора он возвращается обратно к котлу по отдельной трубе.

Для чего используется попутная схема

Попутная система отопления применяется в тех случаях, когда необходимо решить проблему сложной балансировки трубопроводной сети. Такая балансировка требуется для того, чтобы обеспечить равномерное распределение тепла между подключенными радиаторами. Чем ближе батарея расположена к котлу, тем меньшими будут в ее контуре потери давления по сравнению с контурами других батарей. Соответственно основной поток теплоносителя будет стремиться именно в этот контур. В результате в сети отопления тупикового типа возникает ситуация, когда в первом от котла отопительном приборе поддерживается слишком высокая температура, а последний радиатор оказывается слишком холодным и не может эффективно обогревать помещение.

Для устранения этого дисбаланса на каждый радиатор приходится ставить игольчатый вентиль или термостатический клапан для регулировки объема теплоносителя, подаваемого на каждый прибор. Таким образом, давление на конкретной батарее будет тем ниже, чем ближе она расположена к котлу. Однако серьезные сложности с балансировкой возникают, когда необходимо создать отопительную сеть значительной протяженности, например, если нужно обогреть двухэтажный дом. В таких случаях на первом радиаторе давление может быть занижено настолько, что теплоноситель в него просто не потечет, либо может не хватить настройки клапана. В этом случае оптимальным будет использование варианта с попутным движением теплоносителя.

Вариант с попутным движением теплоносителя дает возможность намного легче решить вопрос балансировки. Собственно, такой вопрос возникает только в том случае, если используются батареи с разными характеристиками. Если все радиаторы в системе отопления имеют одно и то же число секций и одинаковые размеры, то попутная разводка является сбалансированной изначально и не требует применения специальной регулирующей арматуры. При разном количестве секций или при разных типоразмерах установленных в системе радиаторов ее придется балансировать. Однако сделать это будет намного легче по сравнению с тупиковой схемой.

Плюсы и минусы

Главным плюсом петли Тихельмана является именно ее сбалансированность. Выбор такой схемы позволит сократить количество установленной регулирующей арматуры. Соответственно, отпадает необходимость обслуживания дополнительных устройств и возможность их выхода из строя. В результате повышается общая надежность системы и упрощается ее эксплуатация.

Также за счет того, что система является сбалансированной, все батареи в ее составе греют практически одинаково без применения дополнительных решений. Это оптимизирует работу котла и насоса, снижает износ оборудования. Кроме того, в таком режиме повышается эффективность работы системы.

Петля Тихельмана подходит для создания и систем с принудительной циркуляцией, и для самотечных систем. Наиболее распространены, безусловно, принудительные системы. Однако если возникает потребность создания системы с естественной циркуляцией теплоносителя, то хорошим выбором будет именно попутная схема. Это также объясняется сбалансированностью трубопровода и отсутствием необходимости в установке дополнительной регулирующей арматуры.

Радиаторы Lammin обладают высокой тепловой эффективностью и отличными гидравлическими характеристиками. Благодаря этому их использование дает возможность в полной мере использовать все преимущества данного типа отопительной системы.

Помимо перечисленных достоинств, петля Тихельмана имеет и ряд недостатков:

  • существенное увеличение протяженности трубопроводов;
  • необходимость использования труб различного диаметра;
  • необходимость прокладки трех магистральных трубопроводов.

Главным минусом является увеличенная протяженность трубопроводов. Это приводит к значительному росту материальных затрат на комплектацию системы отопления. Кроме того, перечисленные недостатки усложняют работы по ее монтажу.

В связи с этими недостатками схемы с попутным движением применяются реже, чем тупиковые. Однако для создания крупных систем с протяженными трубопроводами такая схема зачастую является просто незаменимой и обеспечивает максимальную эффективность.

Монтаж радиаторного отопления

Радиаторное отопление — это самый популярный способ отопления квартир, загородных домов и офисов. Сегодня для устройства систем отопления используются передовые технологии, которые идеально вписываются в дизайн помещений и справляются с поставленными задачами. Громоздкие и тяжёлые чугунные радиаторы уступают место новым алюминиевым, биметаллическим и стальным панельным радиаторам, которые становятся «сердцем» отопительной системы.

Принцип работы радиаторного отопления прост: вода нагревается в котле до определенной температуры, а после перемещается к радиатору через трубопровод. Так, радиатор нагревается и передаёт тепло в помещение.

Радиаторное отопление подразделяется на две группы:

  1. С принудительной циркуляцией. Укладка трубопровода выполняется произвольно, используются трубы диаметром до 10 мм. Движение воды по трубопроводу обеспечивается циркуляционным насосом;
  2. Самотечное. Циркуляция воды осуществляется без использования насосов. Как это происходит? Всё просто: вода нагревается в котле и расширяется, а в радиаторе выполняется её охлаждение и сжатие. Создаётся гидростатический напор, и вода начинает движение в системе отопления.

Особое внимание уделяется проектированию системы радиаторного отопления. Исходя из специфики объекта, выполняется расчёт теплопотерь, выбирается оптимальный вид и размер радиатора для последующей установки. После этого производится подвод теплоносителя и расстановка отопительных приборов в помещениях.

Под каждый объект мы подбираем оптимальную конфигурацию отопительной системы: стояковую, коллекторную, одно- и двухтрубную. Подключение труб может выполняться из стен, пола или боковое.

При монтаже системы отопления могут использоваться настенные и напольные радиаторы.

По желанию клиента наши специалисты могут выполнить подключение радиаторного отопления к системе управления «умный дом». Интеграция с климатическими системами позволит сэкономить на энергозатратах, создать уют и тепло в Вашем доме, квартире или офисе.

Современные радиаторы и тщательно спроектированные системы отопления не дадут Вам замерзнуть зимой, подарят комфорт и спокойствие.


Схемы подключения радиаторов | Полезные советы

Эффективно обогреть помещение при минимальных затратах поможет продуманная система водяного отопления. Сначала рассчитывается необходимая мощность обогревателей, затем выбираются места установки радиаторов, далее выбираются сами батареи и схема подключения для каждой из них.

Стандартные системы отопления и типы циркуляции теплоносителя

Существует два варианта подключения всей системы к котлу: однотрубная и двухтрубная. В первом случае все радиаторы подключены последовательно и, соответственно, ближайшие к котлу будут горячее, а дальние – холоднее. Отрегулировать температуру в конкретной батарее невозможно. Если вы живете в многоквартирном доме с однотрубной подачей тепла, то, скорее всего, повлиять на эту схему не сможете. Можно только установить больше радиаторов или выбрать более мощные модели для удаленной от котельной квартиры, и, наоборот, менее мощные для той, где слишком жарко.

При двухтрубной подаче все батареи подключены параллельно и допускают регулировку мощности, но труб нужно в два раза больше, что увеличивает расходы. В частном доме такой подход оправдан: в каждой комнате можно создать комфортную хозяину температуру.

В зависимости от обогреваемой площади в собственном доме выбирают систему отопления с естественным или принудительным движением воды. Естественная циркуляция работает при площади меньше 100 кв.м. В этом варианте нагретая вода поднимается от котла вверх, а остывшая возвращается к нему по нижней трубе. Желательно устанавливать котел в подвале или цокольном этаже, а обратную трубу уложить с наклоном в его сторону.

В больших домах давление в трубопроводе создает циркуляционный насос. В этом случае можно использовать как теплоноситель не только воду, но и незамерзающую жидкость. Минус у насоса всего один: он питается от электросети, что требует дополнительных расходов и создает опасность остаться без отопления при внезапном отключении электричества.

Место установки

Чтобы уменьшить теплопотери от холодных окон, под подоконником всегда устанавливают обогреватель. Желательно также наклеить фольгированный изолирующий материал на стенку за ним, чтобы отражать инфракрасные лучи в комнату. Для максимально эффективной работы батарея должна занимать три четверти ширины ниши под подоконником, отстоять от стены минимум на 3 см, от пола и подоконника на 10-12 см. Эти параметры обеспечивают свободную циркуляцию воздуха. Декоративная решетка перед конвектором «съест» до 15% тепла. Дополнительные батареи ставят по потребности: например, в ванной или прихожей, где сохнут влажные вещи.

Схемы подключения конвекторов

Эффективность обогревателя зависит также от способа подачи в него горячей воды. Наименее популярны нижнее и седельное подключение: радиаторы с этими вариантами работают на 12-15% слабее проектной мощности. Однако эти способы позволяют полностью скрыть трубы под полом, на поверхности остается только узел подключения с встроенными шаровыми кранами. Компенсировать пониженную теплоотдачу можно батареей с большим числом секций и наличием в системе циркуляционного насоса.

Боковое подключение применяется при наличии вертикального стояка. Теплоноситель поступает через верхний патрубок и выходит через расположенный прямо под ним нижний. Между ними устанавливают байпас – отрезок трубы, позволяющий при необходимости демонтировать батарею. Важно соблюдать вертикальное положение ребер конвектора при креплении: перекос может вызвать завоздушивание – ситуацию, когда воздух занимает часть секций, и они не прогреваются. Слабый нагрев крайних секций может быть связан с излишней длиной радиатора (более 8 секций) или низким давлением в системе. В этих случаях помогает удлиненная подводящая труба, которая доставляет воду к центральным секциям.

Самой распространенной является диагональная (перекрестная) схема. Именно ее берут за основу при расчете мощности конкретной модели конвектора. Чаще всего горячая вода подходит сверху, а слегка остывшая (примерно на 2%) выходит снизу, но с противоположной стороны батареи. В системе с принудительной циркуляцией возможен обратный вариант: приток снизу, отток сверху. Диагональное подключение одинаково хорошо работает с радиаторами любой длины.

Есть еще несколько нюансов, которые известны профессиональным монтажникам систем отопления. Оптимально использовать трубы и батареи, изготовленные из одного материала, так как разные коэффициенты расширения при нагреве приводят к разгерметизации стыков и подтеканию воды. Каждый радиатор должен иметь шаровой кран на входе для стравливания воздуха и регулировки напора. Диаметр труб также играет роль в эффективности обогрева помещения.

Систему отопления маленького дома можно выполнить самостоятельно, следуя приведенным советам. А вот расчет и монтаж для здания большой площади лучше поручить профессионалам.

Как ухаживать за радиаторами — Журнал Old House Journal

Перед тем, как приступить к техническому обслуживанию или ремонту старых радиаторов, важно знать, есть ли у вас паровые или водяные радиаторы. Самый простой способ определить это — посмотреть на количество труб, идущих от вашего радиатора: если труба только одна, значит, это паровая система. Две трубы могут указывать на пар или горячую воду, при этом конденсированная или охлажденная вода возвращается в котел по второй трубе.

Радиатор горячей воды в Рутмере, доме изящного искусства 1910 года в Элкхарте, штат Индиана, демонстрирует типичное нижнее соединение трубы.

Джозеф Хиллиард

Радиаторы горячей воды 101

В водяных радиаторах редукционный клапан между городской водой и системой водяного отопления постоянно поддерживает ее наполнение. В большинстве двухэтажных домов требуется давление 12 фунтов на квадратный дюйм, и это заводская настройка клапана. Если в вашем старом доме три этажа и на верхнем этаже установлены радиаторы, вам может потребоваться отрегулировать клапан для подачи воды под давлением 18 фунтов на квадратный дюйм, чтобы убедиться, что радиаторы наверху заполнены.

После заполнения циркуляционный насос перемещает нагретую воду из бойлера в радиаторы и обратно. Раньше во многих системах водяного отопления не было циркуляционных насосов; вода текла под действием силы тяжести, при этом горячая вода поднималась и холодная вода падала. По этой причине у многих отдельно стоящих чугунных радиаторов соединения трубопровода находятся в нижней части радиатора. Нагретая вода поступает в радиатор и поднимается за счет конвекции, тогда как более холодная вода внутри радиатора падает обратно в котел.

До появления циркуляционных насосов путем наименьшего сопротивления воде всегда были радиаторы верхнего этажа. Старожилы замедлили поток к самым верхним радиаторам, вставив металлическое отверстие (кусок металла размером с никель с маленьким отверстием) внутрь клапана подачи радиатора. Друг-подрядчик сказал мне, что его дед будет делать их из табачных банок Prince Albert. Он использовал ножницы, чтобы вырезать круг, а затем пробить отверстие гвоздем — работало как заклинание.

Проблема, однако, заключается в том, что, когда вы добавляете насос в систему, путь наименьшего сопротивления перемещается к радиаторам на первом этаже, и это часто приводит к тому, что радиаторы наверху становятся холодными.Там, где нет потока горячей воды, нет тепла. Если вы выпускаете воздух, но воздух не поступает, а радиатор все еще не нагревается, скорее всего, проблема в этом. Профессионалы знают это, и при вызове для устранения неполадок большинство снимет отверстия с радиаторов верхнего этажа и установит их на радиаторах нижнего этажа, чтобы сбалансировать систему.

Паровые радиаторы 101

Труба на этой стене, вероятно, питает радиатор, расположенный на полу над этим однотрубным паровым агрегатом.

Alli Coate

Если у вас есть паровое отопление, каждый из ваших радиаторов будет иметь одну или две трубы.Во всех паровых радиаторах используется сила тяжести, чтобы вернуть сконденсированный пар (так называемый «конденсат») в котел. Ключ к тому, чтобы все это работало, — поддерживать низкое давление в системе. Если вы не можете отапливать свой старый дом давлением 2 фунта на квадратный дюйм или меньше (такое давление использует Эмпайр-стейт-билдинг), что-то не так.

Пар под высоким давлением может удерживать вентиляционные отверстия в однотрубной паровой системе закрытыми, а при закрытых вентиляционных отверстиях воздух не может выходить из системы. Если воздух не выходит, пар не может попасть внутрь.Высокое давление также может привести к тому, что конденсат останется в системе, и это может привести к звукам ударов и большим счетам за топливо.

Устройство, контролирующее давление, — это «Pressuretrol», и оно находится на котле. Для отопления дома всегда должно быть минимально возможное значение.

Радиаторы паровые однотрубные

Секции паровых радиаторов однотрубные часто соединяются только через их днище. Раздел подобен отдельному ломтику буханки хлеба.Пар легче воздуха, поэтому, когда он входит в однотрубный паровой радиатор через подающий клапан в нижней части радиатора, он поднимается, выталкивая воздух вперед. Воздух будет выходить из радиатора через вентиляционное отверстие, которое находится на последней секции и примерно на трети пути вниз от верха. Почему? Если бы вентиляционное отверстие было на самом верху этой последней секции, пар легче воздуха закрывал бы его до того, как большая часть радиатора нагрелась. Помните: если воздух не выходит, пар не может попасть внутрь.

Двухтрубные паровые радиаторы

Двухтрубные паровые радиаторы имеют клапан подачи пара либо вверху радиатора, либо (реже) внизу. Возврат — труба, по которой конденсат самотеком возвращается в котел — всегда находится в нижней части радиатора. Это может быть конденсатоотводчик или то, что мы называем «паровым» устройством, которое встречается в десятках форм и размеров.

В отличие от однотрубных радиаторов, на двухтрубном радиаторе можно настроить подающий клапан на пропускание большего или меньшего количества пара, что является основным преимуществом этой системы.В однотрубном радиаторе пар и конденсат делят это ограниченное пространство внутри однотрубного подающего клапана, и если вы дросселируете этот клапан, вы получите много шума и разбрызгивания вентиляционных отверстий, когда пар разбрасывает воду. в плотных пределах частично закрытого клапана.

Паровые радиаторы, подключенные сверху и снизу, можно легко переоборудовать для работы на горячей воде.

Clare Martin

Преобразователи радиаторов

Поскольку двухтрубные паровые радиаторы имеют соединения как сверху, так и снизу каждой секции радиатора, их можно переоборудовать для работы на горячей воде.(Однотрубные радиаторы, с другой стороны, не могут быть переделаны, в первую очередь потому, что они подключаются только снизу.)

Старые паровые радиаторы обычно требуют большего обслуживания, чем их аналоги для горячего водоснабжения (включая промывку отсечки малой воды котла раз в неделю, чтобы котел не засорялся и не перегорал), поэтому многие подрядчики рекомендуют переоборудование.

Тем не менее, прежде чем это сделать, нужно о многом подумать. Поскольку радиаторы с горячей водой должны работать при более низкой температуре, ваш радиатор должен быть достаточно большим, чтобы обеспечивать достаточное количество тепла в самые холодные дни.Поскольку большинство паровых радиаторов изначально имеют слишком большие размеры (см. «Внешний вид — это все» ниже), обычно это не проблема.

Самый большой вопрос, который следует рассмотреть, — выдержат ли ваши паровые радиаторы и старые трубы давление от 12 до 18 фунтов на квадратный дюйм, необходимое для системы горячего водоснабжения. До сих пор эта старая паровая система работала с давлением менее 2 фунтов на квадратный дюйм. Если есть утечки, вы заметите их, когда переключитесь на горячую воду, поэтому лучше искать утечки, пока у вас еще есть пар.Простой способ сделать это — поднять давление (только временно!) До 10 фунтов на квадратный дюйм и провести тщательный поиск утечек.

Внешний вид — это все

Деревянные крышки, такие как эта от Wooden Radiator Cabinet Co., обеспечивают привлекательный способ скрыть радиаторы, но они также сокращают выходную мощность на целых 30 процентов.

Радиаторы увеличенного размера

Когда прибыла пандемия испанского гриппа 1918 года, унесшая жизни 675 000 американцев, многие люди стали бояться воздуха в своих домах — и не зря.В 1919 году Совет здравоохранения отреагировал на это, потребовав, чтобы люди держали окна приоткрытыми зимой, чтобы впустить свежий воздух. Следовательно, радиаторы стали больше — достаточно большими, чтобы обогреть весь дом в самый холодный зимний день, часто с открытыми окнами. (В более мягкие дни термостат отключает однотрубные паровые радиаторы до того, как они полностью нагреются.)

Избыточные радиаторы были нормой во время Ревущих 20-х годов, но когда наступила Великая депрессия — и поскольку испанский грипп так и не вернулся, — люди начали закрывать окна, чтобы сэкономить топливо, и все эти негабаритные радиаторы, работающие сверхурочно, сделали внутри довольно жарко.

Радиаторы с бронзированием

Вскоре люди узнали, благодаря докладу Национального бюро стандартов за 1935 год, что краска, содержащая металлические хлопья, может снизить мощность радиатора до 20 процентов. Они начали бронировать свои радиаторы алюминиевой или золотой бронзовой краской, поэтому многие старые радиаторы окрашены в серебристый или бронзовый цвет.

Кожухи для радиаторов

Люди также обнаружили, что установка кожуха над радиатором снижает его выходную мощность.Простая полка над чугунным радиатором снижает его мощность на 20 процентов. Классический кожух радиатора, который имеет сплошную верхнюю часть и металлическую перфорированную переднюю часть, снижает мощность на 30 процентов, поэтому мы находим их во многих домах.

Удаление воздуха из радиатора.

Ремонт радиаторов: прокачка

Если вы обнаружите, что ваши радиаторы для горячей воды не такие теплые, как вам хотелось бы, им может потребоваться для удаления воздуха . Поскольку холодная вода содержит больше воздуха, чем горячая, при нагревании этот воздух выходит из раствора и поднимается вверх, обычно находя место в батареях отопления.Оказавшись там, он может заблокировать поток воды, в результате чего некоторые радиаторы останутся холодными. «Стравливание» — это процесс открытия вентиляционного отверстия, чтобы позволить захваченному воздуху выйти, чтобы поток мог продолжаться.

Как удалить воздух из радиатора горячей воды:

  1. найдите вентиляционное отверстие в верхней части.
  2. Выключите термостат, чтобы вода не текла.
  3. Имейте наготове небольшое ведро и тряпку, чтобы уловить любые брызги, а затем откройте вентиляционное отверстие с помощью отвертки или вентиляционного ключа (старинные ключи с заводным заводом часто подходят для вентиляционных отверстий радиатора).
  4. Как только воздух перестанет разбрызгиваться и начнет течь вода, все готово.

Все паровые радиаторы изначально полностью заполнены воздухом, и они будут стравливать воздух автоматически, пока система работает правильно. Воздух из однотрубных радиаторов проходит через вентиляционные отверстия; воздуховод из двухтрубных радиаторов проходит через устройство, которое вы видите на выпускной стороне радиатора (это труба, ближайшая к полу).

Ремонт радиаторов: утечки

Когда дело доходит до устранения утечки радиаторов, нет простого решения — все зависит от того, где находится утечка и насколько она серьезна.Паровые радиаторы, поскольку они находятся под гораздо меньшим давлением, чем радиаторы с горячей водой, обычно легче ремонтировать.

Для начала определите место утечки. Смотровое зеркало (доступное в вашем местном хозяйственном магазине) может помочь, так как оно позволит вам заглядывать за углы и в труднодоступные места. Если утечка — это всего лишь точечное отверстие, а не серьезная катастрофа из-за сильного замораживания, возможно, вы сможете ее исправить.

Нет продуктов, которые можно было бы залить в радиатор, чтобы остановить утечку, но представитель J-B Weld Company из Сульфур-Спрингс, штат Техас, говорит, что многие из их клиентов добились большого успеха, используя J-B Weld для ремонта старых чугунных радиаторов.Несколько профессионалов, с которыми я разговаривал, также сообщают, что использовали его для успешного устранения утечек радиатора. Однако этот процесс немного сложен.

Как исправить утечку радиатора:

  1. Сначала слейте воду из радиатора и удалите всю краску, грунтовку или ржавчину с места утечки.
  2. Очистите поверхность очистителем, не содержащим нефтепродуктов, например ацетоном или разбавителем для лака, чтобы удалить всю грязь, жир и масло.
  3. Обработайте поверхность напильником.
  4. Смешайте два элемента продукта вместе в пропорции 50/50 и нанесите его толщиной не менее 1/32 дюйма, стараясь не попасть на кожу или в глаза.
  5. Дайте ему высохнуть не менее 15 часов и проверьте, что у вас получилось.

Я спросил, может ли продукт справиться с колебаниями температуры и, как следствие, с расширением и сжатием, обычными для чугунных радиаторов. Представитель сказал мне, что продукт действительно «размягчается» при нагревании и будет двигаться вместе с металлом. Однако это не то смягчение, которое вы заметите. Чтобы это произошло, вам нужно нагреться до 400 ° F (продукт годен до 500 °).Обычно паровой радиатор имеет верхнюю границу около 229 °, а радиатор с горячей водой — около 180 °. Пока вы можете получить доступ к утечке (и готовы приложить усилия), похоже, это может быть хорошим решением.

Подробнее из

Old House Journal :

Как ухаживать за паровыми и водяными радиаторами

Важно знать, что вы всегда должны поговорить со специалистом, прежде чем пытаться ремонтировать или обслуживать какие-либо старые радиаторы, обнаруженные в вашем доме.

Причина работы с профессионалом в том, что вам нужно знать, есть ли в вашем доме паровые или водяные радиаторы.

Как определить пар из водяных радиаторов?

Вообще говоря, способ узнать, есть ли у вас паровые или водяные радиаторы, — это посмотреть, сколько труб выходит из вашего радиатора. Если вы видите только одну трубу, то, скорее всего, это паровой радиатор. Если вы видите две трубы, возможно, в вашем доме есть система пара или горячего водоснабжения. Вторая труба обычно используется для холодной или конденсированной воды, поэтому она возвращается обратно в котел.

Автор фото: Unsplash

Уход за радиаторами в вашем доме

Радиаторы горячей воды

Профессиональные подрядчики HVAC понимают, как водяные радиаторы используют конвекцию для распределения тепла по всему дому. В системах водяного отопления, в которых нет циркуляционных насосов, вода течет под действием силы тяжести и конвекции там, где горячая вода поднимается, передает тепло в вашу комнату, а затем холодная вода падает и возвращается в водонагреватель.

Обслуживание этих систем может быть сложным, поскольку необходимо учитывать множество переменных, например:

  • Используется ли циркуляционный насос?
  • Сколько этажей в доме?
  • Какой напор воды с улицы?
  • Есть ли в системе нагнетательный клапан?
  • Установлены ли отверстия для создания сопротивления?

При поиске и устранении неисправностей важно знать, как сбалансировать систему.Поэтому невероятно важно не устранять неполадки или модифицировать вашу систему водяного отопления без консультации со специалистом, который учтет все эти переменные.

Что я могу сделать для обслуживания своих радиаторов горячей воды?

Можно отрегулировать выпускной клапан.

На радиаторе с горячей водой, если он не отапливает комнату должным образом, возможно, внутри может скопиться воздух. Для решения этой проблемы сделайте следующее:

  • Выключите термостат, чтобы уменьшить расход воды
  • Найдите выпускной клапан на радиаторе
  • Держите чашку или ткань под спускным клапаном для сбора воды
  • Откройте его ключом для прокачки, плоскогубцами или отверткой
  • Вода может плескаться или шипеть при выходе воздуха
  • Как только вода потечет устойчивой струей, затяните клапан
Радиаторы паровые

Паровые радиаторы будут иметь одну или две трубы.Паровые радиаторы под действием силы тяжести возвращают сконденсированный пар (конденсат) обратно в котел. В отличие от систем водяного отопления, паровые системы используют гораздо более низкое давление. Профессиональные подрядчики HVAC понимают, что при слишком большом давлении вентиляционные отверстия не откроются и не выпустят воздух. Это приводит к тому, что пар не может попасть внутрь, а конденсат может возвращаться обратно.

Как я могу обслуживать паровые радиаторы?

Вы можете выпустить воздух, используя клапан сбоку парового радиатора.

  • Найдите вентиляционное отверстие сбоку парового радиатора
  • Убедитесь, что в вентиляционном отверстии есть открытое отверстие для воздуха, воткнув кусок проволоки или небольшую иглу.
  • Закрашенные вентиляционные отверстия забивают вентиляционное отверстие и создают проблемы

Обеспечивает лучшую циркуляцию воздуха.

  • Соблюдайте осторожность, чтобы обеспечить надлежащий поток воздуха вокруг радиатора и позади него
  • Убрать мебель и другие предметы с дороги
  • Используйте алюминиевую или отражающую изоляцию за радиатором, чтобы направить тепло в комнату.

Заключение

Системы водяного и парового отопления — отличный способ обогреть ваш дом зимой.Чтобы они оставались эффективными, их нужно поддерживать.

Обращайтесь, если у вас есть какие-либо вопросы о том, как обслуживать вашу систему отопления.

Гравитационное водяное отопление, вопросы и ответы

Дата публикации: 17 июня 2014 г.

Категории: Горячая вода

Q: Как давно используется самотечное водонагревание?
A: Гравитационное водяное отопление незаметно началось в Соединенных Штатах между 1875 и 1885 годами. Это был импорт из Канады, безопасный заменитель парового тепла, который снискал во всем мире печально известную репутацию довольно опасного способа обогрева. обогреть здание.

Q: Что не так со Steam?
A: Проблема с паром в первые дни заключалась в том, что он работал под давлением и часто взрывался с катастрофическими последствиями. С другой стороны, системы горячего водоснабжения были открыты для атмосферы и относительно безопасны, потому что старожилы обычно ограничивали их высокой температурой 180 градусов по Фаренгейту. В те дни вы могли сравнить разницу между тем, как гравитация … водяную систему и паровую систему к системе открытого кипящего котла с водой, и скороварка сошла с ума!

Q: Значит, горячая вода под действием силы тяжести стала популярной, потому что она была безопасной?
A: Да, и потому, что эти системы также были просты в обслуживании и большую часть времени работали с небольшими проблемами или без них.У них было много чего, и они быстро стали предпочтительным способом обогрева больших американских домов незадолго до начала века.

Q: Это простая система?
A: Теоретически да. Единственная движущаяся часть — это сама вода, но чтобы получить эту воду, куда он хотел, слесарь-трубщик должен был объединить знания и опыт мистера Гудренча и мистера Уизарда. Если он делал свою работу хорошо, система работала прекрасно. Если он этого не сделал, это превратилось в кошмар равновесия.

Q: Как выглядит типичная самотечная система горячего водоснабжения?
A: Вот схема системы «подачи».

Q: Почему они назвали это подачей?
A: Потому что вода подается снизу (котел) вверх (самый высокий радиатор).

Q: Где циркулятор?
A: Нет! Циркуляционные насосы, которые мы используем в современных системах горячего водоснабжения, еще не были изобретены, поэтому для подачи воды из бойлера в радиаторы старожилы полагались на основной закон физики: горячая вода поднимается, холодная вода опускается.

В: Почему?
A: Из-за разницы в плотности горячей и холодной воды.Кубический фут воды при температуре 180 градусов по Фаренгейту занимает около пяти процентов пространства, чем кубический фут воды при температуре 40 градусов по Фаренгейту. Он также весит примерно на два фунта меньше.

Q: Здесь появляется термин «гравитация»?
A: Да! Когда вы нагреваете воду в бойлере, она поднимается в трубы, потому что она легче, чем относительно холодная вода в трубопроводе системы. Эта более холодная вода, в свою очередь, падает обратно в котел (под действием силы тяжести), и вскоре вы получаете поток теплой воды, свободно движущийся от котла к радиаторам, в виде колеса обозрения.

Q: Что определяет скорость движения воды?
A: Несколько вещей. Во-первых, это высота системы. Чем выше здание, тем быстрее поток. В разумных пределах, конечно, потому что, если здание слишком высокое, вода будет охлаждаться и замедлять циркуляцию к верхним этажам. Трехэтажный дом — это практический предел для самотечного водяного отопления.

И еще есть размер труб. Чем больше трубы, тем быстрее будет течь вода. Это связано с тем, что большие трубы имеют меньшее сопротивление потоку, чем маленькие трубы.Это также причина того, что старожилы использовали на своих котлах два питающих и два обратных отвода.

В конечном счете, размер труб был также причиной того, что пар заменил гравитационное водяное тепло в американских домах. С годами паровое тепло стало безопаснее, но трубы большого диаметра, необходимые для гравитационных систем, по-прежнему были дорогими.

Третий фактор, определяющий скорость циркуляции воды, — это состояние труб. Когда трубы новые, они гладкие изнутри.Они оказывают очень небольшое сопротивление медленно движущейся воде. Однако по мере старения в трубах образуются небольшие укромные уголки и трещины из-за кислородной коррозии. Эти крошечные внутренние заусенцы увеличивают сопротивление трения, что, в свою очередь, замедляет поток и перенос тепла к радиаторам. В настоящее время мы обычно решаем эту проблему, добавляя в систему циркулятор.

И, наконец, разница в температуре подаваемой и обратной воды. Чем горячее вода, тем быстрее она циркулирует.Однако старожилы всегда поддерживали максимальную температуру на уровне 180 градусов по Фаренгейту, чтобы вода никогда не приближалась к точке кипения.

Q: Старожилы работали при определенной разнице температур подачи и возврата?
A: Да, и для достижения максимальной эффективности они ограничили максимальную разницу температур между подачей и возвратом до 20 градусов по Фаренгейту. Это было функцией размера трубы (чем меньше трубы, тем больше перепад температуры, и наоборот. ).Таким образом, в самый холодный день года, если вода выходит из котла при максимальной температуре 180 градусов по Фаренгейту, она вернется к минимуму 160 градусов по Фаренгейту. Это, конечно, предполагает, что слесарь-монтажник следовал принятым правилам прокладки трубопроводов день.

В: Горячая вода занимала больше места, чем холодная?
A: Несомненно! Как я уже говорил, когда вы нагреваете воду с 40 до 180 градусов по Фаренгейту, в результате получается примерно на пять процентов больше воды, чем вначале. У вас должно быть место для этой «лишней» воды.

Q: Как поступили с «лишней» водой?
A: Они использовали расширительные бачки.

Q: Как выглядит расширительный бачок?
A: Типичный выглядел так.

Q: Куда пропал расширительный бачок?
A: Обычно в верхней точке системы. Обычно вы найдете их на чердаке. Резервуар дает расширяющейся и сжимающейся воде место, где она может подниматься и опускаться.

Q: Предположим, я налил в систему слишком много воды, когда впервые заправляю ее.Что случится?
A: Он вытечет из бака через вентиляционное отверстие и попадет на крышу.

В: Может ли это причинить вред?
A: Не в систему. Если система старая, на крыше могут остаться пятна ржавчины, но не более того.

Q: Сколько воды мне следует налить в бак при первом заполнении системы?
A: Обычно вы должны поддерживать резервуар на одну треть, когда вода холодная (часто сбоку резервуара есть измерительное стекло, чтобы вы могли видеть, что вы делаете).По мере того, как вода нагревается и расширяется, она поднимается до верхних двух третей резервуара и останавливается, прежде чем вытечь на крышу.

Q: Как они заправляли эти баки?
A: Некоторые баки имели автоматический заправочный клапан, очень похожий на шаровой кран в унитазе. Остальные, старожилы, вручную заполнили вентиль, который был либо внизу в подвале, либо на чердаке.

Q: Погодите, если вы в подвале, как вы можете узнать, сколько воды в чердаке?
A: Хороший вопрос! Скорее всего, у котла был «высотомер», который показывал высоту воды в системе.Манометр регистрировал высоту в футах, а также статическое давление.

Q: Что такое статическое давление?
A: Это давление, создаваемое водой внутри котла, когда она накапливается в трубопроводе системы. Манометр регистрирует статическое давление в фунтах на квадратный дюйм (psi). Один фунт на квадратный дюйм поднимет воду на 2,31 фута (это 28 дюймов) по вертикали, и именно здесь появляется «высота».

Q: Нужно ли вам предпринимать какие-либо особые меры предосторожности при работе с системой гравитации подачи?
A: Да, если вам нужно слить воду из системы, будьте осторожны при ее пополнении.Начните с открытыми вентиляционными отверстиями в радиаторе. Затем медленно заполняйте систему, по одному этажу за раз. Когда вода потечет из форточок на первом этаже, быстро закройте их все. Затем продолжайте заливку, пока вода не поднимется на второй этаж. Закройте все вентиляционные отверстия и поднимитесь на третий этаж. После того, как вы заполните все радиаторы, заполните систему до одной трети от заполнения расширительного бачка.

Q: Почему этот метод важен?
A: Потому что в этих больших трубах и радиаторах так много воздуха.Если вы попытаетесь заполнить систему сразу, а затем вернуться и выпустить воздух из каждого радиатора, выходящий из одного радиатора воздух вызовет выпадение воды из расширительного бачка и ближайших радиаторов. Это может втянуть больше воздуха в трубопровод системы.

Q: Что произойдет, если я не буду следовать этой процедуре заполнения?
A: Обычно возникают «фантомные» проблемы с воздухом. Сегодня в этом радиаторе появляется воздух. Вы выпустите это из себя. Завтра он там в радиаторе. Вы выпустите это из себя.На следующий день проблема появляется где-то еще. Это может сводить с ума.

Q: Как воздух из нагретой воды выходит из системы после первоначальной продувки?
A: Он выходит через переливную трубу, которая выходит через крышу. Обычно резервуар находится на верхнем стояке основной системы в высокой точке. Бак отводит большую часть воздуха, выделяемого нагретой котловой водой. Если часть этого воздуха попадет в радиаторы, а не в бак, это может замедлить поступление тепла в комнаты.В идеале, при использовании этого типа системы, кто-то должен спускать воздух из радиаторов в начале каждого отопительного сезона.

Q: Существует ли опасность замерзания чердака, если чердак не изолирован должным образом.
A: Да, есть. И если это произойдет, расширяющейся системной воде будет некуда деваться. Чтобы избежать этой потенциально опасной ситуации, многие старожилы так подключили свои резервуары.

Эта вторая труба, подключенная к боковой стороне бака, позволяет горячей системной воде циркулировать через бак.Поскольку вода горячая и находится в движении, вероятность замерзания значительно ниже.

Q: Почему они просто не пошли дальше и не протрубили все свои резервуары таким образом?
A: Поскольку при такой циркуляции воды через открытый резервуар скорость испарения воды из системы увеличивается. Это означает, что кому-то нужно добавить больше пресной воды. Пресная вода увеличивает скорость коррозии в системе и со временем замедляет циркуляцию.

Q: Предположим, я решил модернизировать систему, добавив циркуляционный насос или заменив котел.Стоит ли держать открытый резервуар?
A: В таком случае вы, вероятно, захотите закрыть систему, заменив открытый расширительный бак на чердаке закрытым компрессорным баком. Это не всегда необходимо, но это сокращает коррозию, возникающую в системе.

Q: В чем разница между расширительным бачком и компрессорным баком?
A: Это действительно вопрос семантики. «Расширительный» резервуар — это открытый резервуар. Резервуар «сжатия» — это закрытый резервуар.Большинство людей меняют термины местами. Пока человек, с которым вы разговариваете, знает, что вы имеете в виду, на самом деле не имеет большого значения, как вы это называете.

Q: Были ли другие типы гравитационных систем?
А: Да. Если бы первоначальный владелец дома стал первоклассным, он бы установил надземную гравитационную систему, подобную этой.

Q: Чем система накладных расходов отличается от системы подачи?
A: В потолочной системе вода сначала направляется на чердак (или в водопровод, подвешенный к потолку верхнего этажа), а затем подается в радиаторы.Поскольку этот «экспресс-стояк» очень велик, он обеспечивает меньшее сопротивление трения воде. В результате горячая вода движется от котла к радиаторам быстрее, чем в системе подпитки.

Еще один плюс — то, как более холодная вода протягивает горячую воду через радиаторы, когда она падает по возвратным стоякам. Эта сила противодействует эффектам трения и заставляет радиаторы нагреваться быстрее. В результате система с накладными расходами обычно дешевле в эксплуатации.

Q: Легче ли вентилировать этот тип системы?
A: Да, намного проще.Фактически, из-за того, как радиаторы подключены к сети, вам не нужны вентиляционные отверстия радиатора с этой системой. Все вентиляционные отверстия системы автоматически проходят через чердак. Заполнение этой системы также не займет много времени, и вам не нужно беспокоиться о разливе воды по всему полу во время вентиляции, как в случае с системой подачи.

Q: Как они подключили радиаторы к сети в этой системе?
A: Они всегда использовали верхнее и нижнее подключение. Они могут входить в верхнюю часть радиатора с одной стороны и выходить через нижнюю часть с противоположной стороны, либо они могут входить и выходить с одной и той же стороны.Этот второй метод сэкономил стояк, что сделало установку менее дорогой.

Q: Разве для этой работы им не нужны были специальные приспособления?
А: Да. Пришлось отводить воду через радиатор. Для этого использовали тройник особого типа. Вот фотография одного из них.

Q: Как они назвали эту тройку?
A: Они назвали это фитингом «O-S» в честь его изобретателя, Оливера Шлеммера из Цинциннати, штат Огайо. Это было прекрасное простое устройство.

В: Это похоже на футболку «Монофло»?
A: Да, но O-S на много лет предшествовал Monoflo. В 1930-е годы компания Bell & Gossett представила свою футболку «Monoflo» (название является торговой маркой). Он сыграл большую роль в отоплении домов в Америке в годы перед Второй мировой войной.

Q: Эти специальные тройники «говорят» воде, куда идти?
A: В некотором смысле да. Они создают путь наименьшего сопротивления для воды и направляют ее к радиатору.

Q: Есть ли другой способ направления воды в системе этого типа?
A: Есть несколько способов, и все они важны для работы системы.

Q: Почему это?
A: Потому что трубы в гравитационной системе очень большие и содержат много холодной воды при запуске. Не вся эта вода станет горячей одновременно. А поскольку горячая вода легче холодной, она имеет тенденцию лететь прямо в радиаторы верхнего этажа — как воздушный шар.Это путь наименьшего сопротивления.

Q: То есть верхние этажи имеют тенденцию нагреваться быстрее, чем нижние этажи в гравитационной системе?
A: Да, и это приводит к дисбалансу системы.

Q: Как старожилы обходили эту проблему?
A: Иногда к ручным клапанам радиаторов верхнего этажа добавляли диафрагмы. Вот как это выглядит.

Q: Что такое диафрагма?
A: Это круглый кусок металла с маленьким отверстием в центре.Вы можете сделать его самостоятельно из листового металла; большинство старожилов сделали свои.

Q: Как диафрагма направляла воду?
A: За счет увеличения сопротивления через радиатор назначили. Если вода с трудом попадет, скажем, в радиатор верхнего этажа из-за диафрагмы, вместо этого она попадет в радиатор на нижнем этаже. В этом смысле диафрагма аналогична фитингам «O-S» и «Monoflo». Однако большая разница заключалась в том, что вместо того, чтобы направлять воду в радиатор, которому он был назначен, диафрагма направляла воду от этого радиатора.

Q: Какие еще методы использовали старожилы, чтобы заставить воду идти туда, куда она должна была идти?
A: Чаще всего они проводят работу таким образом, чтобы вообще избежать проблемы. Вот еще раз взгляните на эту систему подачи.

У нас три радиатора — два на втором этаже, один на первом. Горячая вода стремительно поднимается на второй этаж. Но посмотрите внимательно на то, как слесарь делает боковые отрывы от питающей магистрали.Обратите внимание, как подача горячей воды в радиатор №1 идет сбоку от магистрали. Монтажник сделал это так, потому что при запуске самая горячая вода будет в верхней части водопровода.

Самая горячая вода хочет попасть в радиатор №1, но не может попасть туда сразу, потому что вода в нижней части горизонтальной магистрали холоднее, чем вода в верхней части горизонтальной магистрали. Эта более холодная (и более тяжелая) вода вытесняет более горячую воду и направляет ее к радиатору №3, который как раз находится на первом этаже.

Q: Значит, из подвала видно, куда идут стояки?
A: Да! Обычно они питали радиаторы верхнего этажа со стороны основного, а радиаторы первого этажа — сверху. Таким образом, система вошла в более естественный баланс.

Q: Они делали то же самое со своими вертикальными подступенками?
A: Да, были. Часто они поставляли радиатор второго этажа с верхней части стояка, а радиатор третьего этажа со стороны того же стояка.

В данном случае радиатор второго этажа является нижним из двух. Вот почему он получает воду из верхней части стояка.

Q: Как насчет горизонтальной сети? Старожилы использовали одинаковый размер по всему зданию?
A: Обычно нет. Было принято уменьшать размер магистрали подачи, когда она проходила вокруг здания, но если монтажник слишком быстро сокращал трубу, поток останавливался из-за слишком большого общего сопротивления.

Q: Каким правилам они следовали?
A: Как правило, они хотели, чтобы внутренняя площадь поперечного сечения магистрали соответствовала или превышала внутреннюю площадь поперечного сечения всех подключенных ручных клапанов радиатора. Если бы магистраль была слишком маленькой (или если бы кто-то добавил радиаторы к существующей магистрали), некоторые радиаторы не смогли бы хорошо нагреться. Компетентные слесари сидели и просчитывали каждую работу, над которой они работали. Они знали, что нет двух одинаковых.

Q: Что такое внутренняя площадь поперечного сечения?
A: Посмотрите на круглый конец трубы.Внутренний круг на открытом конце представляет собой внутреннюю площадь поперечного сечения. Используя математику, вы можете вычислить, сколько квадратных дюймов пространства внутри этого круга.

В: Вы можете привести несколько примеров?
A: Конечно! Вот список труб обычного размера, используемых в гравитационных системах, с площадью поперечного сечения в квадратных дюймах.

1 «= 0,86

1-1 / 4 «= 1,5

1-1 / 2 «= 2,04

2 «= 3,36

2-1 / 2 «= 4,78

3 дюйма = 7.39

3-1 / 2 «= 9,89

4 дюйма = 12,73

5 дюймов = 19,99

6 дюймов = 28,89

8 дюймов = 51,15

Q: Как насчет питающей и обратной сети. Их нужно держать близко друг к другу?
A: Да, в идеале обратная магистраль должна быть параллельна основной на расстоянии не более 8-1 / 2 дюймов. Он должен упасть только тогда, когда достигнет котельной.

Q: Как старожилы вернули отдачу от радиаторов обратно в сеть?
A: Они следовали этому правилу: возврат от радиаторов на первом этаже должен поступать со стороны возвратной магистрали, потому что они выходят сверху.Это важно, потому что возврат от одного радиатора может заблокировать возврат от другого, если температуры, возвращаемые от двух радиаторов, немного отличаются, что почти всегда будет.

Q: Были ли какие-то специальные фитинги для сети?
A: Они использовали несколько из них. Вот два примера наиболее распространенных. Это называется фитингом Эврика.

Эта футболка была известна как основная футболка Phelps Single Main Tee.

Обратите внимание, как горячая вода выходит из верхней части фитинга, а холодная течет обратно в боковую часть.Эти старожилы были умны, не так ли?

Q: Сложно ли устранять неполадки в самотечных системах горячего водоснабжения?
A: Поиск и устранение неисправностей может быть сложной задачей. В системе могут быть места, где горячая и холодная вода переходят друг в друга по одной трубе. Это может быть совершенно нормально, но вам нужно «увидеть» это в своем воображении, чтобы понять, что происходит.

Некоторые проблемы могли существовать годами до вашего участия. Что-то столь же простое, как неразвернутая труба, может остановить нагрев радиатора, но также и коррозия, которая нарастает после 60 или 70 лет эксплуатации.Вам нужно будет ясно мыслить и задавать много вопросов.

Q: Здесь вода течет так же, как в системе с принудительной циркуляцией?
A: Вовсе нет! Фактически, теплотворная способность горячей воды является зеркальным отражением принудительного нагрева горячей воды. Когда вы используете циркуляционный насос в любой системе, путь наименьшего сопротивления всегда будет самым коротким (наименьшее падение давления) петлей, потому что это путь с наименьшим сопротивлением потоку. Вода ленива, и когда вы ее качаете, она всегда хочет вернуться на всасывание насоса как можно быстрее.Помните, что в системе горячего водоснабжения путь наименьшего сопротивления — это верхний этаж, который обычно является самым длинным. Это противоположное, зеркальное отображение насосной системы.

Q: Вы можете наглядно показать разницу?
A: Ну, когда я пытаюсь устранить проблемы с нагревом горячей водой под действием силы тяжести, я всегда думаю о конвективных токах в отапливаемом помещении. Думай вместе со мной.

Воздух выходит из радиатора, потому что он горячий и легкий (по той же причине, по которой вода выходит из бойлера).Воздух ползет по потолку и отдает тепло тем, к чему прикасается (как вода отдает тепло радиаторам). По мере охлаждения воздух в комнате становится тяжелее и падает (так же, как вода падает из радиаторов). Наконец, когда он достигает уровня земли, теперь относительно холодный воздух (например, относительно холодная вода внутри гравитационной системы) перемещается по полу (или, в случае воды, обратно к котлу) и попадает в нижнюю часть радиатора. чтобы заменить поднимающийся горячий воздух.

А теперь предположим, что вы включили потолочный вентилятор в той отапливаемой комнате. Вы бы поспешили изменить конвекционный поток, не так ли? Вы будете «качать» воздух по комнате, вместо того, чтобы позволять ему подниматься и опускаться под действием его собственной плавучести. Он пойдет туда, где сопротивление будет наименьшим, когда вентилятор будет включен, не так ли? Конечно, будет — так же, как горячая вода движется туда, куда ей говорит насос.

В этом разница между теплом горячей воды самотеком и принудительным водяным теплом. Один движется за счет естественной конвекции, другой — за счет насоса.

Q: Могут ли те пластины с отверстиями, на которые мы смотрели раньше, вызвать проблемы в системе?
A: Иногда. Когда вы добавляете циркуляционный насос к гравитационной системе, путь наименьшего сопротивления естественным образом переходит к радиаторам первого этажа, потому что это кратчайший путь обратно к котлу. Вода больше не хочет идти на верхний этаж. Эти диафрагмы установлены в радиаторах верхнего этажа. Старожил поставил их туда, чтобы вода стекала на нижние этажи.

Q: Что в этом плохого?
A: Итак, теперь, когда вы прокачиваете систему, отверстия будут обеспечивать, чтобы сопротивление через радиаторы верхнего этажа всегда было больше, чем через радиаторы нижнего этажа.Фактически, как только вы добавите циркуляционный насос, у вас, вероятно, вообще не будет потока через радиаторы верхнего этажа!

В: Разве вы не сможете сразу определить, что проблема связана с отверстиями?
A: Наверное, нет, потому что эта проблема в точности похожа на проблему с воздухом. Думаю об этом. Проблема на верхнем этаже. Возможно, вы слили воду из системы при установке циркуляционного насоса. А теперь у людей нет тепла. Это похоже на проблему с воздухом, но на самом деле это проблема с потоком.

Q: Как я узнаю, что это проблема с потоком?
A: Когда вы спускаете воздух из радиатора, воздух не поступает. А если нет воздуха, это не проблема с воздухом!

Q: Итак, какое решение?
A: Выньте диафрагмы из радиаторов верхнего этажа и вставьте их в радиаторы первого этажа. Другими словами, переверните зеркальное отображение. Система придет в равновесие, и эта фантомная «воздушная» проблема останется просто плохим воспоминанием.

Q: Есть ли еще что-нибудь, чего мне нужно остерегаться?
A: Да, художники! Если у вас внезапно возникла проблема с отключением тепла на нижнем этаже системы гравитационного горячего водоснабжения, проверьте, не снимал ли кто-нибудь радиаторы, чтобы смыть с них краску (или снял радиатор, чтобы покрасить стену за ним).Маляры и малярщики часто закрывают ручные вентили и отключают радиаторы, чтобы облегчить свою работу. Когда это происходит, отверстия обычно выпадают из штуцеров ручного клапана. Поскольку средний художник не знает, что такое нагревание (гравитация или иное), он не знает, что делать с диафрагмой. Для него это похоже на мусор. Он выбросит его в мусор и решит, что оказывает своему владельцу услугу, «избавляясь от этого потерянного куска металла, который забивал трубы и блокировал тепло.»Однако без диафрагмы большая часть воды будет течь на верхний этаж.

Q: Когда лучше перевести гравитационную систему горячего водоснабжения на принудительную циркуляцию?
A: Обычно, когда гравитационная система замедляется из-за коррозии, которая происходила на протяжении многих лет. Эти маленькие укромные уголки и щели в трубе замедляют поток и останавливают тепло. Естественная реакция — повышение температуры, чтобы вода циркулировала быстрее. Но вы можете только подтолкнуть температуру до того, как начнете просить о проблемах.Вот и пришло время перевести систему на принудительную циркуляцию.

Q: Что это значит?
A: Вы должны добавить циркуляционный насос и (обычно) закрыть систему от атмосферы. Вам также придется внести некоторые изменения в трубопровод возле котла.

Q: Что изменится?
A: Старый котел, вероятно, имеет два выхода и два входа, потому что в те дни идея заключалась в том, чтобы получить максимально возможный поток воды под действием силы тяжести через котел. Чем больше отверстий, тем лучше циркуляция.Этот трубопровод выглядел так.

Когда вы добавите новый циркуляционный насос, вам не нужно будет использовать такие большие трубы, выходящие и выходящие из котла. Фактически, вы захотите уменьшить размер трубопровода, расположенного рядом с котлом, чтобы дать циркулятору возможность «оттолкнуться».

Q: Зачем циркулятору нужно что-то «толкать»?
A: Чтобы он не сработал на своем внутреннем предохранителе от перегрузки. Циркуляционный насос выполняет свою максимальную работу при небольшом сопротивлении потоку или его отсутствии.В гравитационной системе большие трубы не могут оказывать большого сопротивления.

Q: Будут ли мне еще нужны эти двойные входы и выходы на котле?
A: Нет, и это еще одна причина, по которой вам следует переделать трубопровод около котла. С двумя входами и двумя выходами перекачиваемый поток может замкнуться вокруг котла без выхода в систему.

Q: Может, я не хочу ремонтировать котел?
A: Возможно, вам придется использовать два циркуляционных насоса — по одному на каждой линии подачи.

Q: Как я узнаю, какой размер трубы использовать на новом котле?
A: Хорошее практическое правило — взять самую большую трубу, разделить ее пополам и затем опустить на один размер. Это станет размером с ваш новый трубопровод около котла. Например, предположим, что самая большая труба имеет размер 2-1 / 2 дюйма (если есть два входа и выхода, вам нужно рассмотреть только один из них). Разделите это пополам и получите 1-1 / 4 дюйма. Теперь уменьшите размер до 1 дюйма, и это то, что вы будете использовать в своем новом бойлере.

Если ваш самый большой размер — два дюйма, протяните новый котел диаметром 3/4 дюйма. Это будет выглядеть странно, и вы можете почувствовать себя некомфортно, но это будет работать. Разные системы требуют разных методов прокладки труб. Один размер не подходит всем, и гравитационная конверсия определенно отличается от совершенно новой работы с принудительной циркуляцией.

Q: Как определить размер циркуляционного насоса для работы по переоборудованию?
A: С этими работами очень легко. Вам нужен высокий расход при относительно низком напоре.Хорошим выбором будет циркуляционный насос, аналогичный серии 100 Bell & Gossett.

Ваша цель — как можно быстрее переместить много воды по системе, несмотря на очень небольшое сопротивление потоку. Этот тип циркуляционного насоса именно этим и занимается.

Q: Могу ли я использовать вместо этого небольшой циркуляционный насос с водяной смазкой?
A: Это прекрасные циркуляционные насосы для большинства современных систем с принудительной циркуляцией, но здесь не лучший выбор. Вам не нужно, чтобы создать большое давление на голову этих заданий преобразования, потому что трубы огромны и сопротивление потоку практически не существует.Использование небольшого высокоскоростного циркуляционного насоса с мокрым ротором — плохой выбор для преобразования силы тяжести, поскольку он будет делать прямо противоположное тому, что вы пытаетесь достичь.

Q: Я не уверен, что понимаю разницу между расходом и давлением напора. Вы можете это объяснить?
A: Конечно! Поток — это «поезд», по которому движется тепло. Поток «доставляет товар» к радиаторам. Голова — это сопротивление потоку, и это тоже важно, но только по отношению к потоку.

Q: Ну а что тогда определяет напор?
A: В общем размер труб.Чем меньше трубы, тем больше требуется напор насоса, и наоборот. Поскольку гравитационные системы имеют очень большие трубы, нет необходимости в циркуляционном насосе с высоким напором. Что вам нужно, так это высокий расход.

Q: Где лучше всего установить циркуляционный насос?
A: Всегда лучше ставить его на подающей стороне котла, откачивая от компрессионного бака. Циркуляционный насос, подключенный таким образом, будет добавлять свое давление к давлению наполнения системы и облегчает вывод воздуха.Система также будет работать тише.

Q: Должен ли я использовать байпас вокруг котла на этих работах?
A: Большинство производителей котлов рекомендуют устанавливать байпас вокруг своих новых котлов, когда вы используете их в гравитационной системе. Вот как выглядит этот байпасный трубопровод.

Q: В чем причина обхода?
A: Он предназначен для защиты котла от конденсации и теплового удара.

В: Что такое тепловой удар?
A: Тепловой удар — это то, что происходит с горячим металлом, когда по нему попадает относительно холодная возвратная вода.Если вынуть стеклянную тарелку из духовки и промыть ее холодной водой, она сломается, не так ли? Это тепловой шок.

Q: Как байпасный трубопровод помогает предотвратить это?
A: Байпас позволяет горячей котловой воде попадать в обратную более холодную воду и повышать ее температуру. Комбинированный поток затем поступает в котел с температурой выше 140 градусов по Фаренгейту, что является минимально допустимым для многих котлов.

Q: Вы сказали что-то о конденсации. Что все это значит?
A: Если температура обратной воды слишком низкая, дымовые газы могут достичь точки росы и превратиться в жидкость внутри котла.Эта жидкость очень агрессивна по отношению к металлу. Это может мгновенно повредить или разрушить котел. Используя байпас, вы смешиваете горячую воду из источника с относительно холодной возвратной водой и повышаете температуру котловой воды до точки, при которой газы не могут конденсироваться внутри котла.

Q: Обводной канал служит какой-либо другой цели?
A: В некоторых случаях установщик соединит байпас со стороной всасывания циркуляционного насоса и использует балансировочные клапаны, чтобы отвести значительную часть потока системы вокруг котла.Это позволяет котлу достичь предельной температуры и выключиться. Без байпаса большой объем воды, проходящей через котел, часто поддерживает низкую температуру и не дает котлу достичь верхнего предела, что может увеличить счет за топливо.

В: Есть ли другой способ прокладки нового котла без байпаса?
A: Вы можете использовать первичные / вторичные методы откачки.

Q: Что такое первичная / вторичная перекачка?
A: Это способ рассматривать поток через систему и поток через котел как две отдельные вещи.

Q: Есть ли в этом преимущество?
A: Это связано с тем, что некоторым котлам для работы с максимальным потенциалом требуется минимальный расход. Этот поток может не совпадать с потоком, который вам нужен в системе. Если вы используете обходную линию, кто-нибудь может ее отрегулировать после того, как вы уйдете. Это может вызвать проблемы как с котлом, так и с системой.

Q: Как мне подключить первичный / вторичный поток?
A: Свяжите существующие линии подачи и возврата вместе, чтобы сформировать системный контур.Затем используйте два стандартных тройника, расстояние между которыми не превышает 30 см, и прикрепите новый бойлер к петле. Нравится.

Первичный насос обслуживает систему, а вторичный насос обслуживает котел. Вы очень просто удовлетворяете потребности обоих потоков. Расстояние между тройниками не более двенадцати дюймов позволяет насосам работать независимо. Когда вторичный насос выключен, через котел не будет потока, если вы сохраните расстояние в пределах этого 12-дюймового предела.

В: Почему это важно?
A: Регулируя поток через котел, вы берете на себя ответственность за потери системы в режиме ожидания. Если горелка выключена, а насос котла остановлен, потери в дымоход будут минимальными.

Q: Как мне управлять такой первичной / вторичной системой, как эта?
A: Вы можете включить оба насоса и горелку одновременно. Или, что еще лучше, вы можете запустить системный насос (первичный) на регуляторе сброса наружного воздуха и включить насос котла (вторичный) и горелку в соответствии с температурными потребностями здания в любой заданный день.Это идеальный способ управления старой самотечной системой горячего водоснабжения.

Q: Могу ли я использовать более одного котла с этим типом системы?
A: Конечно, можно! Эта система идеально подходит для установки с несколькими котлами. Смотреть.

Здесь мы используем два котла вместо одного. Первичный насос перемещает воду через радиаторы. Включаются вторичные (котловые) насосы, чтобы пропустить часть первичного потока через котлы. В мягкие дни вы будете использовать только один бойлер, в более холодные дни бойлеры будут работать вместе, чтобы довести температуру воды до нужного уровня.

Q: В чем преимущество использования двух котлов?
A: Каждый котел рассчитан на половину максимальной нагрузки. Например, допустим, общая необходимая нагрузка в самый холодный день года составляет 250 000 БТЕ / час. Если мы будем использовать два котла мощностью 125 000 БТЕ / час вместо одного котла на 250 000 БТЕ / час, мы будем сжигать примерно вдвое меньше топлива в течение большей части отопительного сезона.

Q: Вы сказали, что мы избавимся от открытого расширительного бачка на чердаке, когда переведем систему на принудительную циркуляцию.Почему мы должны это делать?
A: Чугунные и стальные котлы служат намного дольше, когда система закрыта. Это потому, что в замкнутой системе намного меньше кислородной коррозии.

Q: Всегда ли нужно избавляться от открытого резервуара?
A: Не обязательно. Хорошим выбором для гравитационного переоборудования является котел с медными оребрениями. Эти котлы изготовлены из цветных металлов и особенно хорошо справляются с кислородом. Они также невосприимчивы к тепловым ударам (у них есть гибкие теплообменники) и хорошо работают с более холодной водой (обычно до 105 градусов по Фаренгейту).

Q: Допустим, я решил закрыть систему. Что мне нужно знать, чтобы определить размер закрытого компрессионного бака для работы по переоборудованию?
A: Вам нужно знать три вещи:

  • Галлонов воды в системе
  • Разница между давлением заполнения и сброса, а также
  • Средняя температура воды в системе, которая в данном случае не должна превышать 170 градусов по Фаренгейту.


В: Почему средняя температура воды ограничена 170 градусами по Фаренгейту?
A: Чтобы вода не превратилась в пар в открытом чердаке.Старожилы рассчитали свое излучение, чтобы обеспечить много тепла в самый холодный день года с максимальным пределом температуры в 180 градусов по Фаренгейту. Вода покидала котел при 180 и возвращалась примерно при 160, давая им среднюю температуру 170 F в пределах излучения.

Q: Что произойдет, если я запущу систему с более горячей водой?
A: Вы, наверное, перегреете людей и увеличите их счета за топливо.

Q: Каковы рекомендации по выбору размера компрессионного бака из простой стали для работы по переоборудованию под действием силы тяжести?
A: Измерьте общее излучение системы, а затем примените это практическое правило:

  • Если объем радиации составляет менее 1000 квадратных футов, умножьте полученное значение на.03, чтобы определить размер резервуара в галлонах.
  • Если общая радиация составляет от 1000 до 2000 квадратных футов, используйте 0,025 в качестве множителя.
  • Если общая радиационная нагрузка превышает 2000 квадратных футов, используйте 0,02 в качестве множителя.
  • Это даст вам размер стандартного стального компрессионного бака в галлонах.

Q: Как я узнаю, сколько квадратных футов излучения содержит каждый радиатор?
A: Вы можете использовать эту таблицу в качестве руководства:

Вопрос: Чему равен квадратный фут эквивалентного прямого излучения в британских тепловых единицах в час?
A: Для преобразования силы тяжести мы можем сказать, что каждый квадратный фут EDR будет равен 150 британских тепловых единиц в час, когда средняя температура воды составляет 170 градусов по Фаренгейту

.

Q: Будут ли эти танки больше, чем на более современной системе?
A: Да, эти резервуары будут намного больше, чем те, которые вы бы использовали для работы с принудительной циркуляцией.Это потому, что для работ, рассчитанных на циркуляционные насосы, используются трубы меньшего размера. Меньшая труба означает меньше воды в системе. Меньше воды означает меньшее расширение, а меньшее расширение означает меньший компрессионный бак.

Q: Предположим, я хочу использовать компрессионные баки мембранного типа, как мне их определить для работы по гравитационному преобразованию?
A: Вы можете использовать это практическое правило:

Возьмите размер стандартного стального компрессионного бака в галлонах и умножьте на 0,55, если здание двухэтажное или.44, если здание трехэтажное. Ответ даст вам объем мембранного бака.

Q: Вы можете привести мне пример этого?
A: Конечно! Допустим, у нас есть двухэтажный дом с площадью излучения в 1000 квадратных футов. Сначала определим размер стандартного стального резервуара: 1000 X 0,03 = 30 галлонов. Теперь, поскольку это двухэтажный дом, мы должны умножить это на 0,55, чтобы получить объем мембранного бака. (30 X 0,55 = 16,5 галлонов необходимого объема в мембранном баке)

Q: Где я могу найти «объем» мембранного бака?
A: В технических характеристиках производителя.Вот, например, номинальные объемы стандартных мембранных резервуаров производства Amtrol, Inc. Первое число — это номер модели резервуара, а следующее — его объем:

15 = 2

30 = 4,4

60 = 7,6

90 = 14

SX-30V = 14

SX-40V = 20

SX-60V = 32

SX-90V = 44

SX-110V = 62

SX-160V = 86

А вот объемы цистерн производства Vent-Rite (Flexcon Industries):

VR 15 F = 2.1

VR 30 F = 4,5

VR 60 F = 6,1

VR 90 F = 21

SX VR30 F = 21

SX VR40 F = 21,0

SX VR60 F = 29,0

SX VR90 F = 37,0

SX VR110 F = 53,0

SX VR160 F = 74,0

Для здания в нашем примере вы должны использовать Amtrol SX-40-V, Vent-Rite VR 90 F или любую комбинацию меньших резервуаров, объем которых равен или превышает 16,5 галлона. При желании вы можете использовать, например, четыре Amtrol 30 или четыре Vent-Rite VR 30 F.

Q: Нужно ли мне что-нибудь проверять на этих резервуарах перед их установкой?
A: Да, всегда проверяйте давление воздуха на стороне диафрагмы резервуара. Оно должно равняться давлению наполнения системы, когда бак отключен от системы. Давление заполнения для двухэтажного здания обычно составляет 12 фунтов на квадратный дюйм; для трехэтажного здания это 18 фунтов на кв. дюйм. Если давление слишком низкое, увеличьте его с помощью велосипедного насоса или воздушного компрессора. Давление в баке (когда он отсоединен от системы) всегда должно равняться давлению наполнения системы (настройке редукционного клапана).

Q: Какой метод выбрать для замены котла?
A: Вы должны рассчитать новый котел на основе двух вещей: точного расчета теплопотерь здания и точного измерения существующей радиации. Не соглашайтесь на одно или другое, проверьте их обоих и сравните.

В: Почему это так важно?
A: Проверив тепловые потери и излучение, вы сможете рассчитать надлежащую расчетную температуру для преобразованной системы.Многие старожилы увеличили размеры своих радиаторов, потому что в единственных доступных на тот момент диаграммах излучения были указаны номинальные параметры пара. Один квадратный фут EDR при работе с паром дает 240 британских тепловых единиц в час. Один квадратный фут EDR при работе с горячей водой (исходя из средней температуры воды 170 градусов по Фаренгейту) дает 150 британских тепловых единиц в час. Это связано с тем, что вода при температуре 170 градусов по Фаренгейту холоднее пара при температуре 215 градусов по Фаренгейту.

Чтобы компенсировать графики, старожилы добавили 60 процентов к своим размерам радиации. Как вы понимаете, это привело к значительному завышению размеров.

В: Это плохо?
A: Это действительно может сработать. Если радиаторы слишком большие, вы сможете эксплуатировать систему при относительно низкой средней температуре воды. Я обнаружил, что большинство конверсионных работ хорошо работают при средней температуре воды 150 градусов по Фаренгейту (в районе Нью-Йорка), и это в тот день, когда температура наружного воздуха равна нулю! Более низкая температура котловой воды означает меньшие расходы на топливо.

Q: Когда-нибудь я должен будет увеличить размер нового котла на этих работах?
A: Нет! Нет абсолютно никаких причин увеличивать размер котла.При выборе размера учитывайте теплопотери здания в том виде, в котором оно существует сегодня. Проложите его правильно, используя обводную линию, о которой мы говорили ранее. Затем, если работа перегружена, соответственно уменьшите верхний предел температуры воды, чтобы сэкономить топливо.

Q: Какие гидравлические аксессуары мне нужны для этих работ?
A: Используйте хороший воздухоотделитель, чтобы уменьшить вероятность возникновения воздушных шумов и проблем с недостатком тепла. Разместите его в новом трубопроводе около котла на стороне подачи системы (где вода наиболее горячая), непосредственно перед циркуляционным насосом.Вы должны разместить компрессионный бак рядом с воздушным сепаратором.

Заполните систему редуктором давления в том месте, где вы подключили компрессионный бак к системе. Это «точка отсутствия изменения давления», единственное место в системе, где давление в циркуляционном насосе не может повлиять на давление в системе.

Вам также понадобится клапан управления потоком, чтобы предотвратить циркуляцию под действием силы тяжести, когда циркуляционный насос выключен. Вставьте его сразу после циркуляционного насоса.

Q: Если бы я хотел, могу ли я снова переключить систему в режим гравитации?
A: Да, это одна из приятных особенностей этих конверсионных заданий.Их очень легко переключить обратно (по крайней мере, временно), если что-то случится с циркулятором. Все, что вам нужно сделать, это открыть маленький рычаг в верхней части клапана регулирования расхода, и горячая вода снова поднимется из котла в радиаторы.

В. Какие у меня варианты управления этими заданиями преобразования?
A: Ну, там первичная / вторичная подкачка. Мы уже смотрели на это раньше. Также на радиаторы можно установить термостатические вентили.

Эти устройства определяют температуру воздуха в каждой комнате и регулируют поток воды через радиатор. Они полностью автономны и не требуют электропроводки. Они служат годами, относительно недороги и существуют с 1920-х годов. Я обнаружил, что они поддерживают комнатную температуру в пределах одного или двух градусов по Фаренгейту от заданного значения. С термостатическими радиаторными клапанами каждая комната становится отдельной зоной.

Если вы решите использовать их, установите циркуляционный насос на непрерывную работу в холодные месяцы.Клапаны позаботятся об уровне комфорта в каждой комнате. Если вы хотите сделать еще один шаг управления, измените температуру котла на основе того контроллера сброса наружного воздуха, о котором я упоминал ранее. Этот контроль также помогает избавиться от любых шумов расширения / сжатия, которые могут возникнуть в системе.

Q: Есть ли более простой способ управлять заданием преобразования?
A: Самый простой способ — настроить комнатный термостат одновременно на включение горелки и циркуляционного насоса. Это не дает вам возможности зонировать каждую комнату, но это дешевле и работает.Не забудьте байпасную линию вокруг вашего нового котла

.

Q: Предположим, я решил оставить старый котел и просто добавить циркуляционный насос и клапан регулирования расхода. Это сэкономит мне топливо?
A: Не удивляйтесь, если это увеличит счета за топливо! Старые котлы и гравитационные системы хорошо работают вместе, потому что, когда горелка выключается, остаточное тепло в котле поднимается вверх в радиаторы. Однако, когда вы устанавливаете регулирующий клапан, остаточное тепло идет вверх по дымоходу, а не в радиаторы.Результат? Более высокие счета за топливо.

Q: Как насчет того, чтобы я просто установил циркуляционный насос на этот старый котел и забыл о регулирующем клапане?
A: Это поможет снизить счета за топливо за счет более быстрого перемещения горячей воды к радиаторам, не препятствуя проникновению остаточного тепла в радиаторы. Тем не менее, вам придется повозиться с датчиком нагрева термостата, чтобы система не перегрузилась. Кроме того, вам может понадобиться более одного циркуляционного насоса, если имеется более одного набора линий подачи и возврата.

Q: Могу ли я добавить зону к существующей гравитационной системе, подключив линии подачи и возврата с помощью циркулятора и петли плинтуса?
A: Я бы не стал этого делать. Принудительный поток через вашу новую зону обязательно повлияет на работу вашей гравитационной системы. То, как это влияет на это, будет варьироваться от системы к системе (нет двух одинаковых), но, судя по тому, что я видел, это обычно приводит к проблемам. На твоем месте я бы этого не сделал.

Если люди заинтересованы в зонировании, поговорите с ними о добавлении циркуляционного насоса в основную часть дома и упомяните те термостатические радиаторные клапаны, о которых я говорил вам раньше.

Q: Существовали ли специализированные системы самотечного водяного отопления?
A: Да, компания Honeywell создала систему под названием «ускоренный нагрев горячей воды», которая была очень популярна в свое время.

Q: Когда они использовали эту систему?
A: В первые дни этого века.

Q: Эти системы все еще существуют?
A: Их там достаточно, чтобы от удивления почесать затылок.

Q: Чего компания Honeywell пыталась достичь с помощью этой системы?
A: Они хотели найти более быстрый способ перекачки воды из бойлера в радиатор.Они знали, что, если они смогут это сделать, они сэкономят деньги потребителей на топливе.

Q: Почему они просто не использовали циркулятор?
A: Потому что циркуляторов еще не изобрели!

Q: Так как же заставить воду двигаться быстрее, не используя циркуляционный насос?
A: Путем повышения температуры. Чем горячее вода, тем быстрее она течет.

В: Но если бы повысили температуру воды, не возникнет ли проблема с закипанием воды в открытом расширительном баке?
A: Да, при нормальных обстоятельствах, но с системой Honeywell старожилы смогли запустить систему под давлением.

Q: Какое давление?
A: До 10 фунтов на кв. Дюйм на верхнем этаже, а поскольку точка кипения воды увеличивается с повышением давления, они могут иметь температуру до 240 градусов по Фаренгейту в радиаторах. Это заставляло воду циркулировать очень быстро.

Q: Была ли опасность нагнетания давления в системе такого типа?
A: Обычно это происходит потому, что расширительный бачок был слабым звеном. Обычно его делали из меди или оцинкованной стали и скрепляли заклепками.Он не был построен, чтобы выдерживать нагрузку. Приложите слишком большое давление, и резервуар может (и часто случалось!) Взорваться, унеся с собой крышу дома.

Однако в системе Honeywell специальное устройство, называемое генератором тепла, удерживало резервуар отдельно от котла, трубопроводов системы и излучения.

Q: Как выглядело это устройство?
A: Он был сделан из чугуна и имел высоту около 2-1 / 2 футов.

Внутри основной трубы блока была узкая стальная трубка, которая опускалась в сосуд, наполненный ртутью.

Q: Почему они использовали ртуть?
A: Потому что он тяжелый. Они использовали ртуть для отделения воды в бойлере, трубопроводах и радиации от воды в открытом расширительном баке. Посмотрите, как теплогенератор подключен к системе.
Верхняя труба шла к открытому резервуару. Боковая труба подключила систему к теплогенератору. Ртуть разделяла две стороны.

Q: Как работал теплогенератор?
A: По мере того, как старожилы создавали давление в системе, вода в бойлере, трубопроводах и излучении расширялась и давила на ртуть.

Ртуть поднималась по узкой трубке и каскадом стекала обратно в горшок через более широкую внешнюю трубку. Пока вода расширялась, ртуть продолжала циркулировать.

Q: Почему ртуть не поднялась в открытый расширительный бачок?
A: Из-за его веса. Меркьюри довольно тяжелый. Фактически, он почти в четырнадцать раз тяжелее воды.

В: Может ли вода из котла, трубопроводов и радиации попасть на дно ртутной трубки?
A: Да, если давление в системе поднимется достаточно высоко.Затем вода поступает в трубку и отделяется от ртути в этой широкой разделительной камере в верхней части теплогенератора. Оттуда он поднимается в расширительный бачок.

Q: Значит, теплогенератор не позволял давлению в системе подниматься выше определенного значения?
A: Верно! Он ограничивал давление в системе до 10 фунтов на кв. Дюйм в верхней части, не оказывая никакого давления на открытый расширительный бак. Это делало операцию полностью безопасной, а также заставляло воду циркулировать очень быстро.

Q: Я могу видеть, как устройство Honeywell увеличило скорость нагрева системы, но какие преимущества, если таковые имеются, оно дало установщику?
A: Из-за более высоких температур установщик мог уменьшить все свое излучение на целых 15 процентов.

Q: Старожилы использовали другие типы устройств, такие как это?
A: Да, был такой же, под названием Klymax Heat Economizer (звучит сексуально, правда?). Вот изображение одного, прикрепленного к дну открытого расширительного бачка.

Q: Были ли другие?
A: Были и другие. Вот еще один пример. Они назвали его «Тепловым удерживателем Фелпса».

Это устройство работает путем открытия и закрытия клапана двойного действия, который был заключен в чугунный корпус. Сторона клапана, которая открывалась к атмосферному резервуару, имела вес 16-1 / 2 фунта. Этот вес поднимал и открывал клапан, когда система достигала 250 градусов по Фаренгейту. Затем расширенная вода благополучно перемещалась в открытый резервуар.

Когда давление упало ниже 16-1 / 2 фунта, груз закрыл клапан, а сжатая вода открыла фиксирующий клапан, который позволил воде из резервуара вернуться в трубопровод системы.

В: Использовала ли компания Honeywell специальный клапан на радиаторах?
A: Да, у них было нечто под названием «Уникальный» клапан, и, судя по его внешнему виду, я уверен, вы понимаете, почему они назвали его уникальным!

Q: Как этот клапан работал?
A: Чтобы понять, надо заглянуть внутрь.Вот фотография клапана, когда он был закрыт.

Как видите, вода протекала мимо радиатора, когда клапан находился в этом положении, но посмотрите, что происходит, когда вы открываете клапан.

Теперь вода поступает в радиатор с одной стороны внутренней перегородки, так как возвратная вода охладителя движется противотоком мимо другой стороны перегородки.

Вопрос: Была ли это та же компания Honeywell, которую мы знаем сегодня?
A: Одно и то же!

ДОМАШНЯЯ КЛИНИКА; КАК РАДИАТОРЫ РАБОТАЮТ, И ПОЧЕМУ ОНИ ИНОГДА НЕ НУЖНЫ

Для проверки поместите уровень на верхнюю часть радиатора, чтобы увидеть, не наклонен ли он неправильно.Если это так, вы можете подсунуть под конец тонкую деревянную полоску, чтобы немного приподнять ее, как показано на рисунке.

Удар в паровых радиаторах или трубах также может быть вызван провисанием труб или неправильным уклоном, что часто является проблемой после структурных изменений или вызвано провисанием элементов конструкции. Подобно тому, как радиаторы должны легко сливаться, трубы в паровой системе также должны иметь небольшой наклон, чтобы все они были наклонены вниз к котлу. В противном случае вода может застрять в низких местах (где труба провисла).Это может не только вызывать стук или стук каждый раз, когда выходит пар, но и предотвращает нагрев радиаторов до должного уровня.

В системе горячего водоснабжения воздух, застрявший внутри радиатора, может препятствовать тому, чтобы горячая вода заполнила радиатор, поэтому она не будет горячей на всем протяжении. Чтобы исправить это, в радиаторах обычно есть небольшие выпускные клапаны, установленные в верхней части (обычно на конце, противоположном впускному клапану), которые позволяют выпустить захваченный воздух. Для этого вы открываете этот клапан при включенном обогреве и циркуляции горячей воды (некоторым нужен специальный ключ, который можно купить в хозяйственных магазинах; другие можно открыть отверткой).Оставьте клапан открытым до тех пор, пока не выйдет весь воздух и вода не начнет свободно течь сплошной струей, затем плотно закройте его.

Хотя большинство систем горячего водоснабжения имеют отдельный выпускной клапан для каждого радиатора, в некоторых системах плинтуса будет только один выпускной клапан для всего этажа или для каждой комнаты. Открытие этого отверстия для выхода захваченного воздуха должно удалить воздух из всех радиаторов на этой линии или на этом участке. Если вы сомневаетесь, где находится этот выпускной клапан, проконсультируйтесь с подрядчиком по отоплению или водопроводчиком.

Паровые радиаторы также имеют выпускные клапаны в верхней части (на конце, противоположном впускному клапану), но они должны быть самовентилирующимися, то есть они позволяют легко выходить холодному воздуху, но не позволяют выходить пар . Заподозрите этот клапан, если радиатор не нагревается от одного конца до другого.

Для уверенности подождите, пока поднимется пар, затем открутите воздушный клапан и вытащите его из резьбового отверстия. Если это причина проблемы, то вы услышите короткий выброс воздуха, затем начнет выходить пар.Лучше всего заменить выпускной клапан (они продаются во многих хозяйственных магазинах, а также в большинстве точек поставки сантехники). Отвечая на почту

В. У нас есть белая гонтовая крыша из асфальта, которая находится в хорошем состоянии, за исключением того, что случилось с цветом. Местами белый цвет стал обесцвечиваться, в основном из-за больших тенистых деревьев (клен и дуб), которые растут рядом с домом. Есть ли способ очистить всю крышу или стоит подумать о ее покраске? — С.К., станция Нешанич, Н.J.

Перегрев, но вода течет через радиатор honda …

Привет, существует ряд вещей, которые могут вызвать перегрев автомобиля. Вода, протекающая через радиатор, может немного ввести в заблуждение. Вот список возможных причин:

Это может вызвать перегрев и, как вы указали, датчик или датчик температуры могут показывать неправильные показания. Инфракрасный термопистолет — лучший способ определить, действительно ли ваша машина перегревается. Их можно приобрести в местном магазине автозапчастей.Инфракрасный пистолет часто стоит около 50 долларов и не всегда необходим, но он может помочь выяснить, действительно ли ваш двигатель перегревается.

Проверку уровня охлаждающей жидкости следует производить на холодном автомобиле, сняв крышку радиатора и убедившись, что радиатор полностью заполнен. Затем закройте кувшин с охлаждающей жидкостью, если он низкий.

Проверить термостат довольно просто. Начните с холодного мотора, заведите машину и дождитесь, пока верхний шланг радиатора станет горячим на ощупь. Если датчик температуры показывает, что ваша машина перегревается, но верхний шланг радиатора не слишком горячий, вам нужен термостат.

Радиаторы могут забиваться изнутри и снаружи. Внешние забитые радиаторы могут застрять в охлаждающих ребрах дорожного мусора. В этом можно убедиться, просто осмотрев радиатор спереди автомобиля. Обычно вы можете очистить его из водяного шланга. Иногда вам понадобится мягкая кисть. Следите за тем, чтобы не погнуть ребра охлаждения. Это тоже приведет к перегреву. Внутреннее засорение требует, чтобы автомобиль был полностью прогрет с открытым термостатом. Проведите машину по кварталу и остановитесь на подъездной дорожке, выключите машину, откройте капот и пощупайте радиатор рукой.Верх должен быть слишком горячим на ощупь, а нижний — более прохладным. Вы проверяете наличие холодных участков, которые будут холодными на ощупь. Если вы обнаружите холодные места, вам понадобится новый радиатор.

Лучший способ проверить поток охлаждающей жидкости — снять шланг обогревателя и запустить двигатель. Если водяной насос работает, охлаждающая жидкость должна выливаться из шланга. Часто бывает сложно выбрать, какой шланг снять для этого теста. Поэтому, если первый, который вы снимаете, не дает никакого потока, попробуйте другой, но не снимайте шланги радиатора.Если у вас нет потока, я подозреваю, что у крыльчатки водяного насоса проблемы.

Проверка прокладки головки блока цилиндров на наличие выдувания может оказаться сложной задачей, если вы никогда этого не делали. Идеальный метод — использовать прибор, называемый пятигазовым анализатором. Следующий метод — это то, что называется системой тестирования блоков. Газоанализатор — очень дорогая машина. Тестер блока можно приобрести в местном магазине автозапчастей. Просто следуйте инструкциям. Сложность тестирования прокладки головки блока цилиндров заключается в том, что это происходит в градусах.Это может быть очень плохо, это может происходить только в определенное время, и это может происходить случайно и непоследовательно. Здесь в игру вступает опыт.

Если вам нужна помощь в определении проблемы с прокладкой головки блока цилиндров, я рекомендую обратиться к сертифицированному специалисту из YourMechanic за помощью в диагностике проблемы с перегревом, чтобы исправить это должным образом.

Руководство по балансировке радиаторов центрального отопления

При системе центрального отопления «подача и возврат» радиаторы, ближайшие к котлу / насосу, будут иметь тенденцию быть теплее, чем радиаторы, расположенные дальше.Чтобы избежать этого, выпускное отверстие каждого радиатора оснащено «запорным клапаном» (показан справа), который необходимо отрегулировать при первой установке системы. «Запорный клапан» обычно закрывается нажимной крышкой, чтобы скрыть регулировку.

Цель состоит в том, чтобы выровнять поток воды через каждый радиатор, чтобы при нормальном рабочем состоянии системы перепад температуры на каждом радиаторе составлял около 20 ° F (12 ° C).

Проблемы с настройкой системы могут возникнуть, если наружная температура выше расчетной рабочей температуры — если наружная температура выше расчетного значения системы, тепло, рассеиваемое каждым радиатором, будет меньше, чем предусмотрено конструкцией, а температура падение через каждый радиатор будет менее 20 ° F.Если вы балансируете в жаркий летний день, отрегулируйте его так, чтобы разница температур была ниже.

После того, как радиаторы в системе были уравновешены, отпадает необходимость в повторной регулировке клапанов, если только не заменены трубопроводы или радиаторы.

Самый простой способ для домашнего мастера измерить перепад температуры на радиаторах — это использовать пару радиаторных термометров, их можно купить или лучше взять напрокат или позаимствовать. Эти термометры просто прикрепляются к трубопроводу и показывают температуру трубы (которая, по сути, является температурой воды, протекающей внутри нее).Большинство профессиональных сантехников не используют эти термометры, многолетний опыт позволил им уравновесить систему, просто проверяя разницу температур рукой.


Акт балансировки.

  1. Для начала выключите систему и дайте воде остыть.
  2. Запорный клапан обычно скрыт под нажимной крышкой на одном конце радиатора и имеет регулировку, требующую длинного узкого гаечного ключа. Разводной гаечный ключ очень маленького размера, вероятно, является лучшим приспособлением для регулировки.
  3. Откройте запорный клапан и регулирующий клапан (обычно расположенный на противоположном конце радиатора) на ВСЕХ радиаторах.
  4. Смонтируйте радиаторные термометры на ВПУСКНОЙ и ВЫПУСКНОЙ трубах ближайшего к котлу радиатора. НЕ УСТАНАВЛИВАЙТЕ их на основной подающей и обратной трубах.
  5. Включить центральное отопление.
  6. Закройте запорный вентиль на первом радиаторе почти до закрытия, по мере повышения температуры в системе постепенно открывайте вентиль до тех пор, пока разница температур между двумя термометрами не составит около 20 ° F (12 ° C).
  7. Перенести термометры на следующий радиатор от котла. Закройте запорный клапан и регулируйте его до тех пор, пока разница температур не увеличится примерно до 20 ° F (разница температур, вероятно, начнется с менее 20 градусов, поскольку оба клапана полностью открыты).
  8. Работайте с остальными радиаторами, пока они не будут сбалансированы.

Распространенные причины протечек и ржавчины в радиаторах

Распространенные причины протечек и ржавчины в радиаторах

Даже самые красивые дизайнерские радиаторы подвержены основным химическим реакциям, таким как ржавчина и протечки.Поскольку центральное отопление зависит от воды, чтобы заставить его работать, если вы не сделаете что-то, чтобы предотвратить это, вода неизбежно начнет реагировать со сталью.

Наиболее частой причиной коррозии вашей радиаторной системы является отстой, черное, похожее на грязь вещество, которое, если его не обработать, со временем будет накапливаться. Внутри радиаторов это вызовет ржавчину, которая в конечном итоге приведет к проеданию крошечных отверстий в радиаторе, что приведет к утечкам. Однако ваши радиаторы — не единственная часть системы, на которую потенциально может повлиять ил — это может привести к повреждению котла, насоса и клапанов, а также вызвать засорение трубопроводов и теплообменника.

Как предотвратить коррозию

Каждый раз, когда вы заменяете систему центрального отопления, убедитесь, что сантехник промывает ее, чтобы удалить мусор и снизить риск коррозии. После промывки системы необходимо добавить ингибитор коррозии для дополнительной защиты. Хотя это не предотвратит появление коррозии полностью, но, безусловно, замедлит ее. Для продолжения защиты необходимо регулярно добавлять дополнительные химические средства.

В качестве альтернативы вы можете использовать магнитный фильтр. Любой оксид железа, образующийся в системе, будет притягиваться к магниту. После того, как фильтр закреплен, вода будет проходить через него, и любые кристаллы оксида железа, которые начали формироваться, будут собраны в нем, прежде чем они смогут причинить какой-либо вред.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*