расчет тепловой мощности одной секции радиатора, фото и видео подсказки
Содержание:1. Особенности проведения расчетов
2. Порядок расчета мощности радиаторов отопления
3. Необходимая величина тепловой мощности радиатора
Когда проектируется система теплоснабжения для частного дома или квартиры, расположенной в новостройке, необходимо знать, как рассчитать мощность радиаторов отопления, чтобы определить требуемое количество секций для каждой комнаты и подсобных помещений. В статье приводится несколько несложных вариантов вычислений.
Особенности проведения расчетов
Расчет мощности радиатора отопления сопряжен с рядом проблем. Дело в том, что на протяжении отопительного сезона температура за окном постоянно меняется, а соответственно отличаются потери тепла. Так при 30 градусах мороза и сильном северном ветре, они будут гораздо больше, чем при — 5 градусах, да еще при безветренной погоде.
Многих владельцев недвижимости волнует, что неправильно рассчитанная тепловая мощность радиаторов отопления может привести к тому, что в морозы в доме будет холодно, а в теплую погоду придется держать нараспашку форточки целый день и таким образом отапливать улицу (детальнее: «Расчет мощности батарей отопления — как рассчитать самому»).
Однако имеется понятие, которое называется температурный график. Благодаря чему температура теплоносителя в отопительной системе меняется в зависимости от погоды на улице. По мере того, как будет расти температура воздуха на улице, повышается теплоотдача каждой из секций батареи. А раз так, то относительно любого отопительного оборудования можно говорить о средней величине теплоотдачи.
Что касается жильцов частных домовладений, то после установки современного электрического или газового теплоагрегата или отопления с применением тепловых насосов они не должны волноваться о том, какую температуру имеет теплоноситель, циркулирующий в контуре отопительной конструкции.
Созданное с применением новейших технологий тепловое оборудование позволяет управлять им при помощи термостатов и корректировать мощность батарей в соответствии с потребностями. Наличие современного котла не требует контроля над температурой теплоносителя, но, чтобы установить радиаторы отопления расчет мощности все равно потребуется.
Порядок расчета мощности радиаторов отопления
Все расчеты, связанные с обустройством отопительной конструкции, неразрывно связаны с таким понятием как тепловая мощность. Вариантов как рассчитать мощность радиатора отопления существует несколько. При этом следует отметить, что у приборов от известных и хорошо себя зарекомендовавших производителей данный параметр всегда указывается в прилагаемых к ним документах (прочитайте также: «Как рассчитать отопление в доме правильно»).
У таких агрегатов, как электрический конвектор, тепловентилятор, масляный радиатор или инфракрасная керамическая панель тепловая мощность соответствует их электрической мощности (читайте также: «Что выбрать конвектор или масляный радиатор»). При создании системы отопления, где используется жидкий теплоноситель, не обойтись без батарей.
У чугунных, алюминиевых или биметаллических отопительных приборов мощность одной секции радиатора отопления составляет от 140 до 220 ватт. Усредненным значением считается значение 200 ватт, которое батарея отдает при разнице температур между теплоносителем и воздухом в помещении, равным 70 градусам. Читайте также: «Расчет количества секций биметаллических радиаторов».
Чтобы выполнить расчет биметаллических отопительных радиаторов или чугунных батарей, исходя из тепловой мощности, необходимо разделить требуемое количество тепла на величину 0,2 КВт. В результате будет получено количество секций, которые нужно приобрести, чтобы обеспечить обогрев комнаты (детальнее: «Правильный расчет тепловой мощности системы отопления по площади помещения»). Если чугунные радиаторы (см. фото) не имеют промывочных кранов специалисты рекомендуют принимать в расчет 130-150 ватт на каждую секцию, учитывая мощность 1 секции чугунного радиатора. Даже когда они первоначально отдают тепла больше, чем требуется, появившиеся в них загрязнения понизят теплоотдачу.
Как показала практика, батареи желательно монтировать с запасом около 20%. Дело в том, что при наступлении экстремальных холодов чрезмерной жары в доме не будет. Также поможет бороться с повышенной теплоотдачей дроссель на подводке. Покупка лишних нескольких секций и регулятора не сильно отразится на семейном бюджете, а тепло в доме в морозы будет обеспечено.
Необходимая величина тепловой мощности радиатора
- Способ согласно СНиП предполагает, что на один «квадрат» площади требуется 100 ватт.
Но в данном случае следует учитывать ряд нюансов:
— теплопотери зависят от качества теплоизоляции. Например, для обогрева энергоэффективного дома, оборудованного системой рекуперации тепла со стенами, сделанными из сип-панелей, потребуется тепловая мощность меньше, чем в 2 раза;
— создатели санитарных норм и правил при их разработке ориентировались на стандартную высоту потолка 2,5-2,7 метра, а ведь этот параметр может равняться 3 или 3,5 метра;
— этот вариант, позволяющий рассчитать мощность радиатора отопления и теплоотдачу, верен только при условии примерной температуры 20°C в квартире и на улице — 20°C. Подобная картина типична для населенных пунктов, расположенных в европейской части России. Если дом находится в Якутии, тепла потребуется гораздо больше. - Способ расчета, исходя из объема, не считается сложным. Для каждого кубометра помещения требуется 40 ватт тепловой мощности. Если размеры комнаты составляют 3х5 метра, а высота потолка 3 метра, тогда потребуется 3х5х3х40 = 1800 ватт тепла. И хотя погрешности, связанные с высотой помещений в этом варианте расчетов устранены, он все еще не является точным.
- Уточненный способ расчета по объему с учетом большего количества переменных дает более реальный результат. Базовым значением остаются все те же 40 ватт на один кубометр объема. Читайте также: «Как сделать расчет радиаторов отопления на квадратный метр – правила и способы расчета количества секций».
Когда производится уточненный расчет тепловой мощности радиатора и требуемой величины теплоотдачи, следует учитывать, что:
— одна дверь наружу отнимает 200 ватт, а каждое окно — 100 ватт;
— если квартира угловая или торцевая, применяется поправочный коэффициент 1,1 — 1,3 в зависимости от вида материала стен и их толщины;
— для частных домовладений коэффициент составляет 1,5;
— для южных регионов берут коэффициент 0,7 — 0,9, а для Якутии и Чукотки применяют поправку от 1,5 до 2.
В качестве примера для проведения расчета взята угловая комната с одним окном и дверью в частном кирпичном доме размером 3х5 метров с трехметровым потолком на севере России. Средняя температура за окном зимой в январе составляет — 30,4°C. Читайте также: «Как сделать расчет радиаторов отопления правильно – точный способ».
Порядок вычислений следующий:
- определяют объем помещения и требуемую мощность — 3х5х3х40 = 1800 ватт;
- окно и дверь увеличивают результат на 300 ватт, итого получают 2100 ватт;
- с учетом углового расположения и того, что дом частный будет 2100х1,3х1,5 = 4095 ватт;
- прежний итог умножают на региональный коэффициент 4095х1,7 и получают 6962 ватт.
Видео о выборе радиаторов отопления с расчетом мощности:
Выбор мощности отопительных радиаторов
Для обычной системы отопления с рабочим давлением до 3 атм. одноэтажного дома, или в пару-тройку этажей, подойдут практически любые радиаторы, которые имеются в продаже. Для квартиры многоэтажного дома, с подачей теплоносителя по вертикальному стояку, где давление может достигать 10 атм., необходимы радиаторы, рассчитанные на давление в 12 атм.
Отличительной особенностью батарей для самотечной системы отопления является минимум внутреннего гидравлического сопротивления, поэтому туда лучше подходят алюминиевые или чугунные приборы.
В общем, выбор радиаторов не сложен, но остается подобрать их по мощности. А здесь придется немного потрудиться, и определиться, сколько мощности потребуется в каждую комнату.
Каким методом чаще определяется мощность радиаторов
Если тепловой расчет коттеджа не делался, что обычное явление, то радиаторы нужно распределять по комнатам приблизительным расчетом. Но допустить при этом тяжкую ошибку, которую нужно исправлять перемонтажем, сложно.
Нужно сделать так, чтобы мощность всех радиаторов была бы процентов на 20 больше чем теплопотери здания, т.е. мощность котла. А для каждой комнаты – по ее индивидуальным теплопотерям.
Для утепленного в соответствии с нормативом (СНиП 23-02-2003) здания можно считать теплопотери 10 кВт на 100 м кв. площади, если высота потолка до 2,7 м. А если здание утеплено не достаточно…. — то нужно утеплять, а не наращивать мощность системы отопления.
Какая тепловая мощность потребуется
Приуменьшать мощность радиаторов по сравнению с теплопотерями здания не допустимо. Но и сильно увеличивать не рекомендуется.
- Во первых, это повлечет излишние денежные затраты и загромождение пространства помещения отопительными приборами.
- Во вторых термоголовка может начать слишком часто закрывать и раскрывать радиатор, что вредно для системы в целом.
Полезен низкотемпературный режим, когда батареи не разогреваются до максимальной температуры, соответственно имеют запас по размерам и мощности.
У нас известна общая мощность радиаторов. Теперь ее нужно разбросать по комнатам, — где больше, где меньше.
Подбор батарей в каждую комнату
Расчет батарей для каждой комнаты только по площади совсем не корректен. Ведь теплопотери будут зависеть от наличия и площади внешних стен, окон и дверей (наружных ограждающих конструкций).
Можно воспользоваться упрощенной схемой распределения мощности радиаторов:
- Для внутренней комнаты – теплопотери минимальны и там обычно радиаторы не устанавливаются.
- Одна наружная стена и одно окно – принимаем 1 кВт на 10 м кв.
- Одна наружная стена (длинная) и два окна – умножаем результат из расчета 1 кВт на 10 м кв. на коэффициент 1,2;
- Две наружные стены и одно окно – умножаем на поправочный коэффициент 1,3;
- Две наружные стены и два окна – 1,4 – 1,5.
Но и это далеко не корректное распределение. Все зависит, конечно, от конкретной планировки, т.е. от реальной длины наружных стен и площади окон и их теплозащищенности.
Пример – как подобрать отопление в каждую комнату
Рассмотрим пример. Допустим, имеются две комнаты с одинаковой площадью.
У одной комнаты есть только одна наружная стена длиной 3 метра.
Другая комната угловая, длина ее наружных стен – 3 метра + 6 метров + имеются большие окна.
Очевидно, что теплопотери во второй комнате будут значительно большими, чем в первой. В первую комнату возможно, нужно поставить один радиатор 1,5 кВт, а во вторую комнату два радиатора 1,5 кВт и 2,0 кВт., т.е. в 2,2 раза мощнее. А в узкий внутренний коридор с такой же площадью, скорее всего радиатор не нужен вовсе….
Необходимо на плане здания распределить суммарную мощность радиаторов по комнатам, помня о том, что они устанавливаются под каждое окно (а если не возможно то рядом с ним), а также желательно у входной двери, но не ставятся за мебелью, в глубоких нишах и т.п.
Подбор мощности во время приобретения
Теперь осталось подобрать радиатор по мощности при покупке в магазине. Но в технических характеристиках радиатора имеется одна особенность, на которую часто не обращают внимание, и поэтому выбирают батареи недостаточной мощности.
Зачастую в паспорте указывается для высокотемпературного обогрева. Например, указывается 1500 Вт при условиях – 90/70-20, что означает:
- Температура подачи – 90 град;
- Температура обратки – 70 град;
- Температура воздуха в комнате – 20 градусов.
И только при этих условиях радиатор отдаст требуемые 1500 Вт.
Сейчас в частном доме никто не будет разогревать теплоноситель до 90 град С. Современные газовые котлы рекомендуется настраивать на самый экономичный низкотемпературный режим, когда на выходе из котла 60 градусов, максимум 65. При этом КПД котла максимальный, так как холодному теплоносителю будет передаваться больший процент тепла от газов.
А комфортная температура в комнате 22 – 24 градусов. Редко кто держит прохладные 20 градусов.
Поэтому реальный режим работы радиатора чаще 60/40-22. А при такой температуре отдаваемая мощность будет ниже минимум на 33%.
Как приобретают радиаторы специалисты
Следовательно, радиаторы для низкотемпературного режима, как самого экономичного, нужно приобретать как минимум на треть мощнее от указаний в технических характеристиках для высокотемпературного режима.
Умудренные опытом сантехники, не мудрствуя лукаво, не считаясь с затратами владельцев, прикинув примерные теплопотери комнаты, тут же их умножают еще на 1,3 — 1,5 и по этой мощности требуют приобрести радиаторы, — по принципу «а чтобы наверняка».
Но перебарщивать с набором мощности радиаторов также нельзя, так как котел может выйти на низкотемпературный обогрев, ниже точки росы (на обратке меньше +55 град.), что крайне не желательно. Выпадающая роса на теплообменнике быстро погубит обычный котел для любого теплоносителя.
В то же время конденсационные суперэкономичные котлы как раз предназначены для работы в таком режиме.
Насколько важны материал и конструкция
Мы рассмотрели, как на бытовом уровне, без сложных тепловых и гидравлических расчетов выбрать радиаторы отопления и распределить их по комнатам.
Иногда возникают вопросы относительно выбора материала или конструкции отопительных приборов. Ответ известный — обычные недорогие алюминиевые секционные радиаторы и панельные стальные по праву являются наиболее популярными. Они за меньшую цену отвечают всем потребительским качествам.
Остается обратить внимание, что для системы с антифризом, все же лучше не рисковать и взять монолитные панельные, во избежание риска протечек между секциями со временем.
Подбор пропускной возможности при выборе батарей стоит делать только лишь для самотечной системы отопления, а подбор по максимальному давлению – для вертикальных стояков в высотных зданиях — не меньше 12 атм. Но в большинстве случаев, при обычной системе отопления в частном доме, потребителя ничего и не должно волновать — только внешний вид отопительного прибора.
Что угрожает радиаторам — сплетни
Остается перечислить распространенные страшилки относительно выбора радиаторов, которые являются просто выдумками:
- гидроудар в системе отопления (которого никто никогда не встречал),
- необходимость контроля рН воды,
- подключение алюминиевых радиаторов «особенными» трубами из сплавов,
- неглубокое прогревание стен при определенных типах радиаторов,
- увеличенная конвекция от би-металла и т.п. и т.д. и др.
все это выдумки, возможно, воздействие рекламы для новой партии радиаторов.
основные разновидности батарей, расчет и формулы, инструкция по вычислению
Для создания комфорта в доме обязательным условием является наличие современной системы отопления. Качество её работы зависит от многих факторов, например, надёжности всех материалов и комплектующих. Немаловажно в первую очередь правильно рассчитать мощность радиаторов отопления.
Для начала нужно рассчитать мощность радиаторовРазновидности радиаторов
На сегодняшний день самая популярная схема отопления состоит из трёх основных элементов: котёл нагрева (твердотопливные, газовые, электрические или альтернативные подвиды), трубы и радиаторы, по которым транспортируется теплоноситель (антифриз или вода). На первый взгляд, выглядит всё очень просто. Батареи устанавливаются под окном и нагревают помещение. Но здесь есть несколько нюансов. Мощность радиатора должна соответствовать квадратуре комнаты.
Все расчёты подобного типа должны проводиться по нормам СНиП. Процедура довольно сложная и выполняется исключительно специалистами в этой области. Но если воспользоваться несколькими советами, то такие расчёты можно провести и самостоятельно.
Сегодня на рынке можно найти множество разновидностей стальных радиаторов. Основные из них:
В этом видео вы узнаете, как рассчитать мощность радиатора:
Стальные батареи
Такие варианты на сегодня не пользуются большой популярностью, даже с учётом эстетически красивого внешнего оформления. Стенки батарей очень тонкие, поэтому они быстро нагреваются и остывают. При высоком давлении сварные швы могут не выдержать, и радиатор потечёт. Также более дешёвые модели, которые не имеют специального антикоррозионного покрытия, могут быстро ржаветь. Как правило, производители не дают длительную гарантию на такие изделия.
В большинстве случаев стальные радиаторы состоят из одной цельной плиты, поэтому изменять теплоотдачу корректировкой числа секций не выйдет. Нужно отталкиваться от квадратуры и выбирать комплектующие по установленной паспортной мощности. В некоторых моделях трубчатого типа можно изменять количество секций, но это в большей степени исключение. Подобные работы самостоятельно сделать не получится, нужно будет заказывать работу у мастера.
Обычно, стальные радиаторы состоят из 1 плитыЧугунные модели
Этот вариант знаком многим, так как именно такие батареи устанавливались со времён Советского союза до начала ХХ века. В народе их ещё называют «гармошками». Хотя они и не выглядят красиво, но зато имеют долгий срок эксплуатации. Каждое ребро батареи имеет теплоотдачу в 160 Вт. Количество секций никак не ограничено, поэтому собираться радиатор может по частям. Сегодня можно увидеть на рынке современные аналоги чугунных радиаторов.
При этом своих изначальных преимуществ они не теряют:
- высокая теплоёмкость, благодаря которой температура сохраняется долгое время, а отдача тепла довольно высокая;
- если всю систему правильно собрать, то чугунные элементы не будут «бояться» гидроударов и перепадов температур;
- стенки довольно толстые, ржаветь они не будут.
В качестве носителя тепла может выступать любая жидкость, поэтому они хороши как для автономной системы отопления, так и для централизованной. Но у них есть и некоторые недостатки. Во-первых, плохой внешний вид и сложность монтажа. Во-вторых, чугун — довольно хрупкий материал и точечные гидроудары может не выдержать. Кроме того, большая масса таких батарей не позволит их установить на любую стену.
У данных батарей высокая теплообменностьАлюминиевые изделия
Алюминиевые радиаторы появились относительно недавно, но за короткое время успели завоевать популярность среди покупателей. У них отличная теплоотдача, они имеют привлекательный внешний вид и достаточно просты в установке и эксплуатации. Но при их выборе необходимо обратить внимание на некоторые нюансы.
Алюминиевые модели могут выдерживать температуру до 100°C и давление до 15 атмосфер. При этом теплоотдача одной секции может достигать 200 Вт. Также с массой одной секции около 2 кг они не требуют больших объёмов теплоносителя (до 500 мл). Сегодня на рынке есть изделия с возможностью деления секций и цельные конструкции с уже рассчитанной мощностью.
Они также имеют свои недостатки:
- Алюминиевые радиаторы могут подвергаться кислородной коррозии, поэтому их можно устанавливать только на автономные системы отопления, поскольку они очень требовательны к теплоносителю.
- Некоторые модели, состоящие из цельного полотна, при определённых условиях могут протекать в области соединительных элементов, при этом заменить их не получится, нужно будет менять батарею целиком.
Из всех возможных вариаций алюминиевые радиаторы самые качественные и надёжные изделия, при производстве которых применялась технология анодного оксидирования металла. Они практически полностью избавлены от кислородной коррозии. Внешний вид таких изделий независимо от технологии производства одинаковый. В связи с этим нужно особенно тщательно обращать при выборе внимание на техническую документацию.
Биметаллические материалы
Такие изделия на сегодняшний день являются идеальным вариантом по всем параметрам. По надёжности они не уступают чугунным аналогам, а теплоотдача у них на уровне алюминиевых радиаторов. Связано это с их конструктивными особенностями.
Конструкция состоит из двух стальных коллекторов (верхнего и нижнего) и соединительных каналов между ними. Соединяются все элементы между собой муфтами высокого качества. Благодаря внешней алюминиевой оболочке теплоотдача остаётся на высоком уровне. Внутренняя часть труб сделана из металла, который не подвергается коррозии или имеет антикоррозийное покрытие. Алюминиевая ёмкость для теплообмена не подвержена коррозии, так как не контактирует с теплоносителем.
Конструкция имеет высокий уровень надёжности, и довольно большую теплоотдачу.
Биметаллические батареи не боятся скачков температуры и давления. Они более эффективны именно при высоком давлении, так как в системе с естественной циркуляцией они бесполезны. Если говорить о недостатках, то можно отметить только высокую стоимость.
Расчет мощности
Установленный радиатор должен полностью обеспечивать прогрев воздуха в комнате до нужных показателей. Основной величиной при расчёте мощности батарей отопления является площадь комнаты. Сами по себе расчёты по нормам СНиП весьма сложные. Неопытному человеку самостоятельно сделать сложный расчет не получится, но для бытовых нужд можно воспользоваться и упрощённой формулой.
Для создания комфортных условий проживания и достаточного количества тепла на один квадратный метр нужно примерно 100 Вт мощности. Поэтому для вычисления общего количества Ватт необходимо квадратуру комнаты умножить на 100. Можно использовать простейшую формулу: Т = П х 100.
Т — это необходимая теплоотдача от батареи, а П — площадь комнаты. Таких расчётов будет достаточно для радиаторов, состоящих из неразборных секций. На них необходимо ориентироваться при выборе материала, смотреть показатели изделия в его паспорте.
В случае покупки разборных батарей следует применять ещё одну формулу: К = Т / М1.
К — количество секций изделия, а М1 — мощность одной секции. Такие формулы не являются сложными, ими сможет воспользоваться человек без соответствующего образования с начальными знаниями физики и математики. Необходимо просто измерить рулеткой квадратуру комнаты и подготовить листок бумаги и ручку для вычислений. Также можно пользоваться специальной таблицей, где уже указанны все расчёты на определённую площадь помещения.
Инструкция по вычислению
Есть люди, которые не знают, как рассчитать тепловую мощность радиатора отопления правильно. Но сложного в этом ничего нет. При установке системы отопления необходимо добиваться максимального сочетания эффективности работы и экономичности.
Неопытным людям будут полезны несколько советов:
- Если комната со среднестатистическими условиями, то необходимо рассчитывать мощность батарей от 90 до 120 Вт на один квадрат помещения. Среднестатистическими условиями считается наличие одной двери и деревянного окна, при этом высота потолков не превышает 3 метров. Температура носителя тепла колеблется в районе 70°C.
- Если комната имеет два и более окна, то под каждое нужно установить отдельную батарею. Таким образом, можно предотвратить запотевание окон.
- Если высота комнаты больше или меньше стандарта, то необходимо учитывать это и увеличивать или уменьшать мощность прямо пропорционально высоте пололка.
- Если установлены стеклопакеты, то от стандартных расчётов нужно отнять от 15 до 20%.
- Помещения, расположенные по углам, требуют больше тепла. Поэтому в них следует устанавливать 2 батареи, а мощность увеличить на 40%. Эти же действия нужно сделать в помещениях, расположенных с северной стороны, поскольку они более подвержены воздействию холодного ветра. Погодные условия и температурный режим учитывается при расчётах.
- Конструктивные особенности батареи также важны. Если теплоноситель в системе движется снизу вверх по секциям, то мощность следует увеличить на 10%.
- Мощность нужно поднимать на 15%, если температура теплоносителя меньше нормы на 10°C, и уменьшать, если больше.
- Когда вход и выход для теплоносителя на батарее расположены с одной стороны, то количество секций не должно превышать десяти, так как последние рёбра не успеют достаточно нагреться.
- Учитывать нужно и тип радиатора, поскольку необходимая мощность у каждого типа разная.
Выполняя расчёты, не рекомендуется их делать сразу для целого дома. Лучше каждую комнату сделать отдельно, спешить при таком важном процессе не нужно. После увеличения на одну секцию нагрузка на котёл уменьшается, поэтому дополнительное ребро является хорошим показателем.
Рассчитать мощность батареи для личных целей несложно. Хватит элементарных правил математики и физики. Но для получения соответствующего разрешения необходимо приглашать специалиста с лицензией.
как рассчитать теплоотдачу батарей, правильный расчет на фото и видео
Содержание:1. Теплоотдача радиатора: что означает данный показатель
2. Порядок расчета теплоотдачи радиатора отопления
3. Теплоотдача батарей из разных материалов
4. Зависимость степени теплоотдачи от способа подключения
5. Способы, как можно увеличить теплоотдачу
Главным параметром, согласно которому определяют, насколько эффективна работа схемы теплоснабжения и всей отопительной системы, считается теплоотдача батарей отопления. Этот важный показатель для каждой модели отопительного прибора является индивидуальным. На теплоотдачу влияет вариант подключения радиатора, особенности его места установки и другие моменты. Также важно понимать, в чем измеряется отопление и как выполняется его расчет.
Теплоотдача радиатора: что означает данный показатель
Означает термин теплоотдача количество тепла, которое батарея отопления передает в помещение в течение определенного периода времени. Для данного показателя существует несколько синонимов: тепловой поток; тепловая мощность, мощность прибора. Измеряется теплоотдача радиаторов отопления в Ваттах (Вт). Иногда в технической литературе можно встретить определение этого показателя в калориях в час, при этом 1 Вт =859,8 кал/ч.
Осуществляется теплопередача от батарей отопления благодаря трем процессам:
- теплообмену;
- конвекции;
- излучению (радиации).
Каждым прибором отопления используются все три варианта переноса тепла, но их соотношение у разных моделей отличается. Радиаторами ранее было принято называть устройства, у которых не меньше 25 % тепловой энергии отдается в результате прямого излучения, но сейчас значение данного термина существенно расширилось. Теперь нередко так называют приборы конвекторного типа.
Порядок расчета теплоотдачи радиатора отопления
В основе выбора отопительных устройств для установки в доме или квартире лежит максимально точный расчет теплоотдачи радиаторов отопления. Каждому потребителю с одной стороны хочется сэкономить на обогреве жилья и поэтому нет желания приобретать лишние батареи, но если их будет недостаточно, комфортной температуры достичь не удастся.
Способов, как рассчитать теплоотдачу радиатора, существует несколько.
Вариант первый. Это самый простой способ, как рассчитать батареи отопления, в его основе – количество наружных стен и окон в них.
Порядок вычислений следующий:
Вариант второй. Он более сложен, но позволяет иметь более точные данные о необходимой мощности приборов.
В данном случае расчет теплоотдачи радиатора (батарей) отопления производится по формуле:
S x h x41, где
S — площадь помещения, для которого выполняются вычисления;
H — высота комнаты;
41 – минимальная мощность на один кубометр объема помещения.
Полученный итог будет требуемой теплоотдачей для радиаторов отопления. Далее эту цифру делят на номинальную тепловую мощность, которую имеет одна секция данной модели батареи. Узнать эту цифру можно в инструкции, прилагаемой производителем к своему изделию. Результатом расчета батарей отопления станет необходимое количество секций, чтобы теплоснабжение конкретного помещения было эффективным. Если полученное число дробное, тогда его округляют в большую сторону. Лучше небольшой избыток тепла, чем его недостаток.
Теплоотдача батарей из разных материалов
Выбирая радиатор отопления, следует помнить, что они отличаются по уровню теплоотдачи. Покупке батарей для дома или квартиры должно предшествовать внимательное изучение характеристик каждой из моделей. Нередко сходные по форме и габаритам приборы обладают разной теплоотдачей.
Чугунные радиаторы. Эти изделия имеют небольшую поверхность теплоотдачи и отличаются незначительной теплопроводностью материала изготовления. Номинальная мощность у секции чугунного радиатора, такого как МС-140, при температуре теплоносителя, равного 90°С, составляет примерно 180 Вт, но данные цифры получены в лабораторных условиях (детальнее: «Какая тепловая мощность чугунных радиаторов отопления»). В основном теплоотдача осуществляется за счет излучения, а на долю конвекции приходится всего лишь 20%.
В централизованных системах теплоснабжения температура теплоносителя обычно не превышает 80 градусов, а кроме этого часть тепла расходуется при продвижении горячей воды к батарее. В результате температура на поверхности чугунного радиатора составляет около 60°С, а теплоотдача каждой секции равна не более 50-60 Вт.
Стальные радиаторы. В них сочетаются положительные характеристики секционных и конвекционных приборов. Состоят они, как видно на фото, из одной или нескольких панелей, у которых внутри перемещается теплоноситель. Чтобы теплоотдача стальных панельных радиаторов была больше, с целью повышения мощности к панелям приваривают специальные ребра, функционирующие как конвектор.
К сожалению, теплоотдача стальных радиаторов не сильно отличается от теплоотдачи чугунных радиаторов отопления. Поэтому их преимущество заключается только в относительно небольшом весе и более привлекательном внешнем виде.
Потребителям следует знать, что теплоотдача стальных радиаторов отопления значительно уменьшается в случае снижения температуры теплоносителя. По этой причине, если в системе теплоснабжения будет циркулировать вода, подогретая до 60-70°С, показатели этого параметра могут сильно отличаться от данных, предоставляемых на эту модель производителем.
Алюминиевые радиаторы. Их теплоотдача намного выше, чем у стальных и чугунных изделий. Одна секция обладает тепловой мощностью, равной до 200 Вт, но у данных батарей имеется особенность, ограничивающая их применение. Она заключается в качестве теплоносителя. Дело в том, что при использовании загрязненной воды изнутри поверхность алюминиевого радиатора подвергается коррозийным процессам.
Поэтому, даже при отличных показателях мощности, батареи из этого материала следует устанавливать в частных домовладениях, где используется индивидуальная отопительная система.
Биметаллические радиаторы. Данная продукция по показателю теплоотдачи ни в чем не уступает алюминиевым приборам. Тепловой поток у биметаллических изделий в среднем равен 200 Вт, но к качеству теплоносителя они не настолько требовательны. Правда их высокая цена не позволяет многим потребителям установить эти устройства.
Зависимость степени теплоотдачи от способа подключения
На теплоотдачу отопительных радиаторов влияет не только материал изготовления и температура теплоносителя, циркулирующего по трубам, но и выбранный вариант подсоединения прибора к системе:
- Подключение прямое односторонне. Является наиболее выгодным относительно показателя тепловой мощности. По этой причине расчет теплоотдачи радиатора отопления выполняют именно при прямом подключении.
- Диагональное подключение. Его применяют, если к системе планируется подсоединить радиатор, в котором количество секций превысит 12. Такой способ позволяет максимально понизить теплопотери.
- Нижнее подключение. Его используют в том случае, когда батарею присоединяют к стяжке пола, в которой скрыта отопительная система. Как показывает расчет теплоотдачи радиатора, при таком подключении потери тепловой энергии не превышают 10%.
- Однотрубное подключение. Наименее выгодный способ с точки зрения тепловой мощности. Потери теплоотдачи при однотрубном подключении чаще всего достигают 25 — 45%.
Способы, как можно увеличить теплоотдачу
Вне зависимости от мощности радиаторов владельцам домов и квартир все равно хочется повысить их теплоотдачу. Особенно актуальным такое стремление становится с приходом холодного периода года. В зимнюю стужу нередко даже при работе на полную мощность радиатор может не справиться с поддержанием комфортного температурного режима в помещении.
Существует несколько способов, позволяющих увеличить теплоотдачу приборов отопления:
- Регулярное проведение влажной уборки с целью очистки поверхности батарей. Чем чище они будут, тем выше уровень их теплоотдачи.
- Не менее важен момент правильного окрашивания радиатора, особенно это касается чугунных приборов. Дело в том, что многослойно нанесенная краска препятствует эффективной теплоотдаче. Перед тем, как приступить к покраске радиатора отопления, следует удалить старый слой. Не менее эффективно применение специальных эмалей, предназначенных для трубопроводов и отопительных приборов, поскольку они имеют низкое сопротивление теплоотдаче.
- Для обеспечения максимальной мощности, необходимо правильно смонтировать эти устройства.
- Среди основных ошибок, допускаемых при монтаже, специалисты отмечают:
— наклон батареи;
— установку прибора слишком близко к напольному покрытию или к стене;
— перекрытие доступа к радиаторам предметами обстановки и установка неподходящих отражающих экранов. - Для повышения эффективности отопительных батарей не помешает проведение ревизии их внутренней полости. Нередко в процессе подключения батарей отопления к системе образуются заусеницы, из-за которых при эксплуатации образуются засоры, препятствующие свободному передвижению теплоносителя.
- Можно поместить на стену за отопительным прибором теплоотражающий экран, сделанный из фольгированного материала.
Познавательное видео о теплоотдаче радиаторов отопления:
Рассчитать теплоотдачу радиатора, которая необходима для конкретного помещения, как становится ясно из выше приведенной информации, несложно. Зная ее величину, можно выбрать нужную модель, а затем собственноручно повысить мощность прибора и тем самым обеспечить себе и близким комфортные условия проживания в зимний период. Прочитайте также: «Расчет мощности батарей отопления — как рассчитать самому».
Как рассчитать мощность радиатора отопления
Современные квартиры, дома и коттеджи могут отапливаться любым способом, но без радиаторов отопления не обойтись ни в одном случае. Радиаторы производятся из чугуна, стали, алюминия или сплавов биметаллов. Покупая отопительный прибор, пользователи исходят из разных характеристик: это и технические параметры системы отопления, и характеристики теплоносителя, и предпочтения хозяина. При этом почти никто не знает, как рассчитать мощность радиатора отопления, а этот показатель – самый важный.
Но главная характеристика, которую необходимо учитывать – мощность радиатора отопления и количество секций, потому что основная функция радиатора – поддержание комфортной температуры (21-24°С) в квартире.
Дизайн и конструкция при расчете мощности радиатора не играют роли, из какого бы металла он не изготавливался. Поэтому выбор внешнего вида отопительного прибора зависит только от вкуса покупателя. А вот тепловая мощность – параметр первостепенный, поэтому проблема, как рассчитать мощность радиатора отопления, для покупателя всегда остается актуальной.
На упаковке прибора все компании по производству обозначают этот параметр. Поэтому главное – даже не мощность, а количество секций.
Расчет количества секций радиаторов и их мощности
Иногда недобросовестные производители намеренно завышают номинальную мощность – не забудьте об этом при покупке. Для правильного расчета мощности радиатора следует предварительно просчитать площадь комнаты, которая будет отапливаться. Вычисления производятся не для всей квартиры, а для каждого помещения отдельно.
Формула расчета мощности радиатора
Формула, которой чаще всего пользуются для вычисления мощности отопительного прибора, несложная, поэтому обращаться к специалистам нет смысла – вычисления можно сделать и самостоятельно. Согласно СНиП 2.04.05-91 для металлических и СНиП 3.05.01-85, СНиП 2.04.05-91 для алюминиевых радиаторов на 1 м2 отапливаемой площади при высоте потолков 2,5 м расходуется 100 Вт тепла. Для остальных отопительных приборов применяются СНиП 2.04.05-91, СНиП 3.05.01-85 и ГОСТ 8690-94. Поэтому упрощенная, но точная формула для расчета мощности выглядит так:
K= S х 100/P, где:
- K – количество секций в радиаторе.
- S – общая площадь теплообменника.
- Р – мощность прибора (указывается в инструкции).
В качестве примера рассчитаем мощность (количество секций) радиатора для помещения 30 м2 при стандартной высоте потолков 2,5 м. допустим, одна секция рассчитана на мощность 180 вт. решение такое
- K= 30 х 100/180.
- K= 16,6 секций.
Нужно округлить результат в большую сторону, а значит, потребуется 17 секций. Данная формула с большой точностью применима к секционным и чугунным конструкциям.
Совет: число радиаторов прямо пропорционально числу окон в комнате. Если помещение угловое, находится в торце здания или существуют постоянные перебои с подачей горячего теплоносителя в центральном отоплении и снижение его температуры, то рекомендуется к полученному результату мощности прибавить еще 20%
Как рассчитать мощность панельного радиатора
Если помещение нестандартное (высота потолков заметно отличается от 2,5 м в любую сторону), то при расчете мощности отопительных радиаторов рекомендуется применять такую формулу:
P (мощность)=V х 41, где:
- Р – мощность отопительного прибора.
- V – объем отапливаемой комнаты.
- 41 (Ватт) — тепловая мощность, которая расходуется при обогреве 1 м3 здания, построенного без использования энергосберегающих технологий (пластиковые окна, утепление стен, потолка и пола, и т.д.). Этот коэффициент можно применять только для европейской части России, Белоруссии, Украины и Молдовы.
Для примера рассчитаем мощность радиатора для помещения 5 х 5 м (высота потолка – 3 м):
V=5 х 5 х 3=75 м3.
P (мощность прибора)= 75 х 41 = 3075 Ватт.
Немного больше 3-х кВт понадобится выработать котлу для радиатора, который доведет комнатную температуру до комфортного значения. Эту мощность можно разделить между несколькими отопительными приборами, если формат комнаты не позволяет установить один радиатор. Еще один способ, как узнать необходимое количество секций – нужно разделить общую мощность прибора на мощность одной секции (если она известна).
по площади, по объему, в зависимости от температурного режима, материалов и размеров
Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.
Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.
Есть еще один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.
Расчет радиаторов зависит от потерь тепла помещением и номинальной тепловой мощности секций
Расчет радиаторов отопления по площади
Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:
- для средней климатической полосы на отопление 1м2 жилого помещения требуется 60-100Вт;
- для областей выше 60о требуется 150-200Вт.
Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м2, потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.
Расчет радиаторов отопления можно сделать по нормам СНиП
Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»
Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.
Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.
Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.
Как посчитать секции радиатора по объему помещения
При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:
- в панельном доме на обогрев кубометра воздуха требуется 41Вт;
- в кирпичном доме на м3 — 34Вт.
Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объему
Рассчитаем все для того же помещения площадью 16м2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м3.
Дальше посчитаем для вариантов в панельном и кирпичном доме:
- В панельном доме. Требуемое на отопление тепло 43,2м3*41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
- В кирпичном доме. Тепла нужно 43,2м3*34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).
Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.
Корректировка результатов
Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.
Количество радиаторов зависит от величины потерь тепла
Окна
На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:
- соотношение площади окна к площади пола:
- 10% — 0,8
- 20% — 0,9
- 30% — 1,0
- 40% — 1,1
- 50% — 1,2
- остекление:
- трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
- обычный двухкамерный стеклопакет — 1,0
- обычные двойные рамы — 1,27.
Стены и кровля
Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.
Степень теплоизоляции:
- кирпичные стены толщиной в два кирпича считаются нормой — 1,0
- недостаточная (отсутствует) — 1,27
- хорошая — 0,8
Наличие наружных стен:
- внутреннее помещение — без потерь, коэффициент 1,0
- одна — 1,1
- две — 1,2
- три — 1,3
На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).
Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора
Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.
Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.
Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.
Климатические факторы
Можно внести корректировки в зависимости от средних температур зимой:
- -10оС и выше — 0,7
- -15оС — 0,9
- -20оС — 1,1
- -25оС — 1,3
- -30оС — 1,5
Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.
Расчет разных типов радиаторов
Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1 л/мин примерно равен мощности в 1 кВт (1000 Вт).
Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя.
Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.
Осевое расстояние определяют между центрами отверстий для теплоносителя
Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.
Чтобы считать было проще, есть усредненные данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50см приняты такие значения мощностей:
- алюминиевые — 190Вт
- биметаллические — 185Вт
- чугунные — 145Вт.
Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.
При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м2 площади. Тогда на помещение 16м2 нужно: 16м2/1,8м2=8,88шт. Округляем — нужны 9 секций.
Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:
- биметаллический радиатор — 1,8м2
- алюминиевый — 1,9-2,0м2
- чугунный — 1,4-1,5м2.
Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.
Расчет чугунных радиаторов отопления. Считать может по площади или объему помещения
Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м2. Считаем количество секций стандартного размера: 16м2/2м2=8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.
Корректировка в зависимости от режима отопительной системы
Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90оС, в обратке — 70оС (обозначается 90/70) в помещении при этом должно быть 20оС. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.
Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.
Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора
Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м2. Потому нам потребуется 16м2/1,5м2=10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:
- высокотемпературная 90/70/20- (90+70)/2-20=60оС;
- низкотемпературный 55/45/20 — (55+45)/2-20=30оС.
То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.
При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20оС а, например, 25оС просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55оС. Теперь находим соотношение 60оС/55оС=1,1. Чтобы обеспечить температуру в 25оС нужно 11шт*1,1=12,1шт.
Зависимость мощности радиаторов от подключения и места расположения
Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.
Потери тепла на радиаторах в зависимости от подключения
Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.
Количество тепла зависит и от установки
Количество тепла зависит и от места установки
Определение количества радиаторов для однотрубных систем
Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления, когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.
В однотрубной системе вода на каждый радиатор поступает все более холодная
Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.
В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции
Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.
Итоги
Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.
Возможно, вам интересно будет прочитать про расчет мощности котла или определение диаметра труб для системы отопления.
Расчет радиаторов отопления и необходимой тепловой мощности – Stroim24.info
Как выполнить расчет радиаторов отопления в квартире? Какое количество секций будет минимально необходимым при известной площади помещения?
О простых и относительно сложных способах расчета — эта статья.
Отложим в сторону газовый ключ и болгарку. Сегодня наш инструмент — калькулятор.
Дисклеймер
Эта статья ориентирована не на инженеров-теплотехников, а на владельцев квартиры или частного дома, которые собираются своими руками смонтировать систему отопления. Раз так — инструкция по расчету должна быть простой и понятной.
Мы не станем использовать сложные формулы и такие понятия, как «тепловой поток» и «термическое сопротивление стен», постаравшись предельно упростить подсчеты.
Общие положения
Любой простой способ расчета имеет довольно большую погрешность. Однако с практической стороны для нас важно обеспечить гарантированно достаточную тепловую мощность. Если она окажется больше необходимой даже в пик зимней стужи — что с того?
В квартире, где отопление оплачивается по площади, жар костей не ломит; да и регулировочные дроссели и термостатические регуляторы температуры не являются чем-то очень редким и недоступным.
В случае частного дома и собственного котла цена киловатта тепла нам хорошо известна, и, казалось бы, избыточное отопление ударит по карману. Однако на практике это не так. Все современные газовые и электрокотлы для отопления частного дома снабжаются термостатами, которые регулируют теплоотдачу в зависимости от температуры в помещении.
Термостат не даст котлу потратить лишнее тепло.
Даже если наш расчет мощности радиаторов отопления даст значительную ошибку в большую сторону — мы рискуем лишь стоимостью нескольких дополнительных секций.
Между прочим: помимо среднестатистических зимних температур, раз в несколько лет случаются экстремальные заморозки.
Есть подозрение, что в связи с глобальными климатическими изменениями они будут случаться все чаще, так что, выполняя расчет отопительных радиаторов, не бойтесь ошибиться в большую сторону.
Как рассчитать тепловую мощность отопительного прибора
Способ рассчитать мощность во многом зависит от того, о каком отопительном приборе идет речь.
- Для всех без исключения электрических отопительных приборов эффективная тепловая мощность в точности равна их паспортной электрической мощности.
Вспомните школьный курс физики: если не совершается полезная работа (то есть перемещение какого-либо объекта с ненулевой массой против вектора гравитации), вся потраченная энергия идет на нагрев окружающей среды.
Угадаете тепловую мощность прибора по его упаковке?
Здесь есть одна тонкость: почти всегда производителем выполняется расчет теплоотдачи радиатора — батарей отопления, конвектора или фанкойла — для вполне конкретной разницы температур между теплоносителем и помещением, равной 70С. Для российских реалий такие параметры зачастую являются недостижимым идеалом.
Наконец, возможен простой, хоть и приблизительный, расчет мощности радиатора отопления по количеству секций.
Биметаллические радиаторы
Расчет биметаллических радиаторов отопления отталкивается от габаритных размеров секции.
Возьмем данные с сайта завода Большевик:
- Для секции с межосевым расстоянием подводок 500 миллиметров теплоотдача равна 165 ватт.
- Для 400-миллиметровой секции — 143 ватта.
- 300 мм — 120 ватт.
- 250 мм — 102 ватта.
10 секций с полуметром между осями подводок дадут нам 1650 ватт тепла.
Алюминиевые радиаторы
Расчет алюминиевых радиаторов отопления выполняется исходя из следующих значений (данные для итальянских радиаторов Calidor и Solar):
- Секция с межосевым расстоянием 500 миллиметров отдает 178-182 ватта тепла.
- При межосевом расстоянии 350 миллиметров теплоотдача секции уменьшается до 145-150 ватт.
Стальные пластинчатые радиаторы
А как выполнить расчет стальных радиаторов отопления пластинчатого типа? У них ведь нет секций, от количества которых может отталкиваться формула расчета.
Здесь ключевые параметры — опять-таки межосевое расстояние и длина радиатора. Кроме того, производители рекомендуют учитывать способ подключения радиатора: при разных способах врезки в отопительную систему нагрев и, следовательно, тепловая мощность тоже может различаться.
Чтобы не утомлять читателя обилием формул в тексте — просто отошлем его к таблице мощности модельного ряда радиаторов Korad.
Схема учитывает габариты радиаторов и тип подключения.
Чугунные радиаторы
И только здесь все предельно просто: все производящиеся в России чугунные радиаторы имеют одинаковое межосевое расстояние подводок, равное 500 миллиметрам, и теплоотдачу при стандартной дельте температур в 70С, равную 180 ваттам на секцию.
Полдела сделано. Теперь мы знаем, как рассчитать количество секций или отопительных приборов при известной необходимой тепловой мощности. Но откуда взять саму тепловую мощность, которая нам нужна?
Расчет тепловой мощности
Мы рассмотрим несколько способов расчета, учитывающих разное количество переменных.
По площади
Расчет по площади основан на санитарных нормах и правилах, в которых русским по белому сказано: один киловатт тепловой мощности должен приходиться на 10 м2 площади помещения (100 ватт на м2).
Уточнение: при расчете применяется коэффициент, зависящий от региона страны. Для южных районов он равен 0,7 — 0,9, для Дальнего Востока — 1,6, для Якутии и Чукотки — 2,0.
Чем ниже температура на улице, тем больше потери тепла.
Понятно, что метод дает весьма значительную погрешность:
- Панорамное остекление в одну нитку явно даст большие теплопотери по сравнению со сплошной стеной.
- Расположение квартиры внутри дома не учитывается, хотя понятно, что если рядом теплые стены соседних квартир — при одинаковом количестве радиаторов будет куда теплее, чем в угловой комнате, имеющей общую стену с улицей.
- Наконец, главное: расчет верен для стандартной высоты потолков в доме советской постройки, равной 2,5 — 2,7 метра. Однако еще в начале 20-го века строились дома с высотой потолков в 4 — 4,5 метра, да и сталинки с трехметровыми потолками тоже потребуют уточненного расчета.
Давайте все-таки применим метод для расчета количества чугунных секций радиаторов отопления в комнате размером 3х4 метра, находящейся в Краснодарском крае.
Площадь равна 3х4=12 м2.
Необходимая тепловая мощность отопления — 12м2 х100Вт х0,7 районного коэффициента = 840 ватт.
При мощности одной секции в 180 ватт нам потребуется 840/180=4,66 секции. Число мы, понятно, округлим в большую сторону — до пяти.
Совет: в условиях Краснодарского края дельта температур между комнатой и батареей в 70С нереальна. Лучше устанавливать радиаторы как минимум с 30-процентным запасом.
Запас по тепловой мощности никогда не помешает. При необходимости можно просто прикрыть вентиля перед радиатором.
Простой расчет по объему
Не наш выбор.
Расчет по общему объему воздуха в помещении явно будет более точным уже потому, что учитывает разброс высоты потолков. Он тоже весьма прост: на 1 м3 объема необходимо 40 ватт мощности отопительной системы.
Давайте посчитаем необходимую мощность для нашей комнатки под Краснодаром с небольшим уточнением: она находится в сталинке 1960 года постройки с высотой потолка 3,1 метра.
Объем помещения равен 3х4х3,1=37,2 кубометра.
Соответственно радиаторы должны иметь мощность 37,2х40=1488 ватта. Учтем районный коэффициент 0,7: 1488х0,7=1041 ватт, или шесть секций чугунного лютого ужаса под окном. Почему ужаса? Внешний вид и постоянные течи между секциями через несколько лет эксплуатации восторга не вызывают.
Если же вспомнить, что цена чугунной секции выше, чем у алюминиевого или биметаллического импортного радиатора отопления — идея покупки такого отопительного прибора и впрямь начинает вызывать легкую панику.
Уточненный расчет по объему
Более точный расчет систем отопления выполняется с учетом большего числа переменных:
- Количества дверей и окон. Усредненные потери тепла через окно стандартного размера — 100 ватт, через дверь — 200.
- Расположение комнаты в торце или углу дома заставит нас использовать коэффициент 1,1 — 1,3 в зависимости от материала и толщины стен здания.
- У частных домов используется коэффициент 1,5, поскольку куда выше потери тепла через пол и крышу. Сверху и снизу ведь не теплые квартиры, а улица…
Базовое значение — те же 40 ватт на кубометр и те же региональные коэффициенты, что и при расчете по площади комнаты.
Давайте выполним расчет тепловой мощности радиаторов отопления для комнаты с теми же габаритами, что и в предыдущем примере, но мысленно перенесем ее в угол частного дома в Оймяконе (средняя температура января -54С, минимум за время наблюдений — 82). Ситуация усугубляется дверью на улицу и окошком, из которого видны жизнерадостные оленеводы.
Базовую мощность с учетом только объема помещения мы уже выполнили: 1488 ватт.
Окно и дверь прибавят 300 ватт. 1488+300=1788.
Частный дом. Холодный пол и утечка тепла через крышу. 1788х1,5=2682.
Угол дома заставит нас применить коэффициент 1,3. 2682х1,3=3486,6 ватта.
К слову, в угловых комнатах отопительные приборы стоит монтировать на обе внешние стены.
Наконец, теплый и ласковый климат Оймяконского улуса Якутии приводит нас к мысли о том, что полученный результат можно умножить на региональный коэффициент 2,0. 6973,2 ватта требуется для обогрева маленькой комнатушки!
Расчет количества радиаторов отопления нам уже знаком. Общее количество чугунных или алюминиевых секций составит 6973,2/180=39 секций с округлением. При длине секции 93 миллиметра баян под окном будет иметь длину 3,6 метра, то есть едва поместится вдоль более длинной из стенок…
«- Десять секций? Хорошее начало!» — такой фразой житель Якутии прокомментирует это фото.
Заключение
Дополнительную информацию о расчете отопительных систем вы найдете в видео в конце статьи. Автор же напоследок хочет сделать официальное заявление: в Оймякон по своей воле — ни ногой. Теплых зим!
Поделитесь с друзьями в соц.сетях
Google+
Telegram
Vkontakte