Как посчитать площадь воздуховода прямоугольного сечения, формула
Перед созданием вентиляционной системы особое значение уделяется правильной планировке и расчету всех необходимых параметров. Наиболее важным из таких параметров считается площадь будущего воздуховода. Чтобы выполнить подобную задачу квалифицированные мастера учитывают такие параметры, как:
- — объемы воздуха;
- — скорость воздушных масс;
- — потери давления.
Количество материалов
Выполняются подобные расчеты с целью определения количества требуемых материалов. Это зависит от:
- — габаритов канала;
- — количества комнат;
- — конструктивных особенностей будущей вентиляционной системы.
Измеряя величину сечения, необходимо учесть особо важную деталь. Чем больше такая величина, тем более медленно будут двигаться по трубам воздушные массы. Многие неопытные домовладельцы не знают, как посчитать площадь воздуховода прямоугольного сечения. Профессиональные мастера используют для подобной задачи специальную формулу. Системы с высокими показателями сечения отличаются низким показателем аэродинамического шума. Следовательно, принудительная вентиляция в подобных системах потребует меньших расходов на электроэнергию.
Каждая проектируемая вентиляционная система имеет особые:
- — базовые габариты;
- — конфигурацию;
- — дополнительные элементы;
- — конструкцию.
Перечисленные критерии необходимо учесть при подсчете суммарной площади требуемого материала, с использованием которого будет создаваться воздуховод. Прямоугольные конструкции вентиляционных систем требуют определения:
- — суммарной длины;
- — высоты;
- — ширины.
Полученные показатели позволяют специалистам выбрать оптимальное количество материалов. Общие подсчеты также предполагают учет:
- — полуотводов;
- — отводов.
Перечисленные детали могут иметь различную конфигурацию. Если круглые элементы требуют знания диаметра будущего воздуховода, то для вычисления площади прямоугольных систем, необходим учет:
- — высоты отвода;
- — угла поворота;
- — ширины изделия.
Любой подобный расчет предполагает использование специалистом конкретной формулы. Для обустройства качественной вентиляционной системы опытные мастера чаще всего выбирают оцинкованные фасонные элементы и воздуховоды, обладающие продленным ресурсом. Расчет площади считается наиболее важным параметром при сооружении прямоугольной вентиляции. Полученные показатели позволяют профессионалам создавать оптимальные системы, которые прослужат многие годы.
Расчет воздуховодов или проектирование систем вентиляцииВ создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов. Расчет площади сечения воздуховодов После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов. Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму. При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее. Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности. Площадь сечения воздуховода определяется по формуле: Sс = L * 2,778 / V, где Sс — расчетная площадь сечения воздуховода, см²; L — расход воздуха через воздуховод, м³/ч; V — скорость воздуха в воздуховоде, м/с; 2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры). Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия. Фактическая площадь сечения воздуховода определяется по формуле: S = π * D² / 400 — для круглых воздуховодов, S = A * B / 100 — для прямоугольных воздуховодов, где S — фактическая площадь сечения воздуховода, см²; D — диаметр круглого воздуховода, мм; A и B — ширина и высота прямоугольного воздуховода, мм. Расчет сопротивления сети воздуховодов После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети. Для расчета сопротивления участка сети используется формула: P=R*L+Ei*V2*Y/2 Где R – удельные потери давления на трение на участках сети L – длина участка воздуховода (8 м) Еi – сумма коэффициентов местных потерь на участке воздуховода V – скорость воздуха на участке воздуховода, (2,8 м/с) Y – плотность воздуха (принимаем 1,2 кг/м3). Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления. В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:
Где М=V2 *Y/2, W=M*Ei Pmax=P1+P3+P5+P7=74,334 Па. Таким образом, потери давления в вентиляционной сети составляют Р=74,334 Па Расчет мощности калорифера воздуховодов После того как вы определили сопротивление сети, следует рассчитать требуемую мощность калорифера. Для этого необходимо учитывать желаемую температуру воздуха на выходе и минимальную температуру наружного воздуха. Температура воздуха, поступающего в помещение, должна быть выше 18°С. Минимальная температура наружного воздуха зависит от конкретных климатических условий. Например в Московской области она составляет примерно –26°С в зимний период. Таким образом, включенный на полную мощность калорифер должен иметь потенциал для нагрева воздуха на 44°С. Для квартирного помещения расчетная мощность калорифера, как правило, варьируется от 1 до 5 кВт, а для офисов этот показатель составляет 5–50 кВт. Для более точного расчета используйте следующую формулу: P = ΔT * L * Cv / 1000, где Р — мощность калорифера, кВт; ΔT — разность температур воздуха на выходе и входе калорифера,°С. Для Москвы ΔT=44°С, для других регионов — определяется по СНиП; L — производительность вентиляции, м³/ч. Cv — объемная теплоемкость воздуха, равная 0,336 Вт·ч/м³/°С. Этот параметр зависит от давления, влажности и температуры воздуха, но в расчетах мы этим пренебрегаем. Для получения более подробной информации, расчета площади, стоимости и заказа воздуховодов обращайтесь в нашу компанию. |
Площадь сечения круглых воздуховодов таблица, формула
Принудительная вентиляционная система предусматривает использование круглых воздуховодов. Чтобы определить оптимальное количество материала, требуемого для создания подобной системы, необходимо рассчитать ее общую площадь. При подобном расчете учитываются такие показатели воздушных масс, как:
- — скорость;
- — объем.
Также необходимо принять во внимание величину пространства, где планируется монтаж вентсистемы. Диаметр будущих воздуховодов зависит от:
- — количества жильцов;
- — площади помещения.
Площадь круглых воздуховодов таблица (формула)
Во время проектирования помещения, специалистами вычисляется площадь круглого воздуховода. Проходка каналов выполняется внутри стен.
Однако площадь воздуховодов может быть измерена только после установления необходимого показателя производительности. Для этого нужно вычислить кратность воздухообмена с использованием рекомендуемых показателей СНиП.
Учитывается и количество людей, которые длительно или постоянно присутствуют в помещении. Полученный показатель площади воздуховода позволяет грамотно подобрать конфигурацию трубы.
Процесс расчета площади сечения круглых воздуховодов — формула
Круглый тип воздуховода иногда считается не совсем оптимальным выбором. Такие вентиляционные системы существенно снижают высоту помещений, особенно после установки потолков. Если увечить сечение канальной магистрали, тогда:
- — исчезнут акустические эффекты;
- — снизится скорость движения воздушных масс;
- — уменьшится шум.
При расчете площади специалисты пользуются масштабированным планом помещения. Он считается обязательным документом, чтобы создать детальную схему будущей вентиляционной системы. Подобная схема позволяет безошибочно установить воздуховоды, обеспечивающие:
- — подачу воздушных масс в помещении;
- — забор загрязненного воздуха;
- — вывод запахов.
Наиболее важным показателем в вентиляционных системах круглого сечения считается давление. Оно должно быть сбалансировано таким образом, чтобы не допустить распространения запахов из кухонных помещений в коридоры. Существуют нормативы СНиП, либо МГСН, по которым вычисляется данный показатель. В соответствии с полученными расчетами, выбираются следующие элементы будущей вентсистемы:
- — трубы воздуховода;
- — отводы;
- — переходники;
- — разветвители;
- — дифуззоры;
- — дроссели автоматические;
- — дроссели ручные;
- — решетки.
Каждый опытный специалист старается добиться минимальной длины каналов, обеспечивая при этом качественную подачу в здание воздушных масс. Круглые воздуховоды выбирают в соответствии с сечением, которое предопределяет объемы и скорость циркуляции воздуха. Уменьшение размера вызывает увеличение скорости. А это способствует появлению дополнительного шума.
Детальный расчет скорости воздуха в воздуховодах по формуле
Параметры показателей микроклимата определяются положениями ГОСТ 12.1.2.1002-00, 30494-96, СанПин 2.2.4.548, 2.1.2.1002-00. На основании существующих государственных нормативных актов разработан Свод правил СП 60.13330.2012. Скорость воздуха в воздуховоде должна обеспечивать выполнение существующих норм.
Что учитывается при определении скорости движения воздуха
Для правильного выполнения расчетов проектировщики должны выполнять несколько регламентируемых условий, каждое из них имеет одинаково важное значение. Какие параметры зависят от скорости движения воздушного потока?
Уровень шума в помещении
В зависимости от конкретного использования помещений санитарные нормы устанавливают следующие показатели максимального звукового давления.
Таблица 1. Максимальные значения уровня шума.
Превышение параметров допускается только в кратковременном режиме во время пуска/остановки вентиляционной системы или дополнительного оборудования.
Уровень вибрации в помещенииВо время работы вентиляторов продуцируется вибрация. Показатели вибрации зависят от материала изготовления воздуховодов, способов и качества виброгасящих прокладок и скорости движения воздушного потока по воздуховодам. Общие показатели вибрации не могут превышать установленные государственными организациями предельные значения.
Таблица 2. Максимальные показатели допустимой вибрации.
При расчетах подбирается оптимальная скорость воздуха, не усиливающая вибрационные процессы и связанные с ними звуковые колебания. Система вентиляции должна поддерживать в помещениях определенный микроклимат.
Значения по скорости движения потока, влажности и температуре содержатся в таблице.
Таблица 3. Параметры микроклимата.
Еще один показатель, принимаемый во внимание во время расчета скорости потока – кратность обмена воздуха в системах вентиляции. С учетом их использования санитарные нормы устанавливают следующие требования по воздухообмену.
Таблица 4. Кратность воздухообмена в различных помещениях.
Бытовые | |
Бытовые помещения | Кратность воздухообмена |
Жилая комната (в квартире или в общежитии) | 3м3/ч на 1м2 жилых помещений |
Кухня квартиры или общежития | 6-8 |
Ванная комната | 7-9 |
Душевая | 7-9 |
Туалет | 8-10 |
Прачечная (бытовая) | 7 |
Гардеробная комната | 1,5 |
Кладовая | 1 |
Гараж | 4-8 |
Погреб | 4-6 |
Промышленные | |
Промышленные помещения и помещения большого объема | Кратность воздухообмена |
Театр, кинозал, конференц-зал | 20-40 м3 на человека |
Офисное помещение | 5-7 |
Банк | 2-4 |
Ресторан | 8-10 |
Бар, Кафе, пивной зал, бильярдная | 9-11 |
Кухонное помещение в кафе, ресторане | 10-15 |
Универсальный магазин | 1,5-3 |
Аптека (торговый зал) | 3 |
Гараж и авторемонтная мастерская | 6-8 |
Туалет (общественный) | 10-12 (или 100 м3 на один унитаз) |
Танцевальный зал, дискотека | 8-10 |
Комната для курения | 10 |
Серверная | 5-10 |
Спортивный зал | не менее 80 м3 на 1 занимающегося и не менее 20 м3 на 1 зрителя |
Парикмахерская (до 5 рабочих мест) | 2 |
Парикмахерская (более 5 рабочих мест) | 3 |
Склад | 1-2 |
Прачечная | 10-13 |
Бассейн | 10-20 |
Промышленный красильный цел | 25-40 |
Механическая мастерская | 3-5 |
Школьный класс | 3-8 |
Алгоритм расчетовСкорость воздуха в воздуховоде определяется с учетом всех вышеперечисленных условий, технические данные указываются заказчиком в задании на проектирование и монтаж вентиляционных систем. Главный критерий при расчетах скорости потока – кратность обмена. Все дальнейшие согласования делаются за счет изменения формы и сечения воздуховодов. Расход в зависимости от скорости и диаметра воздуховода можно взять из таблицы.
Таблица 5. Расход воздуха в зависимости от скорости потока и диаметра воздуховода.
Самостоятельный расчет
К примеру, в помещении объемом 20 м3 согласно требованиям санитарных норм для эффективной вентиляции нужно обеспечить трехкратную смену воздуха. Это значит, что за один час сквозь воздуховод должно пройти не менее L = 20 м3×3= 60 м3. Формула расчета скорости потока V= L / 3600× S, где:
V – скорость потока воздуха в м/с;
L – расход воздуха в м3/ч;
S – площадь сечения воздуховодов в м2.
Возьмем круглый воздуховод Ø 400 мм, площадь сечения равняется:
В нашем примере S = (3.14×0,42 м)/4=0,1256 м2. Соответственно, для обеспечения нужной кратности обмена воздуха (60 м3/ч) в круглом воздуховоде Ø 400 мм (S = 0,1256 м3) скорость воздушного потока равняется: V= 60/(3600×0,1256) ≈ 0,13 м/с.
С помощью этой же формулы при заранее известной скорости можно рассчитать объем воздуха, перемещающийся по воздуховодам в единицу времени.
L = 3600×S (м3)×V(м/с). Объем (расход) получается в квадратных метрах.
Как уже описывалось ранее, от скорости воздуха зависят и показатели шумности вентиляционных систем. Для минимизации негативного влияния этого явления инженеры сделали расчеты максимально допустимых скоростей воздуха для различных помещений.
Таблица 6. Рекомендованные параметры скоростей воздуха
Рекомендуемые значения скорости | |||
Квартиры | Офисы | Производственные помещения | |
Приточные решетки | 2,0-2,5 | 2,0-2,5 | 2,5-6,0 |
Магистральные воздуховоды | 3,5-5,0 | 3,5-6,0 | 6,0-11,0 |
Ответвления | 3,0-5,0 | 3,0-6,5 | 4,0-9,0 |
Воздушные фильтры | 1,2-1,5 | 1,5-1,8 | 1,5-1,8 |
Теплообменники | 2,2-2,5 | 2,5-3,0 | 2,5-3,0 |
По такому же алгоритму определяется скорость воздуха в воздуховоде при расчете подачи тепла, устанавливаются поля допусков для минимизации потерь на содержание зданий в зимний период времени, подбираются вентиляторы по мощности. Данные по воздушному потоку требуются и для уменьшения потерь давления, а это позволяет повышать коэффициент полезного действия вентиляционных систем и сокращает потребление электрической энергии.
Расчет выполняется по каждому отдельному участку, с учетом полученных данных подбираются параметры главных магистралей по диаметру и геометрии. Они должны успевать пропускать откачанный воздух из всех отдельных помещений. Диаметр воздуховодов выбирается таким образом, чтобы минимизировать шумность и потери на сопротивление. Для расчетов кинематической схемы важны все три показатели вентиляционной системы: максимальный объем нагнетаемого/удаляемого воздуха, скорость передвижения воздушных масс и диаметр воздуховодов. Работы по расчету вентиляционных систем относятся к категории сложных с инженерной точки зрения, выполнять их могут только профессиональные специалисты со специальным образованием.
Для обеспечения постоянных значений скорости воздуха в каналах с различным сечением используются формулы:
После расчета за окончательные данные принимаются ближайшие значения стандартных трубопроводов. За счет этого уменьшается время монтажа оборудования и упрощается процесс его периодического обслуживания и ремонта. Еще один плюс – уменьшение сметной стоимости вентиляционной системы.
Для воздушного обогрева жилых и производственных помещений скорости регулируются с учетом температуры теплоносителя на входе и выходе, для равномерного рассеивания потока теплого воздуха продумывается схема монтажа и размеры вентиляционных решеток. Современные системы воздушного обогрева предусматривают возможность автоматической регулировки скорости и направления потоков. Температура воздуха не может превышать +50°С на выходе, расстояние до рабочего места не менее 1,5 м. Скорость подачи воздушных масс нормируется действующими государственными стандартами и отраслевыми актами.
Во время расчетов по требованию заказчиков может учитываться возможность монтажа дополнительных ответвлений, с этой целью предусматривается запас производительности оборудования и пропускной способности каналов. Скорости потока рассчитываются таким образом, чтобы после увеличения мощности вентиляционных систем они не создавали дополнительную звуковую нагрузку на присутствующих в помещении людей.
Выбор диаметров выполняется от минимально приемлемого, чем меньше габариты – тем универсальное система вентиляции, тем дешевле обходится ее изготовление и монтаж. Системы местных отсосов рассчитываются отдельно, могут работать как в автономном режиме, так и подключаться к существующим вентиляционным системам.
Государственные нормативные документы устанавливают рекомендованные скорости движения в зависимости от расположения и назначения воздуховодов. При расчетах нужно придерживаться этих параметров.
Таблица 7. Рекомендованные скорости воздуха в различных каналах
Тип и место установки воздуховода и решетки | Вентиляция | |
Естественная | Механическая | |
Воздухоприемные жалюзи | 0,5-1,0 | 2,0-4,0 |
Каналы приточных шахт | 1,0-2,0 | 2,0-6,0 |
Горизонтальные сборные каналы | 0,5-1,0 | 2,0-5,0 |
Вертикальные каналы | 0,5-1,0 | 2,0-5,0 |
Приточные решетки у пола | 0,2-0,5 | 0,2-0,5 |
Приточные решетки у потолка | 0,5-1,0 | 1,0-3,0 |
Вытяжные решетки | 0,5-1,0 | 1,5-3,0 |
Вытяжные шахты | 1,0-1,5 | 3,0-6,0 |
Внутри помещений воздух не может двигаться со скоростью более 0,3 м/с, допускается кратковременное превышение параметра не более чем 30%. Если в помещении имеется две системы, то скорость воздуха в каждой из них должна обеспечивать не менее 50% расчетного объема подачи или удаления воздуха.
Пожарные организации выдвигают свои требования по скорости перемещения воздушных масс в воздуховодах в зависимости от категории помещения и особенностей технологического процесса. Нормативы направлены на уменьшение скорости распространения дыма или огня по воздуховодам. В случае необходимости на вентиляционных системах должны устанавливаться клапаны и отсекатели. Срабатывание устройств происходит после сигнала датчика или выполняется вручную ответственным лицом. В одну систему вентиляции можно подключать только определенные группы помещений.
В холодный период времени в отапливаемых зданиях температура воздуха в результате функционирования вентиляционной системы не может понижаться ниже нормируемых. Нормируемая температура обеспечивается до начала рабочей смены. В теплый период времени эти требования не актуальны. Движение воздушных масс не должно ухудшать предусмотренные СанПин 2.1.2.2645 нормативы. Для достижения нужных результатов во время проектирования систем изменяется диаметр воздуховодов, мощность и количество вентиляторов и скорости потока.
Принимаемые расчетные данные по параметрам движения в воздуховодах должны обеспечивать:
- Выполнение параметров микроклимата в помещениях, поддержку качества воздуха в регламентируемых пределах. При этом принимаются меры по снижению непродуктивных тепловых потерь. Данные берутся как из существующих нормативных документов, так и из технического задания заказчиков.
- Скорость движения воздушных масс в рабочих зонах не должна вызывать сквозняки, обеспечивать приемлемую комфортность пребывания в помещении. Механическая вентиляция предусматривается только в тех случаях, когда добиться желаемых результатов за счет естественной невозможно. Кроме этого, механическая вентиляция обязательно монтируется в цехах с вредными условиями труда.
Во время расчетов показателей движения воздуха в системах с естественной вентиляцией берется среднегодовое значение разности плотности внутреннего и наружного воздуха. Минимальные фактические данные по производительности должны обеспечивать допустимые нормативные значения кратности обмена воздуха.