Как спустить воздух с: все способы выпустить воздух из радиатора

Системы стравливания воздуха для самолетов | SKYbrary Aviation Safety

Конструкция большинства турбореактивных и турбовинтовых самолетов включает систему отбора воздуха. В системе отбора воздуха используется сеть воздуховодов, клапанов и регуляторов для подачи воздуха от среднего до высокого давления, «отбираемого» из секции компрессора двигателя (двигателей) и ВСУ в различные места внутри самолета. Там он используется для ряда функций, включая:

Отбираемый воздух извлекается из компрессора двигателя или ВСУ. Конкретная ступень компрессора, из которой отбирается воздух, зависит от типа двигателя. В некоторых двигателях воздух может забираться из более чем одного места для различных целей, поскольку температура и давление воздуха меняются в зависимости от ступени компрессора, на которой он отбирается. Отбираемый воздух обычно имеет температуру 200-250°С и давление примерно 40 фунтов на квадратный дюйм на выходе из пилона двигателя.

Отбираемый воздух направляется в блоки кондиционирования воздуха, где он фильтруется, а затем охлаждается с помощью процесса расширения. Температура воздуха регулируется с помощью неохлажденного отбираемого воздуха, а влажность смеси регулируется перед подачей воздуха в салон самолета. Контроллеры температуры в кабине экипажа и салоне позволяют регулировать заданную температуру, а термостаты обеспечивают обратную связь с блоками, требуя увеличения или уменьшения температуры на выходе.

Воздух, отбираемый от вспомогательной силовой установки (ВСУ) или другого работающего двигателя, используется для питания стартера с воздушной турбиной для запуска двигателя. Основное преимущество стартера с воздушной турбиной заключается в том, что заданная величина крутящего момента может быть создана меньшим и более легким устройством, чем это было бы в случае, если бы он имел электрический или гидравлический привод.

Отбираемый воздух часто используется для повышения давления в резервуаре для хранения питьевой воды, что устраняет необходимость в насосе для подачи воды в камбузы и туалеты. Точно так же отбираемый воздух используется для повышения давления в резервуарах гидравлической системы многих самолетов, что снижает вероятность кавитации насоса и связанной с этим потери давления в системе.

Хотя в настоящее время его использование очень ограничено, отбираемый воздух использовался в прошлом, в основном в военных целях, для увеличения энергии пограничного слоя. В обычном выдувном закрылке небольшое количество отбираемого воздуха подается в каналы, идущие вдоль задней части крыла. Там он проталкивается через прорези в закрылках самолета, когда закрылки достигают определенных углов. Нагнетание воздуха с высокой энергией в пограничный слой приводит к увеличению угла атаки сваливания и максимального коэффициента подъемной силы за счет задержки отделения пограничного слоя от аэродинамического профиля.

Основной угрозой, связанной с системой стравливания воздуха, является потенциальный риск утечки в результате нарушения целостности системы. Утечка стравливаемого воздуха может привести к нарушению работы системы, перегреву или даже возгоранию. Эта тема подробно рассматривается в статье, озаглавленной Утечки стравливающего воздуха.

В конструкции самолетов уже несколько десятилетий используются системы отбора воздуха. Однако с введением B787 компания Boeing внедрила новую архитектуру систем без прокачки, которая исключает традиционную пневматическую систему и выпускной коллектор. Большинство функций, ранее приводившихся в действие отбираемым воздухом, таких как блоки кондиционирования воздуха и противообледенительные системы крыльев, теперь имеют электрическое питание. Согласно Boeing, архитектура систем без продувки предлагает операторам ряд преимуществ, в том числе:

События, хранящиеся в базе данных SKYbrary A&I, которые включают ссылки на систему отбора воздуха, включают: У Морсби произошел отказ системы наддува кабины и кондиционирования воздуха из-за полного отказа системы отбора воздуха. Были объявлены аварийный спуск и PAN, а переход в Маданг завершен. Расследование отметило, что перед вылетом рейса были проведены незапланированные работы с системой отбора воздуха, и что давние проблемы с этой системой не были удовлетворительно решены до тех пор, пока после расследуемого происшествия не были, наконец, систематически выявлены и заменены четыре неисправных компонента.

B733, на маршруте, к северу от Наррандера, Новый Южный Уэльс, Австралия, 2018 г.

15 августа 2018 г. экипаж самолета Boeing 737-300SF был обеспокоен небольшим остаточным давлением в системе отбора воздуха, изолированной после того, как на маршруте произошла неисправность, затем искал и техническое обслуживание компании дало нестандартные дальнейшие указания по устранению неполадок, выполнение которых прямо или косвенно привело к дополнительным проблемам, включая последовательное выведение из строя обоих пилотов и отвлечение MAYDAY. Расследование установило, что рассматриваемый самолет имел ряд соответствующих незначительных по отдельности невыявленных дефектов, что означало, что первоначальная реакция экипажа была не полностью эффективной и вызвала запрос на помощь в полете, которая была ненужной и привела к дальнейшим результатам.

A320, окрестности Лондонского аэропорта Хитроу, Великобритания, 2019 г.

23 сентября 2019 г. летный экипаж самолета Airbus A320 при заходе на посадку в лондонском аэропорту Хитроу обнаружил сильные едкие пары на кабине экипажа и после того, как надел кислородные маски, завершил заход на посадку и приземлился, покинул самолет взлетно-посадочной полосы и остановился на рулежной дорожке. После снятия масок один пилот стал недееспособным, а другому стало плохо, и оба были доставлены в больницу. Остальные пассажиры, все целые, были высажены в автобусы. Очень всестороннее расследование не смогло установить происхождение дыма, но выявило ряд косвенных факторов, которые соответствовали тем, которые были выявлены в предыдущих подобных случаях.

E195, Эксетер, Великобритания, 2019 г.

28 февраля 2019 г. самолет Embraer E195 отказался от взлета из Эксетера, когда дым от боевой палубы сопровождался тягой, приложенной к тормозам. Узнав об аналогичных условиях в салоне, капитан приказал экстренно эвакуироваться. Некоторые пассажиры, воспользовавшиеся выходами над крылом, снова вошли в кабину, не зная, как покинуть крыло. Расследование приписало дым неправильно выполненной промывке компрессора двигателя, возникшей в контексте плохо организованного технического обслуживания, и пришло к выводу, что руководство по использованию выходов над крылом было неадекватным и что сертификационный предел высоты 1,8 метра для выходов без эвакуационных трапов следует уменьшить.

B738, Глазго, Великобритания, 2012 г.

19 октября 2012 г. самолет Boeing 737-800, выполнявший рейс Jet2, вылетевший из Глазго, совершил прерванный взлет на высокой скорости, когда в кабине экипажа появился странный запах, и старший бортпроводник сообщил о том, что появилось быть дым в салоне. В результате последующей экстренной эвакуации один пассажир получил серьезную травму. Следствию не удалось окончательно определить причину дыма, а также обнаруженных запахов гари, но чрезмерная влажность в системе кондиционирования воздуха была сочтена вероятным фактором, и впоследствии Оператор внес изменения в свои процедуры технического обслуживания.

A320, в пути, к северу от острова Эланд Швеция, 2011 г.

5 марта 2011 г. самолет Finnair Airbus A320 следовал в западном направлении во время круиза в южном воздушном пространстве Швеции после отправки с системой отвода воздуха от двигателя 1, когда система отвода воздуха от двигателя 2 не работала. потерпел неудачу, и был необходим аварийный спуск. Расследование показало, что система двигателя 2 отключилась из-за перегрева и что доступ к упреждающим и реактивным процедурам, связанным с операциями только с одной доступной системой отбора воздуха, был недостаточным. Было отмечено, что экипаж не использовал воздух ВСУ для поддержания наддува кабины во время завершения полета.

A333, в пути, к югу от Москвы Россия, 2010 г.

22 декабря 2010 г. самолет Finnair Airbus A330-300, направлявшийся в Хельсинки и совершавший полет в очень холодном воздухе на высоте 11 600 м, потерял герметичность кабины в крейсерском полете и завершил аварийное снижение перед продолжением первоначально намеченного полета на более низком эшелоне. Последующее расследование было проведено вместе с расследованием аналогичного инцидента с другим самолетом Finnair A330, который произошел 11 дней назад. Было обнаружено, что в обоих инцидентах обе системы отвода воздуха от двигателя не работали нормально из-за конструктивной ошибки, из-за которой вода внутри их датчиков давления замерзла.

A320, в пути, к северо-востоку от Гранады Испания, 2017 г.

21 февраля 2017 г. самолет Airbus A320, отправленный с неработающим ВСУ, испытал последовательные отказы систем кондиционирования воздуха и наддува, второй из которых произошел на эшелоне полета FL300 и вызвал объявление MAYDAY и аварийный спуск с последующим без происшествий отклонением в сторону Аликанте. Расследование показало, что причиной двойного отказа, вероятно, была необнаруженная и необнаруженная деградация системы регулирования отбора воздуха самолета, и, отметив возможную сопутствующую ошибку технического обслуживания, рекомендовалось провести новую плановую задачу технического обслуживания для проверки компонентов системы отбора воздуха типа самолета. система быть установлена.

B734, в пути, к востоку-северо-востоку от Танегасима, Япония, 2015 г.

30 июня 2015 г. обе системы подачи стравливаемого воздуха на Боинге 737-400 на эшелоне полета 370 быстро вышли из строя, что привело к полной потере давления и после аварийный спуск до 10 000 футов QNH, полет был продолжен в запланированный пункт назначения, Кансай. Расследование показало, что обе системы вышли из строя из-за неисправности регулирующих клапанов предварительного охлаждения и что эти неисправности были вызваны ранее выявленным риском преждевременного ухудшения качества обслуживания, который был устранен в необязательном, но рекомендованном сервисном бюллетене, который не был рассмотрен оператор задействованного воздушного судна.

A320, окрестности Дублина, Ирландия, 2015 г.

3 октября 2015 г. самолет Airbus A320, только что вылетевший из Дублина, подвергся воздействию дыма из системы кондиционирования воздуха как в кабине экипажа, так и в салоне. Был объявлен «PAN», и самолет вернулся, и оба пилота в целях предосторожности использовали свои кислородные маски. Расследование показало, что плановая промывка двигателя под давлением, проведенная перед вылетом, была выполнена неправильно, в результате чего загрязняющее вещество попало в отбираемый воздух, подаваемый в систему кондиционирования воздуха. Было обнаружено, что причиной ошибки стало отсутствие обучения инженеров Оператора процедурам мойки двигателя.

A332, Карачи Пакистан, 2014 г.

4 октября 2014 г. разрыв гидравлического шланга во время буксировки A330-200 ночью в Карачи сопровождался густым дымом в виде тумана гидравлической жидкости, заполняющим салон самолета и кабину экипажа. . После некоторого промедления, во время которого задержка изоляции стравливания воздуха из ВСУ усугубила попадание дыма, самолет отбуксировали обратно на стоянку и завершили аварийную эвакуацию. Во время возвращения на стоянку блок PBE вышел из строя и загорелся, когда один из бортпроводников попытался его использовать, что помешало использовать соседний выход для эвакуации.

A332, окрестности Перта, Австралия, 2014 г.

9 июня 2014 г. в задней части кухни Airbus A330 появился «запах гари» неустановленного происхождения, как только самолет завел двигатель для взлета. Первоначально это было отклонено как обычное и, вероятно, скоро рассеется, но оно продолжалось, и пострадавшие бортпроводники не могли продолжать свои обычные обязанности и получали кислород для помощи в восстановлении. Было рассмотрено отклонение от маршрута, но было выбрано завершение полета. Было обнаружено, что изоляция заднего гермошпангоута не была правильно установлена ​​после технического обслуживания, разрушилась и соприкоснулась с воздуховодом отбора ВСУ.

B737 на маршруте, Глен-Иннес, Новый Южный Уэльс, Австралия, 2007 г.

17 ноября 2007 г. Боинг 737-700 совершил аварийный спуск после отказа системы кондиционирования воздуха и наддува при наборе высоты из Кулангатты на эшелоне полета 318 из-за прекращения стравливания воздуха. воздух. Последовала диверсия в Брисбен. Расследование установило, что первая система стравливания отказала на малой скорости при взлете, но продолжение взлета было продолжено вопреки SOP. Также было установлено, что действия, предпринятые экипажем в ответ на неисправность после завершения взлета, также не соответствовали предписанным.

B735, в пути, юго-восток от Кусимото Вакаяма, Япония, 2006 г.

5 июля 2006 г., днем, Боинг 737-500, эксплуатируемый Air Nippon Co. , Ltd., вылетел из аэропорта Фукуока по расписанию All Nippon Airways. рейс 2142. Примерно в 08:10 во время полета на высоте 37 000 футов примерно в 60 морских милях к юго-востоку от Kushimoto VORTAC было отображено предупреждение о разгерметизации кабины, и кислородные маски в кабине были автоматически раскрыты. Самолет совершил аварийный спуск и в 09:09 приземлился в международном аэропорту Тюбу.

B752, в пути, Северное море, 2006 г.

22 октября 2006 г. в пассажирском салоне Боинга 757-200, эксплуатируемого Thomsonfly, вскоре после достижения крейсерской высоты на регулярном пассажирском рейсе из Ньюкасла была замечена голубая дымка. в Ларнаку. В целях предосторожности был сделан переход в лондонский Станстед, где была успешно проведена экстренная эвакуация.

Советы по выпуску воздуха из гидравлической системы

Местное время: Пт 12 июн 2020 05:40

Сеанс вашего клиента не установлен/истек срок его действия. Нажмите здесь, чтобы выбрать клиента для работы.

<дел>

Блог

 

Прежде чем выпустить воздух из стальных труб и других компонентов гидравлической системы, важно понять, какой тип воздуха находится в системе. Воздух в системе может быть:

  • Захваченный «свободный» воздух
  • Растворенный воздух
  • Увлекаемый «смешанный» воздух

Удаление воздуха из гидравлической системы

Удаление воздуха возможно только для «свободных» воздушных карманов, в которых воздух не смешивается с жидкостью. Для растворенного воздуха вы можете удалить его, повышая температуру жидкости до тех пор, пока воздух не будет выпущен. Это следует делать только в случае крайней необходимости, так как гидравлическое масло обычно содержит не менее 10% растворенного воздуха.

При «смешанном» воздухе, который выглядит как пена или пена, вам просто нужно пропустить жидкость через марлю или сито, предназначенное для удаления пузырьков воздуха из жидкости. Однако для обеспечения работоспособности системы важно выявить причину «смешанного» воздуха. Если позволить продолжать работу, масло быстро испортится, а компоненты контура будут повреждены.

Как удалить воздух из гидравлической системы

  1. Соберите расходные материалы  – Вам потребуются соответствующие инструменты, а также гидравлическая жидкость, трубки и чистые пустые бутылки.
  2. Работа на ровной поверхности
     – Чтобы облегчить удаление воздуха, поверхность должна быть ровной.
  3. Удалите детали и компоненты, мешающие вам  — Если возможно, удалите все детали и компоненты из системы, чтобы облегчить доступ к прокачиваемым линиям.
  4. Сначала прокачайте самые дальние линии  – Начните с прокачки самой дальней от насоса линии и двигайтесь внутрь, при этом линии, расположенные ближе всего к насосу, прокачиваются последними, и прокачивайте только одну линию за раз.
  5. Держите резервуар заполненным  – Следите за тем, чтобы жидкость оставалась в резервуаре; в противном случае, если он закончится, вы только подадите больше воздуха в линии, и вам придется начинать заново.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*