Померить емкость конденсатора не снимая: Можно ли и как проверить конденсатор мультиметром в домашних условиях: надо ли его обязательно выпаивать

Содержание

Как проверить конденсатор самым простым, дешевым мультиметром

Как проверить обычным мультиметром исправность конденсатора?

Итак, у вас есть проблема — нужно проверить исправность конденсатора, но подходящего измерительного прибора с функцией измерения емкости под рукой нет. Что же делать? Бежать в магазин и купить нужный мультиметр? Если вы будете постоянно иметь дело с измерением емкости и проверкой конденсаторов, такой шаг будет более чем оправдан, но для разовой, простой проверки подойдет и обычный, самый простой прибор.

Так что давайте узнаем, как можно проверить работоспособность конденсатора с помощью данного измерительного прибора, который вообще не имеет функции измерения емкости конденсаторов. Единственный недостаток этого способа — измерение емкости конденсатора таким способом просто невозможно.

Так что же нужно делать?

Начнем проверку. Представим, что вы уже разобрали прибор или устройство на котором нужно проверить конденсаторы, или же они и вовсе отпаяны. С последними работать будет даже проще. Но если конденсаторы нужно только проверить, лучше не выпаивать их с устройства. Особенно если сомневаетесь, что получится их выпаять и припаять на место.

  • Итак, включаем мультиметр в режим измерения сопротивления. При этом выставляем самый высокий предел.

  • Неважно, выпаян конденсатор или находится на плате — главное подключить щупы к выводам конденсатора. Но некоторые радиолюбители советуют отпаять хотя бы одну ножку конденсатора, чтобы устранить «паразитные помехи» прочих компонентов сети.

  • Теперь наблюдаем за показаниями. На экране устройства вы увидите, что сопротивление конденсатора постепенно возрастает. Если это так — конденсатор исправен.

 

Как это работает?

Когда конденсатор набирает заряд его сопротивление, соответственно, растет. Если вы наблюдаете рост сопротивления, значит, конденсатор заряжается.

При измерении сопротивления мультиметры подают через щупы определенное, фиксированное напряжение. Именно оно и заряжает конденсатор. Если сопротивление остается постоянным — конденсатор пробит и не набирает заряд.

Для такой вот проверки конденсатора годиться любая модель, которая может измерять сопротивление. Это может быть как универсальный цифровой прибор, так и простой, аналоговый измеритель. Но вот снимать данные простым, аналоговым инструментом интереснее.

  • Аналоговый мультиметр должен быть включен в режим измерения сопротивления. Можно выбрать средний диапазон.
  • Как и в случае с цифровым, дотроньтесь щупами к контактам конденсатора.
  • Наблюдайте за стрелкой. Она будет до определенного момента ползти вверх, а потом падать назад. Если это происходит, значит, конденсатор заряжается и разряжается.
Как видите, все достаточно просто!

Стоит заметить, что мультиметры не смогут измерить емкость конденсатора. Хотя в большинстве случаев достаточно просто проверить работоспособность компонента.

Поделиться в соцсетях

Как проверить конденсатор — используем мультиметр для проверки на работоспособность конденсатор

Без конденсаторов, пожалуй, не обходится ни одна электрическая или электронная схема. Этот довольно простой по строению и, в общем-то, нехитрый по принципу своего действия элемент – буквально незаменим. И выход из строя такого миниатюрного «звена» общей цепи вполне способен повлечь и общую неработоспособность всего прибора или устройства.

Как проверить конденсатор

Многие конденсаторы способны служить десятилетиями, и при этом не потребовать замены. Но время от времени выход из строя или некорректная работа электронной схемы заставляет заниматься поисками «виновника». Подозрение порой падает и на эти элементы цепи. Поэтому необходимо знать, как проверить конденсатор, чтобы убедиться в его пригодности или, наоборот, необходимости замены.

Да и перед проведением электромонтажных работ тоже не мешает заранее проверять элементы, которые будут впаиваться на свое место в плату. В любой партии изделий может быть определенный процент заводского брака. И проще выявить нерабочий конденсатор до его установки, нежели потом искать неисправности по всей схеме.

Основные типы конденсаторов

Буквально несколько минут внимания следует уделить принципам строения и работы конденсаторов, а также разновидностям этих элементов схемы. Так будет проще понять, на чем строится методика проверки их работоспособности.

Итак, конденсатор представляет собой очень распространенный элемент электрической цепи, в котором происходит накопление заряда. Устройство нехитрое – в отличие от многих других элементов здесь нет никаких полупроводниковых переходов. По сути – это всего лишь две значительные по площади токопроводящие пластины (их обычно называют обкладками) равных размеров, разнесенные на небольшое расстояние одна от другой, то есть непосредственного электрического контакта между ними нет и быть не должно. Этот просвет заполняется диэлектрическим материалом.

Принятое условное обозначение конденсатора на схемах как раз очень наглядно показывает принцип его устройства.

Разделенные тонким просветом токопроводящие пластины имеют свойство накапливать электрический заряд.

Понятно, что в цепи постоянного тока проводимость через конденсатор отсутствует, так как цепь, по сути, разорвана. Но зато на его обкладках накапливается (конденсируется) электрический заряд. И чем больше площадь этих обкладок, тем больший заряд может быть накоплен. Показателем же этих возможностей является величина емкости конденсатора.

Эта физическая величина измеряется в фарадах (F). Один фарад – это способность накопить 1 кулон заряда при разности потенциалов на обкладках в 1 вольт. Но пусть эти «единички» не вводят в заблуждение: на самом деле 1 F – это просто огромный показатель. На деле же приходится иметь дело с куда меньшими величинами:

1 mF = 0. 001F = F×10⁻³ — миллифарад;

1 μF = 0.001mF = F×10⁻⁶ — микрофарад;

1 nF = 0.001μF = F×10⁻⁹ — нанофарад;

1 pF = 0.001nF = F×10⁻¹² — пикофарад

Несмотря на общность принципа устройства и действия, по своей конструкции конденсаторы все же могут иметь существенные различия.

Многообразие конденсаторов и по эксплуатационным параметрам, и по размерам –очень широко

Прежде всего, их можно разделить на две большие группы – полярные и неполярные конденсаторы.

  • Для неполярных элементов не имеет никакого значения взаимное расположение их обкладок в общей схеме. Такие конденсаторы выпускаются в следующих основных «обличиях».

Керамические конденсаторы – в качестве разделительного диэлектрического слоя между обкладками применяется керамический состав. Эти элементы характеризуются компактностью, широким диапазоном допустимых рабочих напряжений, дешевизной наряду с довольно высокой надежностью и долговечностью.

Керамические конденсаторы

Для достижения более высоких показателей емкости требуется увеличивать площадь обкладок. Это достигается свертыванием в рулон (или в «гармошку») двух токопроводящих лент со специальным металлизированным покрытием (или даже лент из алюминиевой фольги) с размещённой между ними диэлектрической прокладкой. По такому принципу устроены бумажные, металлобумажные, слюдяные и пришедшие им на замену серебряно-слюдяные конденсаторы.

Серебряно-слюдяные конденсаторы

К неполярным относятся и мощные пусковые конденсаторы, имеющиеся во многих моделях бытовой техники, оснащенной электроприводами. Они собираются в достаточно габаритном корпусе цилиндрической или кубической формы, имеют обкладки из металлизированной полипропиленовой пленки и заполняются диэлектрическим маслом.

Принцип устройства пускового конденсатора: 1 – металлический корпус; 2 – обкладки – полосы полипропиленовой пленки с вакуумным металлизированным напылением; 3 – диэлектрическая пленочная прокладка; 4 – наполнение из диэлектрического нетоксичного масла; 5 – выводы-контакты для подключения к электрической схеме прибора.

Их не зря называют пусковыми – они способны накапливать очень значительный заряд для выработки мощного пускового импульса и для повышения коэффициента мощности электроустановок. Способны они и сглаживать значительные колебания в системах высокого напряжения.

  • Полярные конденсаторы требуют, как понятно из названия, соблюдения полярности при установке их в схему.

Наиболее распространены на сегодняшний день полярные конденсаторы в алюминиевом цилиндрическом корпусе. Нередко такие элементы именуют еще «электролитическими». Такое название предопределяет тот факт, что свободное пространство между обкладками заполняется специальным электролитом. Диапазон габаритов и электротехнических показателей – очень широкий, но если неполярные компактные конденсаторы чаще всего по ёмкости максимально ограничиваются единицами микрофарад, то у электролитических счет может идти даже на тысячи μF, то есть единицы mF. На три порядка больше!

Электролитические полярные конденсаторы

Шагом вперед стало появление танталовых полярных конденсаторов, у которых соотношение размеров и возможных показателей емкости – намного выше. То есть это оптимальный вариант тех случаях, когда требуется компактность схемы наряду с высокой емкостью. Правда, такие детали значительно дороже, а кроме того – излишне чувствительны к пульсации токов и к превышениям допустимых напряжений, которые часто выводит их из строя.

Танталовые полярные конденсаторы – миниатюрные «капельки» с весьма внушительными показателями емкости.

Здесь были рассмотрены далеко не все формы выпуска конденсаторов, но принцип их строения, независимо от внешности, остается тем же.

Какие неисправности могут случиться в конденсаторе

Прежде чем учиться искать неисправности конденсатора, необходимо разобраться, в чем же они могут заключаться. Иными словами – нужно знать, что искать.

Итак, полный выход из строя или неправильная работа этого элемента схемы может выражаться в следующем:

  • Пробой между обкладками конденсатора. Обычно вызывается превышением допустимого напряжения на выводах. По сути, участок цепи, который должен «разрываться» конденсатором, получается замкнутым.
  • Обрыв между выводом конденсатора и обкладкой. Может случиться из-за вибрационного или иного механического воздействия, от превышения допустимого напряжения. Нельзя исключить и производственный брак. На деле получается, что конденсатор в схеме попросту отсутствует – на его месте банальный разрыв цепи.
  • Повышенный ток утечки – в связи с потерей диэлектрических качеств разделяющего обкладки слоя происходит «перетекание зарядов». Конденсатор не в силах сохранять полученный заряд достаточное для его корректной работы время.
  • Недостаточная емкость конденсатора. Может вызываться повышенным током утечки или же опять, чего греха таить, производственным браком. В результате схема, в которую включен такой конденсатор, работает некорректно, неустойчиво, или вовсе становится неработоспособной.
  • Для электролитических полярных конденсаторов выделяют еще один возможный дефект – это превышение эквивалентного последовательного сопротивления ЭПС (ESR). Как известно, такие конденсаторы, работая в схемах с высокочастотными токами, способны «фильтровать» постоянную составляющую и пропускать частотный сигнал. Но этот сигнал может «подавляться» повышенным ЭПС, по аналогии с обычным резистором, значительно снижая его уровень. Что, кстати, одновременно ведет и к нагреву таких элементов схемы.

ЭПС складывается из нескольких факторов:

— обычное активное сопротивление проволочных выводов, обкладок и точек их соединения.

— сопротивление, вызванное неоднородностью диэлектриков, наличием примесей или влаги.

— сопротивление электролита, которое способно изменяться (нарастать) по мере испарения, высыхания, постепенного изменения химического состава.

Для ответственных схем показатель ЭПС имеет очень важное значение. Но, к сожалению, именно эту величину оценить и сравнить с допустимой табличной без использования специфических приборов – невозможно.

Специальный прибор для диагностики конденсаторов, позволяющий оценить и их емкость, и показатель эквивалентного последовательного сопротивления (ESR)

Справедливости ради надо сказать, что некоторые пытливые мастера самостоятельно заготавливают приборы-приставки для оценки ESR и используют их в связке с самыми обычными цифровыми мультиметрами. При желании в интернете можно отыскать немало схем подобных приставок.

Приставка к мультиметру типа DT, позволяющая оценивать показатель ESR электролитических конденсаторов.

Пример таблицы допустимых значений эквивалентного последовательного сопротивления (в омах – Ω) для электролитических конденсаторов различных номиналов емкости (μF) и напряжения (V):

 10 V16 V25 V35 V50 V63 V100 V160 V250 V350 V450 V
1 μF2.12.44.54.58.59.58.78.53.6
2.2 μF2.02.44.54.52.34.06.14.23.6
3.3 μF2.02.34.74.52.23.14.61.63.5
4.7 μF2.02.23.03.82.03.03.51.65.7
10 μF8.05.32.21.61.92.01.21.41.26.5
22 μF5.43.61.51.50.80.91.51.10.71.11.5
33 μF4. 32.01.21.20.60.81.21.00.51.1
47 μF2.21.00.90.70.50.60.70.50.41.1
100 μF1.20.70.30.30.30.40.150.30.2
220 μF0.60.30.250.20.20.10.10.20.2
330 μF0.240.20.250.10.20.10.10.10.2
470 μF0.240.180.120.10.10.10.10.10.15
1000 μF0.120.150.080.10.10.10.10.10.1
2200 μF0.120.140.140.10.10.10.10.10.1
3300 μF0.130.120.130.10.10.10.10.10.1
4700 μF0.120.120.12.010.10.10.10.10.1

Как проводится проверка конденсаторов

Первый шаг – выбраковка по возможным внешним признакам

Если при некорректной работе или при полной неработоспособности схемы подозрение падает на конденсаторы, разумно будет первым делом произвести внимательный визуальный осмотр этих элементов. Не исключены внешние признаки, которые ясно дадут понять о возникших проблемах.

Аналогичную визуальную «ревизию» стоит проводить и при монтаже схемы, тем более в том случае, если для ее сборки используются радиодетали, уже бывшие в употреблении. Кстати, и среди абсолютно новых нет-нет, да и встречаются явно бракованные.

Обычно сразу становятся заметны конденсаторы с пробоем – это выражается в потемнении, вздутии, прогорании или растрескивании керамического корпуса. Понятно, что такие элементы подлежат безусловной замене, и даже не стоит терять время на их дальнейшую проверку – лучше сконцентрировать свое внимание на поиске возможных причин, приведших к таким последствиям.

Керамическая облицовка конденсатора растрескалась и осыпалась – явный признак пробоя и необходимости замены.А в этом случае, по всей видимости, пробой конденсатора сопровождался еще и не слабой электрической дугой.

Даже если ставится новый керамический конденсатор, но он уже  имеет трещины или сколы на корпусе, то его лучше сразу отложить в брак – не столь высока его стоимость, чтобы закладывать в схему «мину замедленного действия». Разумнее поставить полностью исправный и неповреждённый внешне элемент.

Пробои чаще встречаются на неполярных конденсаторах или на танталовых полярных (они очень чувствительны к превышениям напряжения).

Явными признаками выхода из строя, или же состояния, близкого к критическому, хорошо сигнализируют  электролитические полярные конденсаторы. Это обусловлено самой особенностью их конструкции.

При превышении допустимого напряжения или же при изменении полярности на отводах внутри «бочонка» резко активизируются химические реакции, сопровождающиеся перегревом электролита и его испарением. Это может привести просто к пересыханию конденсатора, то есть к потере им своей номинальной емкости и повышению тока утечки. Но нередко увеличение давления внутри алюминиевого корпуса заканчивается и его разрывом.

Не характерный, но все же иногда встречающийся боковой разрыв корпуса алюминиевого полярного электролитического конденсатора.

Чтобы свести к минимуму вероятность поражения соседних элементов схемы разорвавшимся электролитическим конденсатором, производители предусматривают утонченную верхнюю «крышку» цилиндра, на которую, кроме того, наносятся насечки в виде креста или звездочки. Таким образом, искусственно создаётся «слабое звено» корпуса, чтобы в случае взрыва (прорыва паров электролита) он был направлен вверх.

Вовремя не замеченный вздутый конденсатор может разорвать внутренним давлением – последствия показаны на фотографии. Лучше до этого не доводить!

Но еще до этой критической ситуации конденсаторы начинают «сигнализировать» о скором «окончании своей карьеры» вздутием этой ослабленной стенки. По этому внешнему признаку следует сразу, не откладывая, производить выбраковку и замену элементов схемы. Проводить дополнительные проверки таких конденсаторов – вряд ли имеет смысл.

На четырех конденсаторах – явное вздутие верхней стенки, говорящее о необходимости замены. А на двух – еще и признаки потери герметичности и прорыва электролита наружу.

Правда, следует проявлять внимательность, и обращать внимание еще на один признак. Случается, что даже при отсутствии деформации верхней стенки цилиндра конденсатора, превышение давления приводит к выжиму нижней диэлектрической пробки, через которую проходят отводы. Встречается такое не столь часто, но тем не менее…

Верхняя крышка вроде бы не имеет явной деформации, но вот нижняя пробка явно выдавлена наружу. Возможно, причина этому – заводской брак, но конденсатор однозначно нуждается в замене.

Итак, если заметны явные внешние признаки выхода конденсатора из строя, не стоит тратить время на его последующую более тщательную проверку – даже если показатели будут в пределах, вроде бы, нормы, последующее использование все же крайне нежелательно.

Но в том случае, когда никаких признаков нет, но подозрения из-за неработоспособности схемы падают именно на конденсатор, его следует проверить доступными способами. Для этого прежде всего они выпаивается их схемы.

Многие спрашивают, а возможна ли проверка конденсатора без выпаивания с платы? Да, некоторые способы или хитрости на этот счет имеются, но они возможны далеко не всегда, и зачастую не дают достоверной картины. Подробнее мы на этом остановимся чуть ниже. Но для качественной проверки, не имея в распоряжении специальных приборов, элемент все же придется демонтировать.

Проверка конденсатора с помощью  мультиметра

В распоряжении домашнего мастера – неспециалиста в области электроники, как правило, может иметься только обычный мультиметр. Но определенную диагностику и выбраковку вышедших из строя конденсаторов можно провести и с его помощью.

Проверка с помощью омметра

Чаще всего первым шагом производится проверка конденсатора на пробой или обрыв с помощью омметра. Такая «ревизия», по сути, является косвенной, но все же может показать явные неполадки, то есть провести выбраковку. Правда, есть нюансы, которые зависят и от типа конденсатора, и от его номинальной емкости.

Любой конденсатор не должен пропускать постоянный ток. То есть – обладать очень высоким сопротивлением. Возможный ток утечки может быть – это зависит от качества диэлектрического разделительного слоя между обкладками, но в идеале – он настолько мал, что может не учитываться.

То есть при замере сопротивления между выводами конденсатора должно получиться очень высокое значение. Для рабочих неполярных элементов оно лежит в пределах выше 2 МОм.

Значит, мультитестер должен быть переведен в режим работы омметра на максимальном диапазоне. У наиболее распространенных моделей – это как раз и составляет предел измерений в 2000 кОм = 2 МОм.

Мультиметр установлен в режим измерения сопротивления с пределом до 2000 кОм или 2 МОм

Перед проверкой любого конденсатора его следует «очистить» от возможного остаточного заряда. Для элементов небольшой емкости и с невысокими показателями напряжения это делается обычным перемыканием выводов с помощью отвертки, пинцета, щупа и т. п.

Разрядка конденсатора небольшой емкости простым перемыканием его контактов-выводов.

Для разрядки конденсаторов ёмкостью более 100 μF, и в особенности – с рабочими напряжениями свыше 50 вольт, перемыкать контакты следует через резистор сопротивлением порядка 5÷20 кОм и мощностью не менее 1 Вт. В противном случае можно получить довольно мощную искру, что небезопасно. Перемыкание с помощью резистора проводят в течение двух-трех секунд для полной разрядки конденсатора.

Если проверяется неполярный конденсатор, то как уже говорилось, его сопротивление должно быть не менее 2 MОм. Если прибор типа DT установлен на максимальный предел измерений в 2000 кОм, то на дисплее следует ожидать единицы в крайнем левом разряде, говорящей о том, что цепь, по сути, разомкнута, то есть измеряемое значение лежит выше максимальной установленной границы. У мультиметров другого типа может быть и иная индикация отсутствия проводимости – например, буквенные символы «OL».

В любом случае, если дисплей показывает или полное отсутствие проводимости, или очень высокий показатель сопротивления (более 2 МОм) то можно с уверенностью говорить, что пробой не выявлен, а ток утечки если и есть – то в допустимых пределах.

В распоряжении автора статьи – мультиметр ZT102, в котором реализовано автоматическое определение пределов измерений. то есть достаточно просто установить режим работы на омметр, а единицы измерения прибор определит и покажет самостоятельно. Попробуем проверить на пробой керамический конденсатор ёмкостью 4700 pF = 4.7 nF

Мультиметр устанавливается в режим измерения электрического сопротивления.

Подготовка к замеру – установлен нужны режим. На дисплее символы, обозначающие отсутствие проводимости между щупами прибора.Щупы-зажимы подключены к выводам конденсатора. На дисплее – ничего не изменилось.

После подключения конденсатора к щупам (полярность в данном случае не имеет никакого значения) на дисплее изменений не отмечено – все те же символы, говорящие об отсутствии проводимости.

Вывод – полного пробоя или недопустимо высокого тока утечки однозначно нет.

К сожалению, такая проверка не дает никакого вразумительного ответа, если ли обрыв на этом конденсаторе (обрыв характеризуется точно такими же показаниями дисплея). Просто ток, необходимый для зарядки столь невысокой емкости, настолько незначителен, а сама зарядка происходит так быстро, что мультитестер не успевает на это прореагировать изменением показаний.

Так что подобный метод на неполярных конденсаторах малой емкости, менее 1 μF, и с использованием приборов с невысокими пределами измерений, не дает однозначного ответа о полной исправности элемента. И для полноценной картины не обойтись без измерения емкости.

Теперь, для сравнения, посмотрим на проверку омметром неполярного конденсатора с более высоким показателем емкости – 1 μF.

Исходное положение – то же, но неполярный конденсатор уже с указанным номиналом мощности в 1 μF.Показания сопротивления на дисплее «стартуют» с сотен килоом, быстро пересекают рубеж мегаом и продолжают стремительно расти.Значения растут, показывая, что ток зарядки конденсатора стремительно снижается.Наконец, зарядка полностью окончена, и на дисплее – «разрыв цепи».

Вот в этом случае можно смело констатировать, что и пробой отсутствует (заряженный конденсатор не проводит ток), и обрыва точно нет, так как мы наблюдали за процессом зарядки.

Справедливости ради заметим следующее – у показанного мультиметра предел измерений электрического сопротивления ограничивается 60 мегаомами. Именно это обстоятельство, скорее всего, и позволило наблюдать процесс зарядки этого сравнительно небольшого по емкости конденсатора. Был бы предел в 2 МОм – скорее всего, весь этот замер уложился бы в доли секунды, и стал практически незаметным. Ну что ж – явный плюс приборам с расширенным диапазоном.

Теперь проверим омметром полярные электролитические конденсаторы. Принцип не меряется. Правда, при использовании мультиметров с выделенными диапазонами рекомендуется установить предел примерно в 200 кОм. Дело в том, что для многих подобных конденсаторов считается нормальным сопротивление утечки более 100 кОм, для некоторых, наиболее качественных, заявляемый допустимый предел – 1 МОм. Так что в большинстве случаев если будет достигнуто сопротивление в 200 кОм  —  можно судить об отсутствии пробоя, обрыва и пригодности такого конденсатора к работе. Впрочем, на всякий случай можно установить тот же предел в 2000 кОм и даже, если не жаль элементов питания мультитестера – попытаться  дождаться полной зарядки.

Попробуем поэкспериментировать с электролитическими конденсаторами разных номиналов емкости, применяя мультиметр ZT102, то есть с «плавающим» пределом измерений сопротивления.

Первым проверим конденсатор с номиналом 10 μF. Внешне на нем нет никаких признаков неисправностей.

Подготовка к измерениям – мультиметр переведен в режим омметра

То, что к выводам конденсатора в демонстрируемом примере припаяны проводки – никого не должно вводить в заблуждение. Если длина выводов позволяет проводить измерения напрямую щупами или зажимами-«крокодилами», то никакие удлинения не нужны. А в данном случае проводки припаяны только для того, чтобы освободить руки во время замера для фотографирования. При всех достоинствах этого мультитестера есть у него и недостаток – не предусмотрена отдельная контактная панель для проверки конденсаторов.

Безусловно, очень удобно, когда мультитестер имеет специальную колодку с гнёздами именно для проверки конденсаторов – можно не мучиться с проводами

Разный цвет припаянных проводков – чтобы не перепутать полярность, так как здесь это уже имеет значение. Черный измерительный провод (СОМ) мультитестера должен идти на «минус» конденсатора, красный, соответственно, на «плюс».

Подключаем щупы к конденсатору.

Показатели сопротивления неуклонно повышаются

Показатели на дисплее довольно быстро, буквально за секунду, пересекли рубеж в 1 мегаом и продолжают повышаться.

Достигнуто значение в 20 МОм – на этом решено остановиться.

Рост показателей сопротивления, в отличие от неполярных конденсаторов, не столь стремительный. При выходе на 20 мегаом решено проверку закончить – и без того понятно, что ни обрыва, ни пробоя, ни значимого тока утечки нет.

Вторым на очереди – конденсатор с номиналом 470 μF. Если приглядеться к нему, то явно видно начинающееся вздутие крышки.

Намечающееся вздутие верхней стенки корпуса уже говорит о предполагаемой непригодности конденсатора. Но просто для интереса и сравнения проведем проверку.

По идее – его и проверять-то не стоит, но все-таки посмотрим, в чем окажется выраженной его уже заметная внешне дефектность.

На первом этапе замера показатели сопротивления росли до определенного предела

Поначалу проверка шла «штатным образом» — сопротивление нарастало с сотен килоом до 5. 7 МОм. Но, в отличие от ранее проверяемых элементов, затем запустился обратный процесс – сопротивление стало неуклонно снижаться.

После достижения какого-то максимума сопротивление стало падать…

Это уже явно говорит о нарастании тока утечки. Как знать, может утечка лежит пока в допустимых пределах, но признак явно тревожный. Тем более что снижение сопротивления не останавливается – просто опыт прекращен, чтобы не садить впустую питание мультиметра.

Падение показателя сопротивления продолжается – просто замер решено закончить, так как картина и без того проясняется.

То есть вздутие конденсатора уже не прошло даром – дефект явно имеется. Дополнительно проверим этот элемент, когда перейдем к измерению емкостей.

Наконец, самый большой по емкости из взятых на проверку электролитический конденсатор – номинал в 2200 μF.

Первые показания сопротивления – около 50 кОм, но очень быстро повышаются.

Показания на дисплее стартовали с уровня примерно в 50 кОм, но стабильно и довольно быстро растут — происходит зарядка конденсатора, а емкость у него весьма значительная. Вскорости показания превышают 500 кОм, и в районе 600 кОм стабилизируются.

На этом уровне рост прекращается, и показания достаточно стабильные, с небольшими колебаниями в несколько килоом в одну и другую стороны.

Что ж, значение сопротивления достаточно велико и вполне входит в допустимые пределы для электролитического конденсатора столь высокой ёмкости. А стабильность показания на пике говорит и о стабильности тока разрядки, который также, по все видимости, не выходит за рамки дозволенного. Предварительный вывод: конденсатор в исправном состоянии – нет ни пробоя, ни обрыва, ни чрезмерного тока утечки.

Проверить конденсаторы измерением их сопротивления вполне можно и стрелочным (аналоговым) тестером. Кстати, там этот процесс выглядит даже более наглядно. При подключении тестируемого элемента стрелка обычно сначала отклоняется вправо, а затем начинает движение в сторону увеличения значения, то есть к левому краю, к «бесконечности».

При работе с аналоговым (стрелочным) прибором не забываем, что шкала сопротивления (в данном примере она верхняя, зеленого цвета) возрастает в не совсем привычном направлении – против часовой стрелки, справа налево.

В остальном же принцип проверки никак не меняется. А наглядность подобной «ревизии» конденсаторов нередко у некоторых мастеров делает именно такой способ даже более предпочитаемым.

Проверка конденсаторов функцией измерения емкости

Итак, косвенная проверка с помощью омметра способна в некоторых случаях сразу обнаружить явно непригодные к дальнейшему использованию конденсаторы. Например, результаты измерений указывают на явный пробой между укладками или чрезмерно низкие показатели сопротивления. Но часто картина остается неполной – элемент попадает «под подозрение», но «приговор» выносить вроде бы еще нет оснований, так как налицо только косвенные признаки неисправности.

Кстати, в подобных случаях иногда выручает «сравнительная экспертиза». То есть если имеется заведомо исправный конденсатор с точно таким же номиналом, можно провести сравнения полученных значений сопротивления с вызывающим сомнения элементом. По идее, при испрвности они должны быть очень близки между собой.

Но опять же, например, диагностировать обрыв на конденсаторе малой емкости – практически невозможно. Показатели омметра мгновенно уходят в «бесконечность», что свойственно и для отсутствия пробоя.

Специальный прибор для измерения емкости конденсаторов, требующий предварительной установки предела измерений.

Единственно действительным достоверным методом оценки в таких случаях видится замер емкости конденсатора. Для этого используются или специальные приборы для проверки конденсаторов (некоторые из них помимо емкости позволяют оценить и ESR), или мультиметры, в которых имеется такая функция.

В моем мультиметре ZT102 такая функция реализована, причем, тоже с «плавающей запятой», то есть не требующая установки единиц измерения и диапазонов – все это происходит автоматически. Поэтому попробуем проверить все те конденсаторы, которые ранее тестировались омметром – теперь уже на показатели ёмкости.

Начнем опять с неполярных конденсаторов.

Если вспомнить проверку омметром, то самый маленьким из тестируемых был керамический конденсатор 472. Что означает, согласно принятой маркировке, 47 pF × 10², то есть 4700 pF или 4,7 nF. Проверка сопротивления дала положительный результат, но не исключила возможности обрыва. Посмотрим, что покажет замер емкости.

Мультиметр переводится в соответствующий режим. На этом приборе, кстати, режим измерения емкости находится на том же положении переключателя, что и режим омметра, и выбирается кнопкой «SELECT».

Проверяется обычный керамический конденсатор, так что полярность роли не играет.

Проверка емкости маленького керамического конденсатора.

Значение выведено очень быстро (сказывается малая емкость), прибор сам определил и вывел на дисплей единицы измерения – нанофарады, и показал значение — 4.59 nF. Показания довольно стабильные, с очень незначительными колебаниями вверх-вниз. Не в «самое яблочко», но результат очень близок к указанному номиналу.

Можно констатировать что этот конденсатор – абсолютно «здоровый» и пригоден для дальнейшего использования.

Вторым по очереди стоит конденсатор емкостью в 1 μF. Как мы помним, его проверка омметром дала основания исключить и пробой, и обрыв. Остается выяснить его реальную емкость. Подключаем щупы к выводам конденсатора (без соблюдения полярности).

Проверка емкости конденсатора номиналом в 1 μF

На дисплее, после небольшой паузы – 983,5 nF, что равно 0,98 μF. Опять – показатель емкости не идеально точен с номиналом, но очень близок к нему. И что важно – стабилен.

Конденсатор следует признать полностью исправным

Далее – тройка полярных электролитических конденсаторов. Проверяем их в порядке по нарастанию емкости. Здесь, понятно, уже требуется соблюдение полярности подключения щупов.

Проверяется емкость конденсатора с номиналом 10 μF – получены четкие и стабильные показатели.

Конденсатор номиналом 10 μF дал при проверке значение 10,2 μF практически без колебаний в ту или иную сторону. Вопросов к нему – никаких нет.

Следующий – тот самый проблемный конденсатор номиналом 470 μF с признаками вздутия корпуса и повышенного тока разряда. Что покажет измерение емкости?

Так и есть – имеются явные дефекты и в этом вопросе:

Начальные показания после подключения «проблемного» конденсатора к щупам мультиметра.

Даже первичные показания прибора сразу дают понять, что измеренная емкость практически на четверть ниже номинала – всего 329 μF. Но и это еще не всё…

Показания дисплея уже спустя несколько секунд – значение емкости падает…

Показатель на дисплее нестабилен – имеется тенденция к снижению емкости, причем  довольно быстрому. Уже через несколько секунд значение упало до 309 μF и продолжает уменьшаться. Дальнейший замер – совершенно излишен, так как картина неисправности конденсатора вырисовалась в полной ясности.

Это лишнее подтверждение тому, что попытки продолжать использовать электролитические конденсаторы с признаками вздутия корпуса – совершенно бесплодны. Да и на их тестирование, повторимся, даже жалко тратить время – такие детали уже отслужили свое и подлежат безусловной утилизации. Иначе – жди или некорректной работы схемы, или ее полного выхода из строя, или, что еще «веселее» — «фейерверка» со взрывом корпуса.

Остался последний конденсатор – емкостью 2200 μF. Внешне и по результатам проверки омметром он не вызывал беспокойства.

Проверка показывает, что емкость даже несколько выше номинальной

Проведенный замер показал, что с конденсатором – все в порядке, если не считать несколько завышенной его емкости. На дисплее высветилось 2,489 mF = 2489 μF – вполне укладывается в допустимые рамки (обычно допустимые отклонения для емкости оцениваются в ± 15%). Но зато измеренное значение стабильно, без тенденции к увеличению или снижению.

Вывод — конденсатор во вполне пригодном к дальнейшему использованию состоянии.

Позволим себе маленькую ремарку.

Показанная последовательность проверки, то есть сначала омметром, а затем измерением емкости, вовсе не является обязательной. Измерением сопротивления просто демонстрировался способ, которым во многих случаях можно выявить явно неисправный элемент, если отсутствует прибор контроля емкости. Но, как мы помним, достоверность такой проверки бывает и неполной.

То есть в том случае, когда имеется возможность замера емкости, начинать следует прямо с него. Он однозначно покажет работоспособность конденсатора по всем пунктам – в случае обрыва, пробоя или большой утечки емкость или просто не поддастся измерению, или ее показатель будет очень далек от номинала, или, как было показано в рассмотренном примере, индицируемое значение будет нестабильным, с тенденцией к быстрому снижению.

Косвенная проверка конденсатора вольтметром

Эта проверка со вполне допустимой долей достоверности может показать, насколько хорошо конденсатор накапливает и удерживает полученный заряд. Правда, она возможна при довольно высоких показателях как емкости, так и напряжения, иначе используемый «визуальный подход» к оценке работы элемента может стать просто незаметным для восприятия.

Суть метода заключается в том, что вначале конденсатор следует зарядить от какого-то внешнего источника питания. Причем, рекомендуется, чтобы напряжение этого источника было примерно вдвое ниже указанного на конденсаторе предела. Скажем, для конденсатора, на котором указан предел в 25 вольт вполне подойдет блок питания на 12 вольт.

Обычно для зарядки хватает нескольких секунд. Кстати, пока идет зарядка будет нелишним для контроля проверить на клеммах источника питания, какое же точно напряжение подается на обкладки конденсатора.

После выполнения зарядки источник питания отключается. Мультитестер должен быть переведен в режим измерения постоянного напряжения в предполагаемом диапазоне (например, 20 вольт). Буквально через несколько секунд касаются щупами выводов конденсатора. Здесь важно проявить внимательность, так как главную ценность будет представлять показание вольтметра, снятое именно в момент первого касания – это значение должно быть максимально близким с напряжением, подаваемым при зарядке. Затем, естественно, по мере разрядки конденсатора через мультиметр, оно будет падать. Скорость его разрядки зависит от показателя емкости и от значения эквивалентного последовательного сопротивления (ЭПС).

Если первичное показание слишком далеко от «эталона» — это может говорить о слишком большом токе утечки и малопригодности конденсатора к нормальной работе.

Впрочем, такой способ все же таит в себе и субъективную составляющую, зависящую от личного восприятия быстро изменяющихся показаний. То есть говорить о его полной объективности – сложно. Хотя явный дефект он, пожалуй, выявить поможет. А в сомнительных случаях все же лучше изыскать возможность полноценной проверки емкости конденсатора.

«Народный» способ – проверка конденсатора коротким замыканием

К такому методу зачастую прибегают для «проверки» мощных, в том числе – пусковых конденсаторов, работающих с напряжениями свыше 200 вольт.

Смысл заключается в зарядке конденсатора, часто – просто от сети переменного напряжения 220 вольт. А затем — его разрядкой путем короткого замыкания выводов отвёрткой или отрезком изолированного провода. При замыкании возникает мощная искра, говорящая о том, что конденсатор способен накапливать нешуточный заряд.

Замыкание выводов конденсатора большой емкости сопровождается мощным искровым разрядом.

Сразу будет сделана оговорка – не зря слово «проверка» выше было взято в кавычки. Автор этой публикации ни в коем случае не рекомендует выполнять подобное тестирование, особенно тем людям, кто делает только первые шаги на поприще электротехники.

  • Во-первых, это крайне небезопасно. При малейшей неосторожности можно получить очень чувствительный, а иногда – и весьма опасный для здоровья электрический удар. Особую опасность представляет случайное замыкание контактов заряженного конденсатора обеими руками. Траектория тока «из руки в руку» проходит через наиболее уязвимую область тела человека, через сердце, что порой заканчивается очень печально.
  • А во-вторых, объективной картины работоспособности конденсатора таким путем все равно получить невозможно. Признайтесь, сможете ли вы отличить искру, вызванную разницей потенциалов в 200 вольт, от искры, для которой потребовалось всего 100 вольт? Вряд ли. Так что говорить о полной пригодности, о полноценной емкости и допустимой утечке – все же преждевременно. Так стоит ли «огород городить»? Единственное, на что способна такая проверка — выявить совершенно неисправный конденсатор.

Можно ли проверить конденсатор, не выпаивая его с платы?

Для полноценной проверки конденсатора, уже стоящего в схеме, его все же рекомендуется выпаять из платы. Дело в том, что другие элементы схемы способны оказывать влияние на измеряемые показания, и картина получатся явно недостоверной.

Понятно, что лишний раз заниматься выпаиванием конденсатора никому не хочется, что и вызывает вынесенный в заголовок подраздела вопрос.

Однозначного ответа нет. Если точнее, то существует несколько методов, которые могут дать определенный эффект, но не всегда они просты и оправданы.

  • Некоторые современные приборы, предназначенные именно для тестирования конденсаторов, сразу разрабатывались с учетом возможности проверок без проведения демонтажа элементов схемы. Если есть возможность воспользоваться подобным тестером – то это существенно упрощает решение вопроса.
Удобный компактный прибор, позволяющий снимать показания емкости конденсаторов непосредственно на монтажной плате.

Поднаторевшие в радиоэлектронике мастера зачастую создают некое подобие таких приборов и самостоятельно. Причем, охотно делятся и разработанными схемами, и опытом их эксплуатации. Например, ниже показана одна из таких схем с кратким ее описанием – возможно, кто-то возьмет себе на заметку.

Схема и описание самодельного прибора для «ревизии» конденсаторов без их выпаивания из платы.

Если ничего из выше перечисленного нет, придётся обходиться другими мерами.

  • Конденсатор можно выпаять частично, то есть одним выводом. После этого – провести проверку мультиметром. Правда, получается это  далеко не всегда, так как в большинстве случаев эти детали изначально впаиваются с «низкой посадкой», а с электролитическими конденсаторами такой подход и вовсе невозможен.
  • Одним из путей, когда выпаивание видится трудноосуществимым, может стать «изоляция» конденсатора на плате подрезкой дорожек, идущих к соседним элементам схемы.
Дорожки аккуратно перерезаются скальпелем, чтобы оставить конденсатор «в одиночестве». Затем, после проверки, важно не забыть восстановить их целостность.

Метод, конечно, «варварский», особенно в том случае, если идет поиск неисправного элемента – эдак можно и всю плату «перепахать». Кроме того, если плата – не с односторонней печатью, то к такому способу и вовсе не стоит прибегать.

  • Возможно, если выпаивание конденсатора сопряжено с определенными сложностями, проще «поднять ножки» расположенных с ним в последовательной цепи элементов, например, резисторов. Так будет устранено их влияние на тестируемый элемент.
  • Наконец, есть еще один способ убедиться в необходимости замены неработающего конденсатора. Заключается он в том, что непосредственно к выводам детали, работоспособность которой вызывает сомнения, параллельно припаивается новый конденсатор точно такого же номинала, но заранее проверенный и гарантированно рабочий. Естественно, если это полярный конденсатор, то с соблюдением правильного расположения «плюса» и «минуса».

После этого проводится тестовый запуск схемы (устройства). Если заметны улучшения, или работоспособность полностью восстановлена – можно провести выпаивание старого конденсатора и монтаж нового. Если же никаких позитивных изменений не последовало – следует продолжить поиск неисправности в ином месте, так как вряд ли именно исследуемый конденсатор послужил причиной неполадок.

Завершим сегодняшнюю публикацию демонстрацией видео, в котором также речь идет о неисправностях конденсаторов и возможных способах их выявления.

Видео: Какие неисправности случаются в конденсаторах, и как их выявить.

Как проверить мультиметром конденсатор самому

На данный момент практически каждый человек может столкнуться с поломкой конденсатора. Чтобы определить его исправность вам не потребуется изучать основы электротехники. Достаточно будет просто знать, как проверить мультиметром конденсатор.

Благодаря этому можно восстановить работоспособность микроволновки или холодильника. Перед тем, как выполнить ремонт необходимо определить, какая именно деталь неисправна. Для проверки конденсатора отлично подойдет цифровой мультиметр.

Как измерить емкость

Во время проверки вам необходимо помнить, что не все неисправности будут поддаваться тестированию в режиме омметра. Если мультиметр будет показывать бесконечно большое сопротивление полярного элемента, тогда это будет считаться признаком его неисправности.

Проверить потерю номинальной емкости в режиме омметра у вас не получится. Чтобы измерить эту характеристику необходимо использовать цифровой мультиметр. Это устройство поможет проводить тестирование в пределах от 20 нф до 200 мкф.

Благодаря мультиметрам с подобной функцией появится возможность тестировать любые конденсаторы, даже электролитические. Если вы желаете выполнить проверку электролитического конденсатора, тогда необходимо соблюдать полярность.

На фото выше вы видите, что для проверки емкости конденсатора необходимо вставить выводи детали в гнезда Сх, а ручку необходимо установить в положение необходимого диапазона измерений. После этого все параметры емкости будут отображаться на дисплее.

Основные неисправности и причины их возникновения

Неважно, какой тип конденсатора вы используете. Любой конденсатор может выйти из строя в связи со следующими проблемами:

  1. Снижение номинальной емкости, которая будет происходить в процессе высыхания.
  2. Ток утечки будет превышать необходимо значение.
  3. Возрастание активных потерь цепи.
  4. Возникло короткое замыкание обкладок.
  5. Потеря контакта, которая произошла между обкладкой и выводом детали.

Все неисправности, которые мы описали выше чаще всего могут возникнуть в результате нарушения температурного режима или превышения порога допустимого напряжения. Специалисты уверяют, что благодаря понижению рабочей температуры можно значительно продлить срок службы радиоэлемента.

На практике чаще всего неисправность конденсатора может быть вызвана коротким замыканием. Теперь мы решили подробно рассказать о том, как выполнить диагностику конденсатора.

Диагностика неисправностей

Выявить пробой конденсатора также можно благодаря визуальному осмотру. Если произошел пробой, тогда на конденсаторе могут образоваться трещины или вздутие. На фотографии ниже вы можете увидеть признаки пробоя конденсатора.

В большинстве случаев обнаружить пробой во время визуального осмотра не всегда возможно. Если внешний вид детали действительно нормальный, тогда возможно проблема произошла из-за внутреннего короткого замыкания. Перед тем как начать проверять мультиметром неполярный пленочный, керамический, электролитический, smd или sbb конденсатор необходимо будет снять его с платы. Отпаивать конденсатор не всегда обязательно. В некоторых случаях можно проверить сопротивление цепи прямо на плате. Но вам необходимо помнить, что для этого потребуется карта сопротивлений.

Проведение диагностики устройств неполярного типа

Для проверки устройства с помощью мультиметра вам не потребуется замерять емкость конденсатора неполярного типа. В этом случае будет достаточно просто измерить его сопротивление. Оно в обязательном порядке должно быть бесконечно большим. Если произошел пробой, тогда мультиметр покажет незначительную величину. Для тестирования, вам потребуется выполнить следующий алгоритм действий:

  1. Следует выставить максимальный режим измерений в режиме омметра.
  2. Щупами прибора, вам потребуется прикоснуться к выводам радиодетали.
  3. Если на табло вы увидите цифру «1», тогда это укажет на то, что сопротивление будет больше 2 мегаом. Если мультиметр покажет другую величину, тогда в этом случае произошло короткое замыкание.

Важно знать! Во время проведения измерений помните, что нельзя держать щупы прибора за неизолирование места. В этом случае показания могут быть просто недостоверные.

При необходимости вести тестирование вы также можете в режиме проверки диодов. Если в этом случае будет присутствовать пробой, тогда мультиметр издаст характерный сигнал. У нас вы также можете воспользоваться калькулятором для расчета запасаемой энергии в конденсаторе.

Диагностика полярных конденсаторов

Проверять конденсаторы полярного типа необходимо подобным образом. Единственной особенностью считается то, что порог измерения должен быть больше 100 ком. Перед проведением диагностики вам потребуется разрядить радиодеталь. Для этого можете просто соединить выводы. Если вы используете высоковольтный конденсатор, тогда его необходимо «закорачивать» через нагрузку.

Если вы не уберете заряд, тогда можете испортить мультиметр. Кроме этого, следует помнить о том, что, если вы дотронетесь одним из выводов до тела, тогда можете провести разряд через себя. Если во время разрядки вы увидите искры, тогда это будет говорить о том, что устройство исправно.

Для проверки мультиметром конденсатора необходимо подсоединить щупы. В результате этого электрический ток, который поступает с прибора будет накапливаться в тестируемой детали. Если мультиметр будет показывать увеличение сопротивления, тогда это говорит об исправности. Наиболее детально этот процесс можно будет изучить в аналоговых измерительных приборах.

Метод проверки в режиме омметра считается косвенным. Для получения более точно оценки необходимо воспользоваться цифровым мультиметром. Для проведения измерения вы можете использовать мультиметр DT890B+.

Ремонт бытовых приборов

Если конденсаторы выходят из строя, тогда соответственно и бытовая техника постепенно перестает функционировать. Наши советы помогут просто определить исправность конденсатора. После проведения анализа необходимо заменить конденсатор и техника вновь заработает.

Перед тем, как приступать к ремонту бытовых приборов необходимо убедиться в том, что они отключены от электропитания. Теперь вы знаете как проверить конденсатор мультиметром своими руками. Надеемся, что эта информация была полезной и интересной.

Читайте также: как пользоваться мультиметром.

Как проверить конденсатор генератора мультиметром

Как проверить конденсатор мультиметром

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.
Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Как проверить конденсатор мультиметром: инструкция и рекомендации

Самая распространенная причина поломки радиотехники — это неисправность конденсаторов, встроенных в плату устройства. В процессе ремонта важно определить работоспособность каждого из них и выяснить какой именно элемент вышел из строя. Чтобы точно и быстро определить неисправный элемент, важно знать, как прозвонить конденсатор мультиметром не выпаивая его и насколько это правильно. Стандартный метод проверки под силу не только профессионалам, но и рядовым радиолюбителям. Поэтому даже в домашних условиях можно самостоятельно прозвонить устройство.

Разновидности конденсаторов и способы их проверки

Если вы решили разобраться в том, как мультиметром проверить конденсатор, то необходимо выяснить какие разновидности этих устройств на сегодняшний день известны. Они могут быть как полярными, так и неполярными. Основным и очевидным их отличием является наличие полярности у полярных конденсаторов.

Проверка данных элементов выполняется по следующему принципу: «+» к «+», «—» к «—», иначе, при несоблюдении условий, элементы могут поломаться и даже замкнуть, что приведет к взрыву.

Модели полярного типа относятся к электролитическим. Если устройства были изготовлены еще в советский период, то в случае их взрыва может произойти попадание электролита на поверхность кожи. Современные же изделия оснащены специальным сечением на поверхности, которое в случае разрыва направляет взрывную струю по определенному направлению, исключая разбрызгивание проводящего вещества в различные стороны.

Прежде всего способ проверки зависит от того, какой характер имеет неисправность. Прозвонить конденсаторы мультиметром можно посредством:

  • измерения сопротивлений в его диэлектрике;
  • замера его емкости.

Что делать в случае пробоя

Самая распространенная проблема, которая возникает с конденсаторами – это появление пробоя на диэлектрике. Диэлектрики являются своеобразным слоем изоляционного материала с большим сопротивлением, расположенного между одним и вторым проводником, препятствующего протеканию тока между ними.

У исправных элементов допускается небольшое просачивание тока сквозь изоляционное покрытие, именуемое как «ток утечки». Если в диэлектрике возникает пробой, то происходит резкое снижение сопротивления, и он становится обыкновенным проводником. Пробой может возникнуть в результате резкого перепада напряжения в электросети, от которой работает техника. Характерный признак пробоя: вздувшийся корпус устройства, потемневшая поверхность и черные пятна на нем. Перед тем, как проверить конденсаторы мультиметром на факт исправности, стоит осмотреть его визуальным методом, чтобы определить возможные внешние дефекты.

Как прозвонить мультиметром неполярный конденсатор

Чтобы проверить сопротивление диэлектрика с помощью мультиметра, необходимо перевести устройство в режим омметра. Для изготовления диэлектриков в неполярных моделях могут использоваться различные материалы и формы: стекло, керамика, бумага, воздушная прослойка. В результате этого можно достичь крайне высокого сопротивления, которое в исправных устройствах будет отображаться в виде бесконечной величины на мультиметре. При наличии электрических пробоев, сопротивление будет находится на уровне нескольких десятков Ом.

До того момента, как прозванивать конденсаторы мультиметром, на приборе нужно выбрать специальный режим, который предусматривает максимально возможное измерение уровня сопротивления.

Для этого достаточно подвести к каждому выводу щуп тестера и посмотреть на дисплее прибора следующее:

  1. Если элемент исправен, то на экране отобразится единица, свидетельствующая о том, что сопротивление выше, нежели установленный максимум.
  2. Если же высвечивается определенный показатель, который ниже измерительного максимума, то это говорит про неисправность проверяемых устройств.

При этом, не стоит забывать про технику безопасности, чтобы случайно не взяться за щуп устройства и вывод конденсатора, поскольку меньшее сопротивление электрического тока у тела спровоцирует прохождение тока через него.

Как прозвонить полярный конденсатор тестером

В сравнении с неполярным типом в полярном сопротивление у диэлектриков в разы ниже, в связи с этим максимальное значение сопротивления на мультиметре должно быть выставлено соответствующем диапазоне. У большинства устройств сопротивление составляет около 100 кОм, у более мощных до 1 мОм. Прежде чем, померить конденсатор мультиметром, нужно замкнуть вывод накопителя, таким образом, чтобы он полностью разрядился.

Далее нужно установить соответствующие пределы измерений, и подключить щуп тестера к конденсатору, с учетом соблюдения полярности. У электролитических конденсаторов имеется достаточно большая емкость, в связи с чем в процессе их подключения сразу же начинается зарядка. На протяжении периода пока длится зарядка, значение сопротивления будет увеличиваться в прямой пропорции, что будет указываться на дисплее устройства.

Конденсаторы считаются исправными, в том случае если показатель сопротивления превышает значение в 100 кОм.

Прозвонка конденсатора мультиметром (аналоговые измерители)

Подобная процедура может быть проделана с помощью аналоговых (стрелочных) измерителей. Величина емкости электролитических конденсаторов определяется тем, с какой скоростью двигается стрелка на приборе в сторону максимального значения. В случае медленного движения стрелки, можно утверждать о большей продолжительности заряда конденсатора, что свидетельствует о его большей емкости. Если же диапазон емкости находится в диапазоне от 1 до 100 микрофарада (мкФ), то достижение стрелкой правой части на циферблате происходит моментально. Если емкость составляет 1000 мкФ, то достижение максимального значения стрелкой происходит за несколько секунд.

Проверка емкости накопителя

Среди большинства специалистов проверка конденсаторов осуществляется омметром, однако более надежный способ проверить пригодность изделия — это измерить его емкость. Из-за повышенной утечки в электролитических конденсаторах возникает частичная потеря емкости, в связи с чем значение ее реальной величины гораздо ниже нежели заявленной на корпусе устройства. При измерении сопротивления на конденсаторе достаточно проблематично найти проявление данного дефекта.

Чтобы узнать это наверняка необходимо использование измерителя емкости. Важно учитывать, что не все мультиметры имеют данную функцию, поэтому заранее следует удостовериться, что устройство может выполнить такую работу.

Перед такой проверкой электролитического конденсатора, элемент должен быть полностью разряжен. Это обусловлено тем, что заряженные конденсаторы могут оказать негативное воздействие на тестер и вывести его из строя. В частности это относится к полярным накопителям, у которых имеется высокое рабочее напряжение и большая емкость. Зачастую установка подобных конденсаторов осуществляется в импульсные блоки в роли фильтрующего накопителя.

Как разрядить конденсатор

Чтобы разрядить низковольтные конденсаторы необходимо лишь закоротить каждый вывод. Однако для высоковольтных и тех, которые имеют большую емкость, к выводу следует подключать 5-10-килоомные резисторы. Резисторы необходимы, чтобы препятствовать возникновению искр при замыкании.

Выявление обрыва конденсаторов

Неисправность в виде обрыва случается достаточно редко. Такое нарушение обусловлено механическими повреждениями на накопителе. После подобной поломки у устройства в полной мере теряется накопительная функция, его емкость становится равна нулю. Целостный элемент после повреждения оказывается в виде двух проводников, которые изолированы друг от друга. Выявить такие повреждения конструкции посредством омметра не представляется возможным.

Своеобразные симптомы обрыва у полярного электролитического конденсатора проявляются в том, что в случае изменения сопротивления никакие изменения на экране прибора не проявляются. Что касается неполярных типов, стоит отметить что он имеет малую емкость и обладает высоким сопротивлением, поэтому проверить его также невозможно. Единственным правильным выходом является возможность измерения емкости.

Выявление потери емкости конденсатора

Для определения потери емкости в первую очередь необходимо выполнить замер емкости. Для этого на тестере нужно выставить необходимый предел измеряемых емкостей, разрядить проверяемые устройства, подключить щуп от измерителя к соответствующему гнезду на нем, при соблюдении правильной полярности, и в итоге, прикоснуться щупом к выводу конденсаторов. Естественно, что придерживаясь последовательности действий, понять, как прозвонить конденсатор мультиметром на кондиционере или любом другом бытовом приборе не составит труда.

Как измерить напряжение на конденсаторе

Кроме того, чтобы определить исправен ли элемент, необходимо выполнить проверку соответствия его реального напряжения к номинальному. Чтобы это сделать следует использовать тестер в режиме вольтметра, а также необходимо наличие источника питания для зарядки устройств. Значение напряжения должно быть меньшим нежели, то под которое рассчитаны накопители. Чтобы измерить вам понадобится подсоединить щуп к выводу и чуть подождать, до момента полной зарядки. При переводе прибора в режим вольтметра, необходимо выполнить проверку выдаваемого накопителем напряжения. Величина, которая появится на дисплее устройства на начальном этапе замера, должна соответствовать заявленным показателям.

Следует учитывать, что в процессе проверки у накопителя теряется заряд и, очевидно, что напряжение будет быстро снижаться, именно поэтому важна начальная величина замера.

Существует более доступный способ проверить конденсаторы, но он подходит только для изделий, имеющих гораздо большую емкость. После полноценной зарядки накопителя, нужно взять простую отвертку с изолированной ручкой, поднести ее металлической частью к выводам и замкнуть их. Если же после проделанных манипуляций произошло возникновение искры, то это свидетельствует о работоспособности элемента. Если же она отсутствовала или была слабой, то это говорит о невозможности устройства держать заряд.

Вывод

Среди многих начинающих мастеров-радиолюбителей бытует мнение, что можно прозвонить конденсатор мультиметром не выпаивая его, но мало кто знает, что такие измерения имеют очень большую погрешность. Единственным наиболее правильным методом проверки элемента является визуальная оценка его состояния, на наличие потемнения, взбухания и других дефектов.

Примечательно, что поломка такого характера зачастую происходит в стиральных машинах, телевизорах, микроволновых печах и других видах бытовой техники. В связи с этим, столкнувшись с подобной проблемой вы самостоятельно сможете прозвонить конденсаторы мультиметром, благодаря описанной выше инструкции.

0 0 голос

Рейтинг статьи

приборы и порядок действий > Флэтора

Технические характеристики и расшифровка ВВГ 2-кабелей

Маркировка установочных проводов и кабелей согласно Г О С Ту. Конструкция В В Г 2: требования предъявляемые к изоляции провода. Технические характеристики кабелей В В Г-2. Конструктивные характеристики проводов В В Г2.

08 03 2021 19:54:10

Определение электрического тока

Что называют электрическим током. В каких единицах измеряется сила или величина электрического тока. Что представляет собой электрический ток. Проводники и полупроводники. Законы для электротока. Характеристики электроцепи….

04 03 2021 7:40:42

Добро пожаловать!

Сайт Amperof.ru это ваш помощник по электротехнике, электрооборудованию и электроснабжению! Портал для любителей нашей тематики….

16 02 2021 15:42:18

Отопление электрическими конвекторами: энергосберегающие модели

Принцип работы электрического конвектора. Электрический конвектор: устройство и детали конструкции. Нагреватели игольчатые и трубчатого и монолитного типа: преимущества и недостатки. Выбор типа нагревателя (электроконвектора) и места для установки….

14 02 2021 19:56:26

Восстановление аккумулятора: последствия переплюсовки

Конструкция и принцип работы свинцово-кислотного автомобильного аккумулятора. Что такое переполюсовка А К Б. Причины естественной переполюсовки. Чем опасна переполюсовка при прикуривании. Порядок действий при переполюсовке аккумулятора….

09 02 2021 13:30:30

Примеры магнитной (диамагнитной) левитации, диамагнетизм

Определение магнитной (диамагнитной) левитации. Магнитная левитация: эксперименты в домашних условиях. Как сделать левитирующий магнит своими руками. Применение магнитов в подшипниках. Как используют магнитную левитацию в ветрогенераторах….

15 01 2021 20:39:26

О требованиях безопасности при работах с электроинструментом

Ручной и станочный электроинструмент. Особенности эксплуатации ручного электроинструмента. Факторы опасности при использовании ручных Э И. Техника безопасности при пользовании ручными электроинструментами. Требования безопасности при работе с электроинструментом….

14 01 2021 17:41:48

Как паять алюминий в домашних условиях: флюс и припой для пайки

Сложности пайки и лужения алюминия в домашних условиях из-за характерного металлического налета. Виды высокотемпературного припоя и флюсовая компонента для спаивания алюминиевой проводки. Пайка алюминиевых соединений газовой горелкой….

10 01 2021 19:27:45

Определение постоянного и переменного электрического тока

Понятие о постоянном и переменном токе. Сравнительные характеристики постоянного и переменного токов. Постоянный и переменный ток: различия при транспортировке. Достоинства и недостатки переменных и постоянных электротоков….

09 01 2021 10:13:51

Индукционный паяльник своими руками

Что такое индукционная пайка. Принцип работы индукционной паяльной станции. Принцип работы нагревательного элемента. Изготовление индукционного паяльника своими руками в домашних условиях. Выбор материала для изготовления жала индукционной паяльной станции….

06 01 2021 13:50:45

Определяем прямую и обратную полярности аккумуляторов

Разница между прямой и обратной полярностью. Что будет, если перепутать полярность аккумулятора? Определение полярности А К Б без маркировки. Рекомендации по определению и обслуживанию аккумуляторов в зависимости от полярностей….

30 12 2020 0:20:50

Зарядное устройство для аккумулятора 18650

Аккумуляторная батарея 18650: преимущества и недостатки, маркировка аккумулятора. Определение эффекта памяти аккумуляторных батарей. Порядок заряда А К Б-18650. Схемы зарядных устройств для аккумуляторов типа 18650….

25 12 2020 2:20:49

Расшифровка осциллограммы: измерение осциллографом

Особенности применения цифрового аппарата осциллографа и общие принципы функционирования. Расшифровка осциллограммы. Порядок подключения осциллографов. Возможности двухканального прибора. Определение угла сдвига фаз на осциллограмме….

17 12 2020 10:34:36

Физическая формула расчета эквивалентного сопротивления в цепи

Определение эквивалентного сопротивления. Разница в методике определения эквивалентного сопротивления в цепях с последовательным и параллельным соединением элементов. Расчёт при смешанном соединении устройств. Физические формулы, примеры вычислений….

25 11 2020 0:44:19

Все о магнитных пускателях или контакторах серии ПМЛ

История создания и назначение магнитного пускателя П М Л. Конструкция прибора и расшифровка цифробуквенного обозначения контакторов. Монтаж пускателей: крепление на DIN-рейке или крепление болтами. Подключение пускателя- П М Л….

18 11 2020 18:47:57

Электроснабжение кухни — советы экспертов

Современная кухня это основной потребитель электроэнергии в квартире, чтобы избежать проблем с электропроводкой нужно правильно произвести её комплектацию….

14 11 2020 7:41:39

Каким прибором измерить силы удара, тяги и вращения

Прибор для измерения силы: динамометр. Измерение сил в системе С И. Принцип действия и история изобретения динамометра. механические (рычажные или пружинные), электрические и гидравлические динамометры….

30 10 2020 17:26:18

Душ с подсветкой: классификация, выбор

Данная подсветка душа рассматривается многими людьми как вещь совершенно ненужная, но помимо эстетичного вида она имеет ещё определённую полезность….

26 10 2020 10:31:14

Солнечная батарея: подключение внешних аккумуляторов

Особенности подключения аккумуляторов к солнечным батареям. Как рассчитать основные параметры А К Б для солнечных батарей. Основные виды аккумуляторных батарей для гелиосистем. Гелиосистема с AGM-накопителями….

20 10 2020 1:42:39

⚡️Как проверить конденсатор | radiochipi.ru

На чтение 5 мин. Опубликовано Обновлено

Как показывает практика ремонта за последние годы, наибольшее число отказов аппаратуры происходит по вине электролитических конденсаторов. При этом наблюдается снижение числа отказов по вине других компонентов.

Здесь будут перечислены основные виды неисправностей конденсаторов, и способы их выявления. Считается, что основными видами неисправностей конденсаторов являются пробой и обрыв, на самом деле их больше.

Обрыв электролитического конденсатора. Снижение емкости. Обрыв характеризуется отсутствием емкости. Если номинальная емкость алюминиевых электролитических конденсаторов (та, которая должна быть) ниже 20 мкФ, то единственным способом проверки будет измерение емкости. На этот случай желательно иметь мультиметр с функцией измерения емкости. Обычно такие мультиметры способны измерять емкость до 20 мкФ. Пример мультиметра с измерением емкости из разряда «бюджетной цены» DT9206A, но есть и масса других.

Здесь все ясно, измеряем емкость, прибором и делаем выводы: Если емкости нет конденсатор неисправен, только выбросить. Если емкость понижена конденсатор неисправен, и использовать его можно,но не желательно, потому что емкость может и еще снизиться. Проверить наличие емкости электролитического конденсатора с номинальной емкостью более 20 мкФ в принципе можно с помощью любого мультиметра, на режиме измерения сопротивления. Выбираем предел измерения «200 кОм», сначала замыкаем выводы конденсатора чтобы снять возможно имеющийся в нем заряд, затем размыкаем выводы и подключаем к ним щупы мультиметра.

На дисплее появится некоторая величина сопротивления, которая будет расти тем быстрее, чем меньше емкость конденсатора, и через некоторое время достигнет «бесконечности». Это происходит потому что, в процессе зарядки емкости конденсатора ток через конденсатор снижается, а сопротивление, которое мультиметр определяет по функции обратной току, соответственно, растет. У полностью заряженного конденсатора сопротивление будет стремиться к бесконечности. Если все именно так и происходит, значит, емкость у конденсатора имеется.Если же сразу «бесконечность» увы, у конденсатора обрыв, и его можно только выкинуть.

Измерить емкость электролитического конденсатора при помощи омметра в принципе то же можно. Но весьма необычным способом. Кроме мультиметра для этого потребуется секундомер, лист бумаги, карандаш и большая кучка заведомо исправных конденсаторов разных емкостей.Нужно расположить эти конденсаторы в порядке возрастания емкости и измеряя их сопротивление омметром, как написано выше, замерять секундомером сколько времени у каждого из них уходит от начала измерения до «бесконечности» сопротивления. Затем, эти данные записать в виде таблицы.

При этом, не забыв указать на каком пределе измерения сопротивления данные были получены.
Теперь, чтобы определить емкость электролитического конденсатора, нужно измеряя его сопротивление мультиметром, определить секундомером сколько уйдет времени на достижение «бесконечности». А затем по этой таблице определить примерно емкость. Не забывайте перед каждым измерением разряжать конденсатор, временно замыкая его выводы. Данный способ годится только для электролитических конденсаторов номинальной емкостью более 20 мкФ. У конденсаторов меньшей емкости процесс нарастания сопротивления до «бесконечности» будет происходить слишком быстро, вы его просто не заметите.

Пробой электролитического конденсатора. Практически, пробой это замыкание внутри конденсатора. Классический пробой легко определяется омметром, потому что прибор либо показывает ноль сопротивления, либо некоторое небольшое сопротивление, которое не увеличивается или немного увеличивается, но не достигает «бесконечности». Пробой можно определить и без приборов по внешнему виду конденсатора. Дело в том, что при пробое электролитического конденсатора внутри него электролит вскипает и выделяется газ.

На верхушке корпуса современных электролитических конденсаторов есть крестообразные насечки, которые при избытке давления внутри конденсатора раскрываются, выбухают. Внешне это очень заметно, особенно на фоне рядом находящихся исправных конденсаторов.Впрочем, бывает, что пробой происходит как-то мягко, и «голову» конденсатору не разрывает.В любом случае разрыв или выбухание насечек говорит о непригодности конденсатора, и его необходимо заменить.

Снижение максимального допустимого напряжения. Есть интересная неисправность конденсатора, при которой с ним происходит обратимый пробой, наступающий при превышении определенного напряжения на его обкладках. Обычно, максимально допустимое напряжение на обкладках конденсатора указано в его маркировке. Но есть такая неисправность, при которой величина максимально допустимого напряжения снижается. При этом, конденсатор может казаться вполне исправным, измеритель емкости покажет правильный результат, а сопротивление в заряженном состоянии будет «бесконечным». Но в схеме конденсатор ведет себя так, как будто он пробит.

Здесь дело именно в том, что понизилось максимально допустимое напряжение на обкладках конденсатора. И теперь конденсатор пробивает при значительно более низком напряжении. Но пробой этот обратимый, и при проверке омметром на напряжении ниже напряжения, вызывающего пробой, конденсатор кажется исправным. Для проверки конденсатора на максимальное напряжение нужен лабораторный источник постоянного тока. Установите на его клеммах минимальное напряжение, подключите к ним испытуемый конденсатор (соблюдая полярность), и плавно увеличивайте напряжение до величины, немного ниже указанной на корпусе конденсатора.

Например, есть конденсатор, у которого на корпусе написано «40V», это значит, что пробоя при напряжении от нуля до 40V быть не должно. И вот выясняется, что уже при напряжении 25V у этого конденсатора начался пробой со всеми признаками, увеличение тока, нагрев, вскипание… даже возможен переход лабораторного блока питания в режим защиты от короткого замыкания.Все это говорит о том, что конденсатор не пригоден, потому что даже если вы планируете его использовать в цепи, где напряжение не более 25V, нет никакой гарантии, что его напряжение пробоя не опустится в любой момент еще ниже. Такой конденсатор будет вести себя нестабильно, лучше его не паять в схему.

Увеличение внутреннего сопротивления конденсатора. Физически это выглядит так, как будто последовательно конденсатору подключили резистор. При увеличении данного параметра снижается пиковый ток через конденсатор при его заряде или разряде, вносится задержка в цепи, где этот конденсатор работает. Данный параметр называется ЭПС (эквивалентное последовательное сопротивление) или в английской аббревиатуре ESR. Для определения эквивалентного последовательного сопротивления нужен специальный прибор измеритель ESR.

Как проверить твердотельный конденсатор — Инженер ПТО

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Конденсаторы широко применяются в электротехнике в качестве элементов, сглаживающих пульсации переменного тока, фильтров частоты, или накопителей энергии. Кроме того, эти радиодетали можно применять в качестве гальванической развязки. Технологий изготовление множество, принцип общий: между двумя обкладками кроме диэлектрика размещается особое химическое вещество, определяющее характеристики. Для электроустановок постоянного тока, применяются электролиты. Это недорогая технология, которая имеет серьезный недостаток: жидкость может закипеть от перегрузки или высокой температуры, и тогда конденсатор буквально взрывается. К счастью, такой «экстрим» случается редко: в большинстве случаев корпус просто разрушается, теряет герметичность, и электролит вытекает на монтажную плату.

Поэтому в ответственных узлах применяются конденсаторы, изготовленные по иной технологии. Вместо жидкого электролита применяется токопроводящий органический полимер. Он имеет фактически твердую консистенцию, поэтому при экстремальных нагрузках (включая температурные) опасности не представляет. Такие конденсаторы называются твердотельными (по причине отсутствия жидких фракций). Характеристики этих элементов не уступают традиционным «электролитам», однако стоимость деталей существенно выше. Есть еще один недостаток твердотельной конструкции — ограничения по вольтажу. Верхний предел напряжения не более 35 Вольт. Учитывая область применения (компьютеры, бытовая техника, автомобили), это не является большой проблемой.

По причине высокой стоимости, домашние мастера стараются избегать покупки дорогих деталей, используя б/у компоненты для замены. В любом случае, чтобы не тратить лишние деньги, необходимо знать, как проверить твердотельный конденсатор.

Как работает полимерный конденсатор

Чтобы проверить любой прибор, желательно понимать механизм его работы. Поскольку тема нашего материала — твердотельные конденсаторы (аналоги электролитических), значит речь пойдет о радиоэлементах для постоянного тока, то есть полярных. Все со школьной скамьи помнят эту иллюстрацию:

Две металлические пластины с диэлектриком между ними (для лаборатории подойдет даже воздух). Если на контакты подать потенциал, между пластинами накапливается разноименные заряды, и в пространстве между ними возникает электрическое поле. При отсутствии электрической цепи это поле может сохраняться достаточно долго (современные элементы обеспечивают утечку заряда, стремящуюся к нулю). Именно это свойство лежит в основе применения конденсаторов.

Элемент имеет определенные основные характеристики:

  • Рабочее напряжение определяется величиной, при которой не наступает пробой диэлектрика. Конденсаторы выглядят совсем не так, как мы привыкли видеть на лабораторном столе в классе физики. Детали весьма компактны, соответственно расстояние между пластинами минимально. Отсюда ограничение по предельному напряжению.
  • Емкость конденсатора — его главный параметр. Он определяет, сколько электрической энергии деталь может накопить и удерживать в себе. Величина напрямую зависит от площади пластин.
  • Параметры утечки. Могут определяться током потери накопленного заряда, либо сопротивлением диэлектрика. Идеальные показатели возможны только в вакууме, но такие конденсаторы для бытового использования не выпускаются.
  • Температурный коэффициент: определяется дельтой изменения емкости в зависимости от температуры.
  • Точность — указывается в процентах. Показывает разброс параметров емкости от эталонной (маркировочной) величины.

Важно: несмотря на большое количество параметров, измерению (проверке) подлежат лишь два из них: емкость и сопротивление диэлектрика.

Устройство электролитических и твердотельных конденсаторов

Радиокомпоненты такого класса применяются в электронных устройствах с высокими требованиями по габаритам. Поэтому вопрос компромисса между площадью обкладок (от этого зависит емкость) и размерами корпуса — головная боль разработчиков. Проблема решается технологически просто:

Изготавливается так называемых сэндвич, стоящий из двух тончайших обкладок, между которыми прокладывается слой пропитанной электролитом бумаги (в электролитических моделях) или токопроводящий полимер (твердотельные конденсаторы). Обычно используется танталовая или алюминиевая фольга. В качестве диэлектрика применяется естественный оксидный слой одной из пластин. У него низкая проводимость, которая определяет ток утечки емкости.

Такая конструкция может занимать достаточно большую (по меркам радиодеталей) емкость. Поэтому ее сворачивают в плотный рулон, где в качестве разделителя между слоями выступает тонкая электро-бумага (смотрим иллюстрацию). Она не участвует в схеме работы конденсатора.

Наружная оболочка выполнена из алюминия, на нее наносится информация о характеристиках.

Преимущества твердотельных конденсаторов

  • В сравнение с электролитической конструкцией, существенно снижено эквивалентное последовательное сопротивление. Благодаря этому деталь практически не нагревается на высоких частотах.
  • Значительная величина тока пульсаций делает работу более стабильной, особенно в схемах обеспечения электропитанием.
  • Твердотельные конденсаторы практически не зависят от температуры. Кроме физической защиты от раздувания корпуса, это свойство позволяет сохранять параметры при нагреве.
  • Продолжительность жизни. Если принять за эталон рабочую температуру 85 °C, срок эксплуатации (без потери характеристик) в 6 раз больше, чем у электролитов. Обычно эти детали без проблем работают не менее 5 лет.

Самостоятельная диагностика конденсатора

Поскольку мы говорим о деталях для работы с постоянным током, не имеет значения, какая применяется технология: электролитическая или полимерная. Проверка полярных конденсаторов выполняется одинаково.

Прежде всего, выполняется внешний осмотр. Электролиты не должны иметь следов вздутия, особенно на торце, где есть насечка в виде креста. При осмотре твердотельных корпусов можно увидеть термические повреждения с нарушением геометрии.

Разумеется, необходимо проверить крепление ножек. Компактная конструкция подразумевает небольшие размеры всех компонентов. Ножки могут банально оторваться еще на стадии сборки.

Если внешний осмотр не дал результатов, проводим тестирование с помощью мультиметра

В любом случае, для выполнения этих работ необходимо выпаять деталь из платы. Делать это надо осторожно, чтобы не выдернуть контактные ножки из корпуса.

Если ваш прибор имеет специализированный разъем для проверки, диагностика выполняется в соответствии с инструкцией к мультиметру. Обязательно проводится весь комплекс тестирования (если такой алгоритм имеется). Подключать нужно правильно, соблюдая полярность. Маркировка обязательно присутствует на корпусе детали. При такой проверке вы не только проверите исправность, но и увидите значение емкости.

    Проверка работоспособности конденсатора начинается с измерения сопротивления. Делается это не так, как на резисторах или диодах. Чтобы понять принцип проверки, вспомним основные свойства конденсатора. При накоплении заряда сопротивление между обкладками увеличивается. Для начала необходимо разрядить элемент (снять остаточный заряд). Разумеется, это справедливо лишь для исправной детали. Надо просто замкнуть ножки любым проводником, или сомкнуть их между собой.

Важно: электролитические конденсаторы могут работать с напряжением до 600 Вольт и более, поэтому их разряжают только инструментом с изолированной рукояткой.

Проверка межобкладочного замыкания

Даже такой надежный конденсатор, как твердотельный, может иметь банальные физические повреждения. Например, замыкание между обкладками или на корпус. В первом случае сопротивление не увеличится до бесконечности, хотя первое время будет плавно увеличиваться. При пробое на корпус, сопротивление между одной из ножек и внешней оболочкой будет критически маленьким.

В обоих случаях, такие конденсаторы следует отнести к браку, восстановлению они не подлежат.

Проверка истинных значений емкости

Как проверять детали с помощью специализированного мультиметра, мы уже рассматривали. Однако для проверки твердотельного (электролитического) конденсатора недостаточно просто зафиксировать факт исправности. Особенно, если радиоэлемент под подозрением, либо вы хотите использовать деталь, бывшую в употреблении. Необходимо использовать прибор, с достаточным диапазоном измерения емкости.

Тестирование проводится в несколько этапов:

  • несколько раз соединяем конденсатор с клеммами прибора, затем разряжаем его замыканием, и снова проверяем;
  • нагреваем радиодеталь с помощью термофена до температуры 60–85°C, и проверяем значение емкости: разброс параметров не должен превышать допустимую погрешность (указано на корпусе).

Важно: обязательно соблюдайте полярность при проведении измерений. Это необходимо не только для получения истинного значения. При напряжении питания прибора хотя бы 9 вольт (такие мультиметры встречаются часто), конденсатор может выйти из строя из-за переполюсовки.

Практическое применение на автомобиле

Далеко не все домашние мастера будут тестировать элементную базу материнских плат компьютеров. А вот навыки, как проверить конденсатор трамблера, пригодятся любому автолюбителю. Изучим методику на примере классики ВАЗ.

  • Для проверки необходимо отсоединить кабель, идущий от трамблера до конденсатора. Он обычно соединен с одним контактом прерывателя. Между контактами закрепляем лампу мощностью 35–50 Вт (разумеется, с напряжением 12 вольт). Если при включении зажигания лампа загорелась, конденсатор неисправен, то есть «пробит» (это самая характерная поломка). Если «контролька» не светится — конденсатор исправен.
  • Второй способ можно применять в крайнем случае, если у вас не нашлось лишней лампы. После включения зажигания, необходимо быстро и вскользь коснуться контактами друг к другу. Если ничего не происходит — конденсатор в порядке. При наличии искрения — радиоэлемент «пробит».

Для того, чтобы проверить твердотельные либо электролитические конденсаторы, не обязательно иметь образование радиоинженера. Руководствуясь нашими советами, вы сможете точно определить исправность радиодеталей, и сэкономить средства на покупку новых элементов. Учитывая высокую стоимость именно таких конденсаторов, снижение затрат на ремонт будет ощутимым.

Видео по теме

Как проверить конденсатор без демонтажа [испытание электрической цепи]

Эй! надеюсь, у вас все хорошо.

Печатная плата обычно имеет резисторы, конденсаторы, катушки индуктивности, микросхемы, разъемы и некоторые другие компоненты. Часто эти компоненты перегорают и требуют замены.

Компоненты, которые имеют более высокую вероятность сгорания, — это резисторы, конденсаторы и, реже, микросхемы. Причина в том, что в основном резисторы и конденсаторы находятся на передней панели любой платы. А иногда перенапряжение их выгорает.

Что касается резистора и микросхемы, вы можете определить неисправный, просто взглянув на него на плате. Сгоревшая микросхема или резистор вскрываются, и вы можете найти их на плате за секунды.

Однако это не относится к конденсатору.

В случае с конденсатором дела обстоят немного иначе. Если вам повезет, вы найдете неисправный конденсатор, просто взглянув на его верхнюю часть, он будет взломан.

Но что, если тебе не повезло?

Настоящая проблема, с которой вы столкнетесь, — нормально выглядящий конденсатор может оказаться плохим.Таким образом, вам нужно снять с платы весь конденсатор, проверить каждый, найти плохого парня и перепаять всех без исключения на плате. Это не лучший способ, и никто не хочет этого делать.

Не волнуйтесь.

В этом посте мы определенно откроем для себя способ проверить конденсатор, не снимая его с корпуса.

Надеюсь, вам понравится эта статья.

Проверить конденсатор без демонтажа его

Давай посмотрим правде в глаза.

Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы, измерив его значение емкости с помощью измерителя конденсаторов или мультиметра. Потому что в такой ситуации упомянутые устройства приводят вас к ложным показаниям, и вы не сможете на самом деле сказать, был ли конденсатор, который вы тестировали, действительно плохим или правильным.

Почему?

  • Причина в том, что когда конденсатор находится внутри печатной платы, есть много других компонентов, включенных последовательно или параллельно с ним.Таким образом, вы получаете эквивалентное значение, а не фактическое.
  • Когда конденсатор находится за пределами платы, иногда неисправный конденсатор может дать вам правильное значение емкости на мультиметре или измерителе конденсатора.

Несомненно, для измерения емкости используются мультиметр или емкостной измеритель. Им просто нельзя доверять, чтобы сказать вам, плохой или хороший конденсатор, вне или внутри печатной платы.

Итак, как я могу проверить эту суку?

Остался один вариант, который мы можем использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).

Таким образом, лучшим решением для проверки конденсатора без его фактического демонтажа является использование измерителя ESR или интеллектуального пинцета. Оба работают одинаково и их можно использовать. Но измеритель ESR предпочтительнее для сквозных конденсаторов, а последний — для проверки конденсаторов SMD.

В оставшейся части статьи я подробно расскажу, что это за устройства, и как они проверяют внутрисхемные конденсаторы.

Измеритель СОЭ

Термин ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR — это устройство, используемое для определения эквивалентного последовательного сопротивления реального конденсатора без его отсоединения от цепи.

Это устройство не может измерять емкость и может использоваться только для проверки конденсатора.

У идеального конденсатора значение ESR равно нулю, но на самом деле оно очень-очень меньше; близка к идеальной стоимости. Высокое значение ESR является первым признаком неисправности конденсатора.

Увеличение значения ESR увеличивает как падение напряжения внутри конденсатора, так и нагрев. Тепло, выделяемое в конденсаторах, происходит из-за резистивного нагрева, и это тепло вызывает утечку конденсатора.

Если вы не проверите электролитический конденсатор на значение ESR с помощью измерителя ESR, вы не сможете определить, хороший или плохой конденсатор.

Как проверить конденсатор с помощью измерителя ESR?

Ниже приведены быстрые шаги для проверки любого внутрисхемного конденсатора с помощью измерителя ESR.

  • Сначала разрядите проверяемый конденсатор. Это настолько важно и важно, что если вы случайно забудете этот шаг, вы можете в конечном итоге разрушить свой измеритель СОЭ. Для получения дополнительной информации всегда разряжайте конденсатор перед измерением любого его параметра.
  • Разряд конденсатора может производиться закорачивая его ноги любыми доступными способами. Но не просто закорачивайте ножки вместе с проводом с низким сопротивлением, рекомендуется использовать материал с высоким сопротивлением.
  • Включите измеритель СОЭ и закоротите его провода, пока на экране не появится 0. Если на экране уже отображается 0 показаний, то закорачивать провода нет необходимости.
  • Подсоедините красный провод ESR-метра к положительному, а черный — к отрицательному выводу тестируемого конденсатора.
  • Запишите показания ESR-метра.
  • Сравните показание с таблицей на корпусе измерителя СОЭ. Если значение ESR находится в заданном диапазоне, конденсатор исправен и не требует изменений, если нет, то конденсатор плох и нуждается в замене.
  • Если тело ESR не дает никакой таблицы, используйте техническое описание конденсатора, чтобы прочитать его значение ESR.

В техническом описании каждого конденсатора указано его значение ESR при частоте 100 кГц и определенное номинальное напряжение.Отклонение от этого значения помогает нам решить, нужно ли заменять конденсатор. Обычно ESR неисправного конденсатора увеличивается.

Более того, хороший конденсатор будет иметь измерения почти как короткое замыкание, а все другие части, подключенные параллельно ему, будут иметь минимальное влияние на конечные измерения. Это функция, которая делает измеритель СОЭ незаменимым инструментом для поиска и устранения неисправностей электронного оборудования.

Итак, если вы действительно хотите обнаружить и исправить неисправные конденсаторы в своих устройствах, вам понадобится приличный измеритель ESR.Хорошее СОЭ можно найти где угодно.

Просто найдите это.

Я рекомендую и мне нравится этот измеритель СОЭ (ссылка на Amazon) . Прелесть этого счетчика в том, что он надежен и продается по очень приемлемой цене. Если вам нравится этот, купите его. Если вы любитель, новичок или хотите сэкономить, вы можете купить такой же измеритель СОЭ по оптовой цене MESR -100 (Ссылка на товар) , также вы получите его с бесплатной доставкой. Я считаю, что это потрясающая сделка. Покупая на Amazon или в Yaman Electronics ( продуктов доставляются со склада компании в США, поэтому вы получите их в течение одной недели, ), вы получите тот же продукт, теперь вам решать, какой из них подходит вам лучше всего.

Если вы ищете лучшую недорогую альтернативу, попробуйте этот измеритель СОЭ (Product Link) .

Интеллектуальный пинцет

Обычно измеритель ESR может сделать всю работу за вас, но когда дело доходит до SMD-компонентов, он не так удобен, как умный пинцет. Если вы решите использовать ESR, все будет в порядке, но умный пинцет (ссылка на Amazon) — это весело и, на мой взгляд, замечательный инструмент для вашей лаборатории.

Настоящая проблема умных пинцетов в том, что они дорогие.Когда я в последний раз проверял, его цена была около 300 долларов. Но помимо использования его только для проверки конденсаторов, он также может быть отличным портативным измерителем LCR.

Все шаги измерения такие же, как я обсуждал выше для измерителя ESR.

Визуально неисправный конденсатор

Вместо того, чтобы использовать измеритель ESR или пинцет, мы также можем проверить конденсатор, не снимая его, путем общего осмотра.

Плохой электролитический конденсатор проглатывает верхнюю часть, вы видите такой в ​​цепи; просто замените его, не теряя времени на тестирование.

Значение емкости может быть в хорошем диапазоне, когда вы проверяете его вне цепи с помощью мультиметра или емкостного измерителя, но все же оно плохое.

Заключение

Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы с помощью измерителя емкости или мультиметра. Причина в том. оба они могут привести к ложным результатам.

Единственное решение для проверки конденсаторов без демонтажа припайки — это измерение их эквивалентного последовательного сопротивления (ESR).Это значение измеряется измерителем СОЭ.

Измеритель ESR посылает переменный ток частотой 100 кГц в проверяемый конденсатор. Ток создает напряжение на конденсаторе, а затем с помощью математики рассчитывается и отображается на экране ESR.

Вы получаете смещенное значение ESR после сравнения его с диаграммой ESR, у вас плохой конденсатор.

Ну вот и все. Теперь, если такой читатель, как я, сначала прочитает заключение. Вы это читаете. Пора перейти к началу.Но вы читатель, зашедший так далеко. Я надеюсь, что вам понравилось.

Спасибо и хорошо проводите время.

Другие полезные посты

Как измерить емкость с помощью цифрового мультиметра

Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение и затем вычисляя емкость.

Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания.Перед тем, как дотронуться до него или произвести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.

Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.

  1. Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, установите мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
  2. Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
  3. Переведите шкалу в режим измерения емкости. Символ часто разделяет точку на циферблате с другой функцией.В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
  4. 4. Для правильного измерения необходимо удалить конденсатор из цепи. Разрядите конденсатор, как описано в предупреждении выше.

    Примечание: Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов.Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.

  5. Подключите измерительные провода к клеммам конденсатора. Оставьте измерительные провода подключенными в течение нескольких секунд, чтобы мультиметр автоматически выбрал правильный диапазон.
  6. Считайте отображаемое измерение. Если значение емкости находится в пределах диапазона измерения, мультиметр отобразит значение конденсатора.Он будет отображать OL, если а) значение емкости выше диапазона измерения или б) конденсатор неисправен.

Обзор измерения емкости

Устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.

Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора. Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы.Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.

Однофазные двигатели с такими проблемами и шумные однофазные двигатели с конденсаторами нуждаются в мультиметре для проверки правильного функционирования конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.

Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями. Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования.Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.

Стоит знать о некоторых дополнительных факторах, связанных с емкостью:

  • Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
  • Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
  • При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
  • Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
  • Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Связанные ресурсы

Как проверить конденсатор без распайки (тестирование цепи)

Довольно сложно исследовать любую часть «в цепи», а не просто конденсаторы.

Вы должны иметь некоторое представление об окружающей схеме, чтобы вы могли решить, чего ожидать, когда будете применять свой собственный тест.

Это ведет к другому этапу, если вы используете мультиметр для измерения обеих сторон детали, вы хотите понять, как мультиметр взаимодействует со всей схемой.

В ваших обстоятельствах я бы по крайней мере начал с моего мультиметра в режиме постоянного тока, начал со стороны низкого напряжения этого входа питания и оценил правильные напряжения, обнаруженные как при правильной работе устройства, так и, в частности, когда он находится в режиме отказа.

Работа в компьютерной системе.

Вам вполне может потребоваться осциллограф, если ваш DVM ничего не раскрывает.

Но не делайте этого, если на машину поступает сетевое напряжение и у вас есть некоторая неуверенность в том, какие части находятся под высоким напряжением !!!

Электролитические конденсаторы имеют традицию пренебрегать с течением времени, проверять наличие выпуклых головок или, если они увеличены на поверхности печатной платы, загляните между их ножек, чтобы определить, не вытолкнулась ли герметизирующая крышка — определенное указание на разрушенную крышку.

Кабельные межблочные соединения также являются слабым местом, поэтому убедитесь, что все они полностью вставлены в исходное положение.

Когда где-нибудь есть чип от машины, проверьте, есть ли тактовый сигнал.

Этого достаточно, чтобы рассмотреть сегодня.

Оценка конденсатора без демонтажа его

Позвольте только взглянуть правде в глаза.

Вы просто не можете исследовать ужасный конденсатор внутри или снаружи печатной платы, просто измерив его значение емкости с помощью измерителя конденсаторов или мультиметра.

Потому что в этой ситуации упомянутое устройство приведет вас к неверному изучению, а также у вас может не быть возможности действительно сказать, действительно ли проанализированный вами конденсатор был плохим или подходящим.

Почему?

Основная причина в том, что даже когда конденсатор находится внутри печатной платы, существует множество различных элементов, включенных параллельно или последовательно с ним.

Значит, вы получаете равные показания, возможно, не настоящие.

После того, как конденсатор выходит за пределы планки, иногда неисправный конденсатор может дать вам подходящее значение емкости на мультиметре или измерителе конденсатора.

Без сомнения, мультиметр или емкостной измеритель используется для количественного определения емкости.
Им просто нельзя доверять, чтобы вы знали, плохой или исправен конденсатор, вне или внутри печатной платы.

Итак, как мне это проверить?

Остался один вариант, который мы могли использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).

В заключение, идеальный способ проверить конденсатор без его полного демонтажа — использовать измеритель ESR или умный пинцет.
Оба работают одинаково и все в порядке.
Однако измеритель ESR предпочтителен для сквозных конденсаторов, а последний — для проверки конденсаторов SMD.

В оставшейся части руководства я предоставлю дополнительную информацию о том, что будет за упомянутое устройство, и о том, как они проверяют внутрисхемные конденсаторы.

Измеритель СОЭ

Выражение ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR — это устройство, используемое для определения эквивалентного последовательного сопротивления настоящего конденсатора без его демонтажа с помощью цепи.

Это устройство не может измерять емкость, его можно просто использовать для проверки конденсатора.

У большого конденсатора значение ESR равно нулю, но на самом деле оно намного меньше; рядом с идеальной стоимостью.
Высокое значение ESR является первым признаком разрушения конденсатора.

Увеличение значения ESR увеличивает как падение напряжения в конденсаторе, так и нагрев.
Тепло, выделяемое конденсаторами, происходит из-за тепла, и это тепло вызывает выход конденсатора.

Если вы не исследуете электролитический конденсатор на значение ESR с помощью измерителя ESR, то у вас может не быть возможности определить, хороший ли конденсатор или плохой.

Как проверить конденсатор с помощью измерителя ESR?

Здесь перечислены быстрые действия по проверке любого внутрисхемного конденсатора с помощью измерителя ESR.

Сначала разрядите конденсатор, указанный ниже.

Это действительно важно и важно, если вы случайно забудете этот шаг, вы можете испортить свой измеритель СОЭ.

Чтобы получить дополнительную информацию, постоянно снимайте конденсатор перед измерением какого-либо его параметра.

Разряд конденсатора может производиться закорачиванием его ножек любыми доступными способами.

Но не просто укорочите ноги кабелем с низким сопротивлением, фантастической практикой будет использование материала с высоким сопротивлением.

Включите измеритель СОЭ, также проинформируйте его о перспективах, пока не получите 0 результатов на его собственном дисплее.

Если в настоящее время на дисплее отображается 0 исследований, то нет необходимости в кратком изложении результатов.

Подключите красный провод измерителя ESR к полезному выводу, а черный провод к отрицательной клемме проверяемого конденсатора.

Обратите внимание, что показания на измерителе ESR.

Оцените показания, используя таблицу, размещенную на корпусе измерителя ESR.

Если значение ESR находится в указанном диапазоне, конденсатор отличный и не требует изменений, или даже тогда он плохой и требует замены.

Если весь корпус ESR не соответствует обеденному столу, используйте техническое описание этого конденсатора, чтобы увидеть его значение ESR.

В техническом описании каждого конденсатора записано его значение ESR при частоте 100 кГц и номинальном напряжении.

Отклонение от этого отношения помогает нам определить, нужно ли заменять конденсатор или нет.

Обычно ESR плохого конденсатора увеличивается.

Более того, фантастический конденсатор можно было бы измерить почти как короткую цепь, а остальные части, подключенные параллельно с его использованием, будут иметь минимальное влияние на размер конца.

Это качество, которое делает измеритель СОЭ незаменимым прибором для поиска неисправностей электроники.

Следовательно, если вы действительно хотите изучить и исправить неисправные конденсаторы на своих устройствах, вам понадобится соответствующий измеритель ESR.

Вы можете обнаружить приличное СОЭ где угодно.

Интеллектуальный пинцет

Обычно измеритель ESR может выполнять всю работу за вас, но что касается деталей SMD, это не так просто, как мудрый пинцет.

Если вы выберете СОЭ, все будет в порядке, но умный пинцет (ссылка на Amazon) — это приятный и отличный инструмент для вашей лаборатории, на мой взгляд.

Настоящая проблема умных пинцетов в том, что они дороги.

В последний раз я проверял его стоимость около 300 долларов.

Но помимо использования его просто для проверки конденсаторов, он также может работать как замечательный портативный измеритель LCR.

Все измерения точно такие же, как я говорил ранее для измерителя ESR.

Визуально видя плохой конденсатор

Вместо того, чтобы использовать измеритель ESR или пинцет, мы могли бы даже протестировать конденсатор, не выпаивая его, путем полного обзора.

Плохой электролитический конденсатор расходуется с другой стороны, вы видите это на схеме: просто замените его, не тратя время на его анализ.

Значение емкости может быть в большом диапазоне, если вы исследуете его вне цепи с помощью мультиметра или емкостного измерителя, но, тем не менее, оно паршивое.

Заключение

Вы просто не можете проверить ужасный конденсатор ни в помещении, ни за пределами печатной платы с помощью измерителя емкости или мультиметра.

Основная причина.

Они могут привести к ложным результатам.

Единственное средство для проверки конденсатора без демонтажа припайки — это измерение его эквивалентного последовательного сопротивления (ESR).

Это значение измеряется измерителем ESR.

Измеритель ESR передает переменный ток частотой 100 кГц на тестируемый конденсатор.

Ток генерирует напряжение на конденсаторе, а затем с помощью математики вычисляется ESR и отображается на мониторе.

Вы получаете смещенное значение ESR после сравнения его с графиком ESR, вы получаете неисправный конденсатор.

Как проверить конденсатор?

Как проверить конденсатор?

В этом руководстве мы увидим, как проверить конденсатор и выяснить, работает ли конденсатор должным образом или он неисправен. Конденсатор — это электронный / электрический компонент, который хранит энергию в виде электрического заряда. Конденсаторы часто используются в печатных платах электроники или небольшом количестве электрических приборов и выполняют множество функций.

Когда конденсатор помещается в активную цепь (цепь с протекающим активным током), в конденсаторе (на одной из его пластин) начинает накапливаться заряд, и как только пластина конденсатора больше не может удерживать заряд, происходит накопление заряда. выпущен обратно в цепь через другую пластину.

Это действие называется зарядкой и разрядкой конденсатора. В основном конденсаторы можно разделить на электролитические и неэлектролитические.

Как и все электрические и электронные компоненты, конденсатор также чувствителен к скачкам напряжения, и такие колебания напряжения могут необратимо повредить конденсаторы.

Электролитический конденсатор

часто выходит из строя из-за разряда большего тока за короткий период времени или не может удерживать заряд из-за высыхания со временем. С другой стороны, неэлектролитические конденсаторы выходят из строя из-за утечек.

Существуют различные методы проверки правильности работы конденсатора. Давайте посмотрим на некоторые методы проверки конденсатора.

ПРИМЕЧАНИЕ: Некоторые из упомянутых здесь методов могут быть не лучшими способами проверки конденсатора. Но мы включили эти методы только для того, чтобы указать возможности.Не суди.

Метод 1 Проверка конденсатора с помощью мультиметра с настройкой емкости

Это один из самых простых, быстрых и точных способов проверки конденсатора. Для этого нам понадобится цифровой мультиметр с функцией измерителя емкости. Большинство цифровых мультиметров среднего и высокого уровня имеют эту функцию.

Измеритель емкости цифровых мультиметров часто отображает емкость конденсатора, но несколько счетчиков отображают другие параметры, такие как ESR, утечку и т. Д.

  • Чтобы проверить конденсатор с помощью цифрового мультиметра с измерителем емкости, можно выполнить следующие шаги.
  • Отсоедините конденсатор от печатной платы и полностью разрядите его.
  • Если на его корпусе видны номиналы конденсатора, запишите это. Обычно емкость в фарадах (часто микрофарадах) печатается на корпусе вместе с номинальным напряжением.
  • В цифровом мультиметре установите ручку настройки емкости.
  • Подключите щупы мультиметра к клеммам конденсатора.В случае поляризованного конденсатора подключите красный щуп к положительной клемме конденсатора (обычно более длинный провод), а черный щуп к отрицательной клемме. В случае неполяризованного конденсатора, подключите его в любом случае, поскольку они не имеют полярности.
  • Теперь проверьте показания цифрового мультиметра. Если показания мультиметра ближе к реальным значениям (указанным на конденсаторе), то конденсатор можно считать хорошим конденсатором.
  • Если разница между фактическим значением и измеренным показанием значительно (или иногда равна нулю), то вам следует заменить конденсатор, так как он мертв.

Используя этот метод, можно измерить емкость конденсаторов от нескольких нанофарад до нескольких сотен микрофарад.

Метод 2 Проверка конденсатора с помощью мультиметра без настройки емкости

Большинство дешевых цифровых мультиметров не имеют измерителя емкости или настроек емкости. Даже с этими мультиметрами мы можем проверить конденсатор.

  • Снимите конденсатор со схемы или платы и убедитесь, что он полностью разряжен.
  • Установите мультиметр на измерение сопротивления, т. Е. Установите ручку в положение «Ом» или «Настройки сопротивления». Если существует несколько диапазонов измерения сопротивления, выберите более высокий диапазон (часто от 20 кОм до 200 кОм).
  • Подключите щупы мультиметра к выводам конденсатора (красный к плюсу и черный к минусу в случае поляризованных конденсаторов).
  • Цифровой мультиметр покажет значение сопротивления на дисплее и вскоре отобразит сопротивление разомкнутой цепи (бесконечность).Запишите показания, отображаемые за этот короткий период.
  • Отсоедините конденсатор от мультиметра и повторите тест несколько раз.
  • Каждая попытка теста должна показывать аналогичный результат на дисплее для исправного конденсатора.
  • Если при дальнейших испытаниях сопротивление не изменилось, конденсатор неисправен.

Этот метод тестирования конденсатора может быть неточным, но позволяет различать хорошие и плохие конденсаторы. Этот метод также не дает данных о емкости конденсатора.

Метод 3 Испытание конденсатора путем измерения постоянной времени

Этот метод применим, только если известно значение емкости и если мы хотим проверить, исправен ли конденсатор или нет. В этом методе мы измеряем постоянную времени конденсатора и выводим емкость из измеренного времени. Если измеренная емкость и фактическая емкость одинаковы, то конденсатор исправен.

Постоянная времени конденсатора — это время, необходимое конденсатору для зарядки до 63.2% от приложенного напряжения при зарядке через известный резистор. Если C — емкость, R — известный резистор, то постоянная времени TC (или греческий алфавит Tau — τ) задается как τ = RxC.

  • Сначала убедитесь, что конденсатор отключен от платы и правильно разряжен.
  • Подключите известный резистор (обычно резистор 10 кОм) последовательно с конденсатором.
  • Завершите цепь, подключив источник питания известного напряжения.
  • Включите источник питания и измерьте время, за которое конденсатор зарядится до 63.2% от напряжения питания. Например, если напряжение питания составляет 12 В, то 63,2% от этого значения составляет около 7,6 В.
  • Используя время и сопротивление, измерьте емкость и сравните ее со значением, указанным на конденсаторе.
  • Если они похожи или почти равны, конденсатор функционирует нормально. Если разница огромна, нам нужно заменить конденсатор.

Также можно рассчитать время разряда. В этом случае время разряда конденсатора до 36.Можно измерить 8% пикового напряжения.

Метод 4 Проверка конденсатора с помощью простого вольтметра

Все конденсаторы рассчитаны на максимальное допустимое напряжение. Для этого метода проверки конденсатора мы будем использовать номинальное напряжение конденсатора.

  • Снимите конденсатор с платы или схемы и правильно его разрядите. При желании можно удалить из цепи только один вывод.
  • Посмотрите номинальное напряжение на конденсаторе.Обычно он обозначается как 16 В, 25 В, 50 В и т. Д. Это максимальное напряжение, которое может выдерживать конденсатор.
  • Теперь подключите выводы конденсатора к источнику питания или батарее, но напряжение должно быть меньше максимального номинального значения. Например, на конденсаторе с максимальным номинальным напряжением 16 В вы можете использовать батарею на 9 В.
  • Зарядите конденсатор на короткое время, скажем, 4–5 секунд, и отключите питание.
  • Установите цифровой мультиметр на настройки вольтметра постоянного тока и измерьте напряжение на конденсаторе.Подключите соответствующие клеммы вольтметра и конденсатора.
  • Начальное значение напряжения на мультиметре должно быть близко к подаваемому напряжению в исправном конденсаторе. Если разница большая, значит конденсатор неисправен.

Следует принимать во внимание только начальные показания мультиметра, так как значение будет медленно падать. Это нормально.


Метод 5 Проверка конденсатора с помощью аналогового мультиметра (измеритель AVO) Аналоговые мультиметры

, как и цифровые мультиметры, могут измерять различные величины, такие как ток (A), напряжение (V) и сопротивление (O).Чтобы проверить конденсатор с помощью аналогового мультиметра, мы собираемся использовать его функцию омметра.

  • Как обычно, отключите конденсатор и разрядите его. Вы можете разрядить конденсатор, просто закоротив провода (очень опасно — будьте осторожны), но простой способ — использовать нагрузку, такую ​​как резистор высокой мощности или светодиод.
  • Установите аналоговый мультиметр в положение омметра и, если имеется несколько диапазонов, выберите более высокий диапазон.
  • Подсоедините выводы конденсатора к щупам мультиметра и наблюдайте за показаниями мультиметра.
  • Для исправного конденсатора сопротивление вначале будет низким и будет постепенно увеличиваться.
  • Если сопротивление постоянно низкое, конденсатор закорочен, и его необходимо заменить.
  • Если стрелка не движется или сопротивление всегда имеет более высокое значение, конденсатор является открытым конденсатором.

Этот тест может применяться как для сквозных, так и для поверхностных конденсаторов.

Метод 6 Замыкание выводов конденсатора (традиционный метод — только для профессионалов)

Описанный здесь метод — один из самых старых методов проверки конденсатора и проверки того, хороший он или плохой.

Предупреждение: Этот метод очень опасен и предназначен только для профессионалов. Его следует использовать как последний вариант для проверки конденсатора.

Безопасность: Метод описан для источника переменного тока 230 В. Но из соображений безопасности можно использовать источник питания 24 В постоянного тока. Даже при 230 В переменного тока нам необходимо использовать последовательный резистор (высокой номинальной мощности) для ограничения тока.

  • Проверяемый конденсатор должен быть отключен от цепи и должным образом разряжен.
  • Подключите выводы конденсатора к клемме питания. Для 230 В переменного тока необходимо использовать только неполяризованные конденсаторы. Для 24 В постоянного тока можно использовать как поляризованные, так и неполяризованные конденсаторы, но с правильным подключением поляризованных конденсаторов.
  • Включите источник питания на очень короткое время (обычно от 1 до 5 секунд), а затем выключите его. Отсоедините выводы конденсатора от источника питания.
  • Замкните клеммы конденсатора металлическим контактом.Убедитесь, что вы хорошо изолированы.
  • Искра конденсатора может использоваться для определения состояния конденсатора. Если искра большая и сильная, значит конденсатор в хорошем состоянии.
  • Если искра малая и слабая, нужно заменить конденсатор.

Этот метод можно использовать для конденсаторов с меньшей емкостью. Этот метод может только определить, может ли конденсатор удерживать заряд или нет.

Конденсаторы 101 — iFixit

Вот немного сухого материала, просто чтобы помочь понять, что такое конденсатор и что он обычно делает.Конденсатор — это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве печатных плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный течет к положительному, поэтому отрицательный является активным проводом, хотя многие конденсаторы не поляризованы. Как только пластина больше не может удерживать их, они выталкиваются через диэлектрик на другую пластину, тем самым вытесняя электроны обратно в цепь.Это называется разрядом. Электрические компоненты очень чувствительны к колебаниям напряжения, и поэтому скачок мощности может убить эти дорогостоящие детали. Конденсаторы создают постоянное напряжение для других компонентов и, таким образом, обеспечивают стабильное питание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пика. Когда конденсатор от линии питания подключен к земле, и постоянный ток не проходит, но по мере того, как импульс заполняет конденсатор, он снижает ток и эффективное напряжение.Пока напряжение питания падает до нуля, конденсатор начинает вытекать из своего содержимого, это сглаживает выходное напряжение и ток. Таким образом, конденсатор размещается на одной линии с компонентом, что позволяет поглощать выбросы и дополнять впадины, что, в свою очередь, поддерживает постоянное питание компонента.

Существует множество различных типов конденсаторов. Часто они по-разному используются в схемах. Все слишком знакомые конденсаторы в виде круглой жестяной банки обычно представляют собой электролитические конденсаторы.Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектрик может быть воздухом (простейший конденсатор) или другими непроводящими материалами. Металлические пластины из фольги, разделенные диэлектриком, затем скручиваются, как Fruit Roll-up, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.

Вот конденсатор, который некоторые, возможно, еще помнят со времен старых радио. Это многосекционный баночный конденсатор. Этот конкретный конденсатор представляет собой четырехсекционный (4) конденсатор.Все это означает, что в одной емкости содержится четыре отдельных конденсатора с разными номиналами.

Керамические дисковые конденсаторы идеально подходят для более высоких частот, но не подходят для объемной фильтрации, поскольку керамические дисковые конденсаторы становятся слишком большими по размеру для более высоких значений емкости. В схемах, где жизненно важно поддерживать стабильность источника напряжения, обычно имеется большой электролитический конденсатор, подключенный параллельно керамическому дисковому конденсатору. Электролитик будет делать большую часть работы, тогда как небольшой керамический дисковый конденсатор будет отфильтровывать высокую частоту, которую пропускает большой электролитический конденсатор.

Еще есть танталовые конденсаторы. Они маленькие, но имеют большую емкость по сравнению с керамическими дисковыми конденсаторами. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.

Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса показывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению).Основное назначение экрана из фольги — продлить срок службы бумажного конденсатора.

Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень маленькие по сравнению с перечисленными выше конденсаторами. Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается той же. Одной из важных особенностей этих конденсаторов, помимо номинальных характеристик, является их «упаковка». Существует стандартизация размеров этих компонентов, т.е.е. упаковка 0201 — 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических конденсаторов SMD соответствует размеру корпуса резисторов SMD. Это делает практически невозможным определить, конденсатор это или резистор, с помощью визуализации. Вот хорошее описание индивидуальных размеров на основе номеров пакетов.

Определить значение конденсатора можно несколькими способами. Номер один, конечно же, это маркировка на самом конденсаторе.

Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%.Это означает, что он может находиться в диапазоне от 176 мкФ до 264 мкФ. Он имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны, в отличие от осевого расположения, когда один вывод выходит с обеих сторон корпуса конденсатора. Кроме того, полоса со стрелками на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .

Теперь главный вопрос здесь — как проверить конденсатор на предмет необходимости его замены.

Для проверки конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из схемы, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста по принципу «все или ничего». Этот тест покажет только, полностью ли разряжен конденсатор. Это , а не , будет определять, в хорошем или плохом состоянии конденсатор. Чтобы определить, работает ли конденсатор при правильном значении (емкости), потребуется тестер конденсатора.Конечно, это также верно для определения номинала неизвестного конденсатора.

Счетчик, используемый для этой Wiki, является самым дешевым из всех доступных в любом универмаге. Для этого теста также рекомендуется использовать аналоговый мультиметр. Он покажет движение более наглядно, чем цифровой мультиметр, который отображает только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде глюкометра Fluke.

Всегда разряжайте конденсатор перед тестированием, если этого не сделать, будет шокирующим сюрпризом.Конденсаторы очень маленькой емкости можно разрядить, переставив оба вывода отверткой. Лучше всего это сделать, разрядив конденсатор через нагрузку. В этом случае это выполнят кабели из крокодиловой кожи и резистор. Вот отличный сайт, показывающий, как построить инструменты для разряда.

Чтобы проверить конденсатор с помощью мультиметра, установите показание измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу.Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.

Это также будет работать с заглушками SMD. Тот же тест, когда стрелка мультиметра медленно движется в том же направлении.

Еще одно испытание конденсатора — это испытание напряжением. Мы знаем, что конденсаторы накапливают на своей пластине разность потенциалов зарядов, это напряжения.Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, — это зарядить его напряжением, а затем измерить напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае очень важна полярность. Если у этого конденсатора есть положительный и отрицательный вывод, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное — на катод конденсатора.Не забудьте проверить маркировку на тестируемом конденсаторе. Затем на несколько секунд подайте напряжение, которое должно быть меньше номинального напряжения конденсатора. В этом примере конденсатор 160 В будет заряжаться от батареи постоянного тока 9 В в течение нескольких секунд.

По окончании заряда отключите аккумулятор от конденсатора. Воспользуйтесь мультиметром и снимите напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр.Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

Проще всего конечно будет проверить конденсатор емкостным измерителем. Вот осевой GPF 1000 мкФ 40 В FRAKO с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости очень просто. На этих конденсаторах отмечен положительный вывод. Подсоедините положительный (красный) провод от измерителя к нему, а отрицательный (черный) — к противоположному. Этот конденсатор показывает 1038 мкФ, что явно в пределах допуска.

Для проверки конденсатора SMD может быть сложно сделать с громоздкими пробниками. Можно либо припаять иглы к концам этих зондов, либо купить умный пинцет. Лучше всего использовать умный пинцет.

Некоторые конденсаторы не требуют проверки для определения неисправности. Если визуальный осмотр конденсаторов обнаруживает какие-либо признаки вздутия верхних частей, их необходимо заменить. Это наиболее частая неисправность блоков питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого номинала.Никогда не субсидируйте конденсатор меньшей стоимости.

Если конденсатор, который собираются заменить или проверить, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов конденсаторов, которые используются на схеме.

В этом отрывке из схемы iPhone указаны символы конденсаторов, а также их номиналы.

Эта Wiki — это в значительной степени только основы того, что искать в конденсаторах, она никоим образом не является полной.Чтобы узнать больше о любых распространенных электронных компонентах, существует множество хороших онлайн-курсов и офлайн-курсов.

Eaton Electronics

Максвелл

Digikey

Mouser

Как проверить конденсатор? Использование различных методов

Как проверить конденсатор с помощью мультиметра? Различные методы проверки конденсаторов

В электронных схемах конденсатор является одним из наиболее часто используемых компонентов.При поиске неисправностей в таких схемах необходимо знать , как проверить конденсатор .

В этой статье мы обсудим, как проверить конденсатор на наличие хорошего, короткого замыкания или разомкнутого состояния , используя различные методы.

Перед испытанием конденсатора необходимо узнать о самом конденсаторе.

Конденсатор

Конденсатор — это электронный компонент с двумя выводами, способный накапливать заряд в электрическом поле.Он состоит из двух металлических пластин, разделенных средой, известной как диэлектрик .

Когда конденсатор подключен к батарее, между металлическими пластинами возникает электрическое поле. Благодаря этому электрическому полю металлические пластины накапливают заряд.

Способность конденсатора накапливать заряд называется емкостью . Он измеряется в фарадах и обозначается F .

Клеммы конденсатора

Есть два вывода конденсатора i.е. положительный и отрицательный вывод, также известный как анод , и катод , соответственно.

Конденсаторы бывают двух типов в зависимости от полярности вывода.

Полярные конденсаторы Конденсаторы Polar

, также известные как электролитические конденсаторы , используют электролит в качестве одного из своих выводов для увеличения емкости накопления заряда. Он имеет большую емкость по сравнению с неполярными конденсаторами.

Его пластины поляризованы i.е. две уникальные клеммы, известные как анод (положительный) и катод (отрицательный).

При использовании полярного конденсатора очень важно проверить полярность его клеммы . Клемма анод всегда должна иметь на более высокое напряжение , чем ее клеммы катод . Изменение полярности может повредить конденсатор и даже разрушить его.

Проще говоря, всегда соединяйте положительную клемму с положительной клеммой, а отрицательную — с отрицательной клеммой аккумулятора.

Неполярный конденсатор

Неполярный конденсатор или неполяризованный конденсатор без полярности . Между его клеммами нет никакой разницы. Оба вывода могут действовать как катод и анод.

Неполярные конденсаторы имеют очень низкую емкость, — от нескольких пикофарад до нескольких микрофарад.

Также прочтите: Тест транзисторов для идентификации клемм, типа и состояния.

Нет положительных и отрицательных выводов.Клемма, подключенная к положительной клемме батареи, действует как анод. В то время как клемма, подключенная к отрицательной клемме аккумулятора, действует как катод. Изменение полярности батареи не влияет на конденсатор.

Визуальная идентификация клемм

Как известно, неполярные конденсаторы не имеют разных выводов. Таким образом, нет необходимости идентифицировать его терминалы.

Однако очень важно идентифицировать выводы полярного электролитического конденсатора.

Первый метод

При изготовлении стержень Anode полярного конденсатора сделан на длиннее на по сравнению с катодным стержнем. Этот метод работает только тогда, когда конденсатор не используется. Второй метод работает как с новыми, так и с использованными конденсаторами.

Второй метод

Отрицательная клемма конденсатора обозначена на его корпусе маркировкой «», указывающей на катодную ножку .

Однако полярные конденсаторы SMD имеют маркировку над положительной клеммой (анод).

Различные методы проверки конденсаторов

Для проверки конденсатора необходимо удалить конденсатор из его цепи, если он есть в какой-либо цепи. Затем разряжает конденсатор, так как он может иметь некоторый накопленный заряд. Это может повредить ваше испытательное оборудование.

Чтобы правильно разрядить конденсатор , подключите резистор между его выводами.Заряд будет рассеиваться через резистор.

Мультиметр — важный инструмент, необходимый для проверки конденсатора . Ниже рассматриваются различные методы проверки конденсаторов с помощью мультиметра.

Проверка конденсатора с помощью проверки целостности цепи

Метод проверки целостности конденсатора показывает, является ли он разомкнутым, коротким или хорошим .

  • Удалите подозрительный конденсатор из цепи.
  • Разрядите с помощью резистора.
  • Установите мультиметр в режим проверки целостности .
  • Поместите красный щуп мультиметра на анод, а черный (общий) щуп на катод конденсатора.
  • Если мультиметр показывает признак обрыва цепи ( гудок или LED ), а затем он останавливается (показывает OL ). Значит конденсатор хороший .

Также прочтите: Различия между конденсатором и батареей

  • Если конденсатор не показывает никаких признаков непрерывности, конденсатор открыт .
  • Если мультиметр издает непрерывный звуковой сигнал, конденсатор замкнут и нуждается в замене.
Проверить конденсатор с помощью теста на сопротивление

Тест сопротивления также используется для проверки конденсатора. Этот тест может выполнять как цифровой, так и аналоговый мультиметр. Метод остается одинаковым для обоих мультиметров.

  • Удалите конденсатор из его цепи.
  • Разрядите конденсатор с помощью резистора.
  • Установите ручку мультиметра в режим с высоким сопротивлением (выше 10 кОм).
  • Поместите красный щуп на анод, а черный щуп на катодный вывод конденсатора.
  • Показание сопротивления должно начинаться с некоторой точки посередине и начинаться с , увеличиваясь с до до бесконечности . Он показывает, что конденсатор хороший .

Также читайте: Как проверить диод и методы тестирования диодов, светодиодов и стабилитронов

  • Если конденсатор показывает высокое сопротивление даже после разряда, конденсатор открыт .
  • Если конденсатор показывает 0 или очень низкое сопротивление, это короткое замыкание .

Причина увеличения сопротивления в том, что изначально конденсатор заряжал от мультиметра . Таким образом, он позволяет току проходить через него (в этом случае омметр измеряет сопротивление ). Когда конденсатор полностью зарядил , он больше не пропускал ток. Из-за чего он выглядит как открытый путь (бесконечное сопротивление )

Проверка конденсатора в емкостном режиме

Режим измерения емкости — это уникальный режим цифровых мультиметров, используемый для измерения емкости.Если вы хотите проверить конденсатор этим методом, вам нужно знать, как считать значение конденсатора.

Как считать значение конденсатора:

Электролитический конденсатор обычно указывает полное значение, как показано на рисунке ниже.

Однако значение керамического конденсатора записывается в виде кода. Вы можете преобразовать / расшифровать его, используя его особый метод. Пример считывания керамического конденсатора приведен ниже.

Керамический конденсатор показывает номер 103 .

  • Первые две цифры являются значащими цифрами и пишется как есть. Например, 10 .
  • Третья цифра « 3 » показывает множитель 10 3 . Таким образом, общая емкость составляет 10 * 10 3 , что равно 10000 пФ .
  • Керамические конденсаторы измеряются в пикофарадах 10 -12 F .
  • Итак, емкость этого конденсатора составляет 10 нФ .

Следующий шаг — найти допуск . Он дает минимальный и максимальный диапазон, в котором емкость может отличаться от номинального значения.

Некоторые из общих значений допуска задаются буквами j, k, l, m и n , чтобы добавить / вычесть процент от 5,10,15,20 и 30 соответственно.

Теперь перейдем к тесту измерения емкости.

  • Удалите конденсатор из его цепи.
  • Разрядите конденсатор с помощью резистора.
  • Установите мультиметр в режим измерения емкости .
  • Некоторые модели мультиметров имеют специальные клеммы для измерения емкости.

  • Поместите щупы мультиметра на конденсатор.
  • Если измеренная емкость соответствует записанному значению (включая допуск) конденсатора, конденсатор соответствует хорошему .
Проверьте конденсатор с помощью теста напряжения:

Способность конденсатора заключается в том, чтобы накапливать заряд, который отражается как напряжение на его выводах.

Этот тест показывает, что конденсатор может удерживать заряд или нет. Если конденсатор , хороший , он будет накапливать некоторый заряд. который будет отображаться как напряжение на его выводе, и мы можем измерить его с помощью вольтметра .

Перед испытанием конденсатора на испытание напряжением вам необходимо узнать о номинальном напряжении конденсатора .

Номинальное напряжение конденсатора всегда указывается рядом с его значением емкости, как показано на рисунке ниже.

При зарядке конденсатора с аккумулятором напряжение аккумулятора должно быть на ниже, чем на номинальное напряжение конденсатора. В противном случае конденсатор перегорит .

В этом тесте мы используем конденсатор номиналом 63 В с 12-вольтовой батареей.

  • Удалите конденсатор из его цепи.
  • Определите клеммы и разрядите конденсатор с помощью резистора.
  • Подключите положительный полюс батареи к положительному, а отрицательный — к отрицательному на конденсаторе.( будьте осторожны, не касайтесь клемм аккумулятора вместе)

  • Дайте зарядить за несколько секунд.
  • Снимите аккумулятор.
  • Установите мультиметр в диапазон настройки вольтметра постоянного тока более 12 В.
  • Запишите начальное мгновенное показание напряжения конденсатора.

  • , если показание составляет около 12 вольт, конденсатор хороший .
  • Если показание напряжения намного ниже 12 вольт, конденсатор неисправен и не может хранить достаточный заряд.
Как проверить конденсатор путем расчета постоянной времени RC

Постоянная времени RC (обозначается греческим словом tau ‘τ’ ) — это время, в течение которого конденсатор заряжается до 63,2% от приложенного напряжения.

Постоянная времени τ вычисляется по сопротивлению , умноженному на емкости :

τ = R C

В этом уравнении резистор R имеет известное значение, и мы будем измерять τ во время этого теста.

В этом тесте мы используем батарею 12 В с резистором 10 кОм . Мы соединили их последовательно с конденсатором. Мы используем вольтметр для измерения напряжения на конденсаторе и секундомер для измерения времени.

  • Настройте схему , как указано ниже.
  • Подключите клеммы аккумулятора, чтобы начать зарядку конденсатора.
  • Включите секундомер, как только вы подключите клеммы аккумулятора.
  • Наблюдать за показаниями напряжения с помощью вольтметра.
  • Как только он достигнет 63,2% из 12v (что составляет 7,5v ). Запишите время на секундомере.

Также прочтите: Цифровой логический шлюз NAND (универсальный шлюз), его символы, схемы и детали IC

Предположим, секундомер показывает 9 секунд .

  • Используйте уравнение постоянной времени RC для расчета емкости.

C = τ / R

С = 9/10 3

C = 0,9 мФ = 900 мкФ

  • Сравните это рассчитанное значение емкости с указанным значением конденсатора.
  • Если разница очень мала, включая диапазон допуска от 10% до 20%. Конденсатор хороший .
  • Если рассчитанное значение емкости слишком низкое, чем указанное значение. конденсатор плохой .
Визуальная проверка конденсатора

Вы можете определить неисправный конденсатор, просто наблюдая за его признаками.

Неисправный или поврежденный конденсатор будет иметь любой из следующих признаков.

Выпуклый верхний вентиляционный канал:

В электролитических конденсаторах есть вентиляционное отверстие (на самом деле не вентиляционное отверстие, а слабые места) в форме X, K, T на его вершине. Он предназначен для сброса давления во время выхода конденсатора из строя, чтобы избежать повреждения (взрыва) любых других компонентов.

При выходе из строя электролит внутри конденсатора выделяет газ. Этот газ создает давление и разрушает верхнее вентиляционное отверстие. В результате иногда возникает выпуклая вершина или электролитический разряд . Разряд бывает черного, оранжевого или белого цвета в зависимости от электролитических химикатов.

Выпуклый нижний и приподнятый корпус

Иногда при выходе из строя конденсатора не выходит из строя верхнее вентиляционное отверстие. в таком случае давление внутри проходит через нижнюю часть .Дно электролитического конденсатора покрыто резиной . Газ внутри выталкивает эту резину наружу, из-за чего нижняя часть выпирает , а также поднимает корпус над монтажной платой.

Керамические конденсаторы и конденсаторы поверхностного монтажа

Вы можете определить неисправный керамический конденсатор по следующим признакам.

  • в нем поврежденных обсадных труб или отверстий в обсадных колоннах.
  • Любая из его ножек повреждена рядом с корпусом.
  • Трещины в корпусе.

Вы также можете прочитать:

Использование осциллографа для поиска неизвестной емкости

Обычно значение конденсатора в микрофарадах или пикофарадах напечатано на его корпусе или там есть цветовой код. Но иногда нам нужно измерить емкость. Например, электролитический конденсатор со временем может потерять емкость (а также показать большее последовательное сопротивление). В критических приложениях этот эффект может быть катастрофическим.Электролитические конденсаторы могут терять емкость, когда они простаивают на полке, а не работают в цепи. Фактически, эти конденсаторы иногда можно восстановить, подвергнув их режиму постепенно повышающегося постоянного напряжения.

Бывают и другие случаи, когда емкость неизвестна, и нам нужно ее измерить. Пример — это когда мы хотим узнать емкость всей электрической среды внутри части электрического оборудования или на его входных или выходных клеммах.Или нам может потребоваться измерить входную емкость пробника осциллографа, чтобы узнать, что происходит.

Мультиметры высшего класса могут измерять емкость, но показания не всегда могут считаться окончательными. Однажды я измерил большое количество новых неэлектролитических конденсаторов и обнаружил, что среднее отклонение от отмеченного значения превышает 10%.

В некоторых приложениях точное значение емкости не критично. Например, допустимы большие отклонения в цепи запуска двигателя.Напротив, резонансный контур требует точного значения для точной настройки.

Осциллограф можно использовать для измерения постоянной времени как средства определения фактической емкости устройства или величины распределенной емкости в электронной системе. Хотя осциллограф не обеспечивает прямого считывания емкости, емкость можно рассчитать, поскольку она напрямую связана с постоянной времени RC-цепи при приложении постоянного напряжения.

Постоянная времени электронной схемы, содержащей резистивные и емкостные элементы, обозначается греческой буквой тау (τ).Эта постоянная времени в секундах равна сопротивлению цепи в омах, умноженному на емкость цепи в фарадах, τ = RC . Тау — это время, необходимое для зарядки конденсатора, включенного последовательно с резистором, до уровня 63,2% от начального значения, обычно 0 В.

Цифровой запоминающий осциллограф может легко отображать график зависимости напряжения от времени при зарядке конденсатора или разрядке через резистор. Затем можно рассчитать постоянную времени схемы и, исходя из этого, определить емкость конденсатора.

Если вы приложите постоянное напряжение к конденсатору, включенному последовательно с резистором, его заряд будет расти сначала быстро, а затем медленнее по мере приближения к напряжению питания. График зависимости напряжения от времени на экране осциллографа называется экспоненциальным ростом. И наоборот, разряд конденсатора, включенного последовательно с резистором, известен как экспоненциальный спад.

Теоретически, напряжение на конденсаторе никогда не становится равным полному напряжению батареи, поскольку скорость изменения снижается по мере приближения к этому уровню.Постоянная времени по определению — это время в секундах, необходимое для того, чтобы заряд, измеренный на выводах конденсатора, равнялся 63,2% приложенного напряжения.

Экспоненциальный рост (вверху), экспоненциальный спад (в центре) и постоянная RC, измеренная по неизвестной емкости (внизу).

Это явление можно легко продемонстрировать, подключив цифровой мультиметр в режиме измерения сопротивления через электролитический конденсатор. В зависимости от полярности подключения измерителя, а также от того, заряжен ли конденсатор, сопротивление будет сначала низким, а затем повышаться или начинать высокое и уменьшаться в измеряемой форме, постепенно снижаясь до тех пор, пока оно не прекратится.Электрики говорят, что омметр ведет отсчет, а это говорит о том, что прибор исправен. Это нехарактерное показание связано с тем, что внутренняя батарея измерителя намеренно смещает конденсатор, чтобы можно было измерить сопротивление. Типичное значение составляет 3 В. Большинство производителей приборов окрашивают щупы в красный цвет для положительных и черных для отрицательных, но это не универсально и должно быть проверено с помощью второго мультиметра.

Чтобы определить неизвестную емкость с помощью осциллографа, последовательно подключают источник постоянного тока, такой как батарея 9 В, известное сопротивление, переключатель и конденсатор.Наконечник пробника осциллографа и заземляющий провод подключаются к конденсатору. Кроме того, вам понадобится перемычка с коротким проводом, чтобы шунтировать конденсатор.

Когда переключатель переводится в положение «включено», на дисплее осциллографа отображается напряжение на конденсаторе. Поскольку прибор находится в режиме измерения во временной области, амплитуда в вольтах отображается по оси Y, а прошедшее время — по оси X. Перед нами стоит задача найти постоянную времени последовательно включенных резистора и конденсатора. Для этого определите окончательный заряд конденсатора, который должен быть практически равен номинальному напряжению батареи.Затем умножьте это количество на 0,632, потому что постоянная времени по определению основана на 63,2% максимального заряда конденсатора.

Найдите эту точку на осциллограмме осциллографа, используя горизонтальную линию от оси Y. Затем, начиная с этой точки кривой зарядки, опустите вертикальную линию вниз до оси X, которую необходимо откалибровать за секунды. (Для этой цели можно использовать курсор.) Это обеспечивает постоянную времени RC-комбинации, τ. Зная постоянную времени, найти неизвестную емкость несложно.

Как указывалось ранее,

τ = RC
транспонирование,
C = τ / R

Напомним, что в уравнении постоянной времени C выражается в фарадах, большое значение для R , которое известно, в знаменателе дает разумное значение для емкости, выраженной в микрофарадах, миллионных долях фарада.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*