Принцип действия задвижки: Устройство и принцип работы разных типов задвижек

Содержание

Клиновая задвижка как вид запорного механизма: виды и применение

Запорная арматура, установленная на трубопроводах, управляет потоком перекачиваемых жидкостей и газов. Один из видов запорных элементов — устройство в форме клина, называется клиновой задвижкой, которая используется исключительно как запирающая конструкция, но не применяется для регулирования потока, поскольку имеет только два положения «открыто» и «закрыто».

Сферы применения задвижек

Клиновые задвижки устанавливают в конце трубопровода, а также в местах перекрытия движения рабочей среды для выполнения технологических и аварийных работ.

Этот вид запорной аппаратуры изготавливают в широком диапазоне условных диаметров и рабочих давлений под все типоразмеры трубопроводов, поэтому они используются в различных трубопроводах.

Задвижки с упругим клиновым затвором обеспечивают надежное перекрытие скоростных потоков и способны работать под высоким давлением.

Нашли применение в нефтяной и газовой промышленности.

Задвижки этого типа используют химические предприятия, имеющие технологические линии по прокачке агрессивных растворов.

Хозяйствам горячего теплоснабжения подходит разделительная клиновая задвижка, затвор которой разделен на 2 части, для увеличения диапазона смещения. Это позволяет компенсировать тепловые расширения. Можно применять на паровых линиях.

Устройство и принцип действия

Основные детали клиновых задвижек

  • корпус,
  • затвор,
  • шток,
  • штурвал,
  • сальниковый узел,
  • крышка корпуса,
  • направляющий диск.

Устройство работает по принципу винтового домкрата: вращение штурвала влево перемещает шток вверх вместе с затвором.

Направляющий диск (их два по обе стороны затвора) запрессован в посадочное гнездо под углом. Оба диска образуют форму клина. Положение между направляющими дисками занимает круглый плоский затвор. Такая конструкция обеспечивает герметичное перекрытие потока, даже при высоких давлениях и скорости.

По способу линейного перемещения клинового затвора задвижки бывают с выдвижным и невыдвижным штоком.

Задвижка с выдвижным штоком

Задвижка с выдвижным штоком позволяет контролировать положение затвора по выдвинутой части штока во время вращения штурвала.

Линейное перемещение штока действует по принципу винтового домкрата, используя вращение штурвала. Шток при этом выдвигается вверх, увлекая затвор, который скользит вдоль пластин, заходит в пространство корпуса под крышкой.

Вращение открытия выполняют влево. Закрытие по часовой стрелке – вправо.

Сальниковое уплотнение прижимается крышкой, которая упирается в прижимную втулку, надетую на шток. Если поджать гайки, то крышка упрется в прижимную втулку, которая будет поджимать сальники штока.

Обратите внимание! Сальниковый узел надо периодически поджимать, потому что уплотнение изнашивается. Если этого не делать появятся пропуски через сальниковый узел. Выдвижной шток контролируется высотой хода.

Задвижка с невыдвижным штоком

Чтобы открыть затвор — производят вращение штурвала по часовой стрелке. Конструкция уменьшает длину штока, убрав винтовую часть внутрь корпуса.

При использовании задвижки с невыдвижным штоком при вращении маховика трудно определить позицию затвора, поэтому перед монтажом важно проверить число оборотов от позиции «закрыто» до «открыто», затем нанести на штурвале стрелку вращения, позицию, число оборотов для удобства использования.

Принцип действия задвижки с не выдвигающимся штоком напоминает работу съемника: винтовая часть штока вворачивается в затвор, и он по направляющим дискам входит в пространство корпуса под крышку.

Плюсы и минусы клиновых задвижек

Простая конструкция не вызывает сложностей в использовании, управление не требует особых усилий. При этом популярность клиновых задвижек объясняется целым рядом достоинств:

  • точное позиционирование положения «открыто» и «закрыто»;
  • перекрытие даже высокоскоростных потоков;
  • герметизация канала без дополнительных усилий на маховике;
  • перепад давления в открытом положении почти не изменяется;
  • в открытом положении затвор расположен выше потока жидкости и не разрушается абразивными частицами.

При всем этом, конструкция имеет свои минусы:

  • требует дополнительное место для размещения поднятого затвора;
  • ручное управление открытием-закрытием происходит медленно;
  • в открытом положении в пространство между направляющими дисками часто попадают твердые отложения, что препятствует герметичному закрытию задвижки;
  • не подходит для регулирования движения рабочей среды;
  • подвержена вибрации в частично открытом состоянии;
  • есть сложности в выполнении притирки и шлифовки внутренних деталей.

Требования к запорной арматуре

Повышенные требования к запорной арматуре определены высокими давлениями в трубопроводе и условиями пользования. На опасных производственных объектах запорная арматура сертифицирована.

К ней поставляется ЗИП, куда входят сменные узлы и детали: прокладки из фторопласта, кольца для герметизации соединений трубопроводов высокого давления, крепежная арматура, другие детали.

На корпусе задвижки указывается размер и давление, на которое рассчитана задвижка. Могут быть буквы, обозначающие тип арматуры, например, ЗКЛ2-150-14 означает: задвижка клиновая литая. 2-модификации, условный диаметр 150 мм, давление 1,4 МПа.

Остальные данные указываются в техпаспорте изделия.

Кроме этих стандартов, есть международные: API, BS, MSS, ASME.

Например, API 600 представляет собой стандартную спецификацию для стальных задвижек с фланцевыми или стыковыми концами и болтовыми крышками, которые предназначены для применения в тяжелых условиях эксплуатации, таких как нефтеперерабатывающий завод и связанные с ним применения.

Материалы для изготовления клиновых задвижек

Чтобы не ошибиться в выборе нужного запорного устройства, надо предварительно составить схему будущих коммуникаций, определить условия эксплуатации.  При выборе важно учитывать условия, при которых используются запорные устройства.

Для работы при низких показателях давления подойдут чугунные сплавы, для средних давлений и при работе с агрессивными средами используют задвижки из бронзы и сплавов цветных металлов, для работы под высоким давлением — стальные.

Нормы EN определяют материалы и для различных элементов задвижек:

Название деталиМатериалы для изготовления
1КорпусУглеродистая стальНержавеющая сталь
30лс76нж, 30лс41нж,08Х18Н10 (10Х17Н13М2Т, 12Х18Н10Т, для агрессивных сред)
2Крышка30лс41нж, 30лс541нж08Х18Н10, 12Х18Н10Т
3Затвор, диски30лс76нж, 30лс41нж, 30лс541нж10Х17Н13М2Т, 12Х18Н10Т
5Шток30лс76нж, 30лс41нж, 30лс541нж10Х17Н13М2Т, 12Х18Н10Т
6Болт30лс41нж, 30лс541нж03Х18Н11
7Шпильки30лс41нж, 30лс541нж03Х18Н11
8Втулка штока3% C, от 13,5% до 36% Ni, иногда меди до 6,5% и хрома (иногда высокого сплава, такого как никель), молибдена, кремния
10прокладкаГрафит, фторопласт
11сальникГрафит, фторопласт,

Виды клиновых задвижек

Различают 3 типа клиновых задвижек по конструкции затвора и седла.

  1. Конструкция с твердым клиновым затвором востребована из-за простоты и прочности. Задвижка устанавливается в трубопроводах, подходит для жидкостей с низким содержанием твердых примесей. Это практичный вариант запорной арматуры для турбулентного потока.
  2. Гибкий клиновой затвор представляет собой цельный диск с разрезом по периметру для получения возможности изменить угол между пластинами седла. Узкий разрез дает гибкость, сохраняя прочность. Глубокий и широкий разрез или литая втулка, оставляет мало материала в центре, что обеспечивает гибкость, но прочностные характеристики затвора снижаются.
  3. Разделительные клиновые задвижки (рисунок 3) имеют самонастраивающиеся посадочные поверхности. Тип клина подходит для работы с газами и жидкостями, включая коррозионные, при нормальных и высоких температурах.

По типу затвора различают:

  • Задвижки с твердым клиновым затвором для обвязки систем тепло водоснабжения необъятного ЖКХ занимают лидирующую позицию в использовании. Их устанавливают в технологических колодцах для отключения аварийных участков.  Широкий размерный ряд по давлению, присоединительным элементам, материалам изготовления обеспечивают оптимальный подбор нужного запорного устройства.
  • Задвижки с упругим клиновым затвором обеспечивают надежное перекрытие скоростных потоков и способны противостоять высоким давлениям. Они нашли применение в нефтяной и газовой промышленности, для обустройства трубопроводных линий высокого давления. Размерный ряд DN (ДУ) и рабочее давление указывают при выборе задвижки.

Как работает ручная задвижка

Технические особенности разных трубопроводных систем требуют применения не только применения больших задвижек и кранов, в них применяются и небольшие или даже миниатюрные ручные виды запорной арматуры. В большинстве видов ручных приборов управления используются стандартные принципы работы устройств, да и предназначены они, как и большие задвижки для регулирования потока рабочей среды внутри трубопровода. Правда, для решения технических заданий используется несколько видов ручных задвижек, имеющих свои особенности и качественные отличия.

Назначение и принцип работы ручных регулирующих задвижек

 

Соблюдение технологии и условий перекачки рабочей среды внутри трубопровода зависит от правильно подобранной запорной арматуры. При этом задвижки, краны, отсекатели и аварийные клапана имеют свои строго определенные функции и роди в системах.

 

Так, краны предназначены для выхода рабочего вещества за пределы трубопровода, обратные обеспечивают перекрытие трубопровода в случае изменения направления рабочей среды, а задвижки предназначены для полного или частичного перекрытия внутреннего объема трубопровода. Именно полное или частичное закрытие движения рабочего вещества в трубах и является основным назначением для работы ручных задвижек.


В отличие от кранов задвижки перекрывают полость рабочим органом, перпендикулярно рассекая поток. Такой вид арматуры более эффективно запирает поток при этом закрытие может осуществляться как в трубопроводах, перекачивающих как жидкости, так и газы, и даже вязкие вещества с вкраплением твердых и нерастворимых вкраплений.


Конструкция, при которой поток буквально рассекается затвором способна обеспечить работу при высоких и очень высоких показателях давления и температуры. В дополнении к этому эффективность именно ручных задвижек доказана и применением в трубопроводах в агрессивных средах, когда применяются специальные виды затворов.

Особенности конструкции ручных задвижек

 

Для конструкции этого вида запорной арматуры используется самый эффективный и простой вид конструкции — корпус и крышка, внутри которых и располагается рабочий проход и орган, обеспечивающий перекрытие потока в корпусе.


В корпусе размещается рабочий проход равный диаметру трубопровода, и камера в которой движется затвор — рабочий орган задвижки. Такая простая конструкция обеспечивает не только максимально свободный пропуска вещества, но и не создает зону разрежения как в обычных кранах. Крышка корпуса надеваемая сверху надежно герметизирует внутреннюю камеру корпуса и одновременно служит креплением для рабочих механизмов — штока, штурвала, группы уплотнения и подающей резьбы.


Конструкция корпуса имеет кроме рабочего прохода еще и крепления для установки задвижки в трубопровод. Специфика конструкции узла крепления выступает одним из видов классификации задвижек. Так, арматуру классифицируют:

  1. Задвижки фланцевого типа крепления;
  2. Использующие муфтовые соединения;
  3. Раструбные;
  4. Модели под приварку.

Рабочий ход затвора обеспечивается применением штока с резьбой, который при вращении вокруг своей оси поднимает и опускает рабочий орган. Приводится в действие такой шток путем поворота штурвала или маховика, жестко закрепленного при помощи неразъемного соединения или гаек.


Затвор имеет специальное крепление, позволяющее зафиксировать шток вращающийся шток и осуществлять подъем и опускание затвора. В отличие от других видов устройств перекрытия потока ручные приборы не используют механические и электрические приводы, здесь, все операции проводятся при помощи ручной силы оператора.

 

Закрытие и открытие при этом осуществляется при помощи поворота маховика по часовой или против часовой стрелки. Ручное управление при этом должно осуществляться плавным вращением маховика, использование дополнительных рычагов для увеличения усилия недопустимо.

Где находят применение ручные виды задвижек

 

Для установки в трубопроводах используются приборы разного диаметра, здесь есть и небольшие, диаметром всего в 15 мм задвижки и устройства для установки на трубопроводах большого диаметра — до 2000 мм.

 

Подобного рода трубопроводы применяются:

  1. В системах коммунального хозяйства;
  2. Водопроводах и водоводах;
  3. Канализационных насосных системах и станциях;
  4. Технологических трубопроводах магистральных нефте- и  газотранспортных систем;
  5. Технологических системах химических предприятий;
  6. На транспорте и транспортной инфраструктуре.

Ручные задвижки применимы для трубопроводов, использующих рабочее давление до 25 атмосфер и температуре рабочего потока 565 градусов Цельсия.


Широкое распространение ручных видов запорной арматуры обусловлено:

  1. Простотой конструкции задвижек;
  2. Управление не требует специальной дополнительной аппаратуры;
  3. Прямой вид рабочей камеры корпуса не препятствует потоку вещества;
  4. Небольшие размеры, что дает экономию пространства;
  5. Возможность применения в большом количестве трубопроводов;
  6. Приемлемый для работы диапазон температур и давления;
  7. Возможность изменения направления потока содержимого трубопровода;
  8. Большой ассортимент размерных групп и типов подключения к трубам;
  9. Небольшой коэффициент гидравлического сопротивления;

Вместе с тем, конструкция не лишена и недостатков, что делает ее уязвимой и требует дополнительного внимания при эксплуатации и обслуживании:

  1. Управление затвором посредством вращения штурвала не спасет прибор от трения, а износ деталей — это основная причина поломки оборудования;
  2. При закрытии образуется перепад давления в разных частях корпуса, это может негативно сказываться на состояние крепления и прочности корпуса задвижки и затвора;
  3. Для проведения ремонта необходимо останавливать работу трубопровода, что означает необходимость установки нескольких задвижек и усложнения системы;
  4. Использование опускающегося затвора в обычных условиях может привести к заклиниванию прибора, а в случае, когда работа трубопровода связана с высокими температурами, при быстром вращении штока риск заклинивания увеличивается в несколько раз;
  5. Работа по перекрытию трубопровода требует определенного времени, особенно если задвижка с выдвижным типом штока;
  6. Установка оборудования с выдвижным штоком требует большого пространства, из-за этого необходимо учитывать размеры относительно других коммуникаций;

Классификации и виды ручных задвижек

 

Для более точного подбора оборудования используются несколько видов классификации ручных устройств в зависимости от конструкции, типа подключения, вида затвора и других особенностей.
Наиболее часто встречающийся вид классификации — это классификация по типу установленного штока в задвижках. По типу конструкции штока в таком случае классифицируются:

  1. Задвижки с выдвижным штоком — устройства, когда сам шток закреплен в затворе и при работе поднимается вместе с ним. Вращение маховика осуществляется вокруг оси штока, а его перемещение осуществляется вдоль оси, при этом, маховик закреплен на корпусе, и шток выдвигается через него наружу.
  2. С неподвижным штоком конструкция имеет жесткое крепление маховика к самому штоку, что при вращении делает неподвижным сам шток, а затвор, имеет в своей конструкции гайку, в которую и входит резьба штока.

Классификация по типу затвора касается конструкции и вида материала, из которого сделан затвор, согласно этому признаку устройства классифицируются:

  1. Клиновые — затвор имеет вид клина;
  2. Шланговые — использующие в корпусе шланговую вставку, которую и пережимает затвор;
  3. Параллельные типы затворов.

По типу исполнения корпуса арматура может разделяться:

  1. Чугунные, задвижки корпус которых выполнен из чугунного литья;
  2. Из стали, для трубопроводов высокого давления;
  3. Из нержавеющей стали — для химически активных сред или трубопроводов, в которых транспортируется жидкости и газы высокой чистоты продукта;
  4. Латунные для трубопроводов из цветных металлов, чтобы не допустить образования коррозии;

В зависимости от технологии производства различают арматуру:

  1. Выполненную из литья;
  2. Сварного типа;
  3. Имеющую резьбовое соединение частей корпуса.

В зависимости от типа конструкции и вида уплотнителей подвижных элементов различаются:

  1. Устройства, использующие сальниковый тип уплотнителя;
  2. Герметизирующие узел при помощи самоуплотняющегося устройства;
  3. Сильфонные типы уплотнителя.

Из чего состоит задвижка Статья от компании «Промэлемент»

Задвижка — это одна из наиболее распространенных разновидностей запорной арматуры для трубопроводов. Принцип действия задвижки заключается в перекрытии потока рабочей среды при помощи запирающего элемента, перемещающегося перпендикулярно оси трубопровода. Диапазон внутренних диаметров трубопроводов, в которые монтируются задвижки, варьируется от десятков миллиметров до нескольких метров, давление в трубе может приближаться к 25 мегапаскалей, а температура транспортируемой среды достигать 565 градусов. Рассмотрим подробнее из чего состоит трубопроводная задвижка и какие у нее есть плюсы и минусы.

ДОСТОИНСТВА И НЕДОСТАТКИ СТАЛЬНЫХ ЗАДВИЖЕК

По типу управления данные устройства делятся на задвижки с ручным управлением (при помощи штурвала), электрическим, гидравлическим или пневматическим приводом. Задвижки крупных диаметров как правило комплектуются редукторами, позволяющими существенно снизить усилия при перемещении затвора.

К ПРЕИМУЩЕСТВАМ ЗАДВИЖЕК ЧАЩЕ ВСЕГО ОТНОСЯТ СЛЕДУЮЩИЕ ОСОБЕННОСТИ:

  • простота конструкции в сравнении с другими типами запорной арматуры
  • малая длина устройства, облегчающая монтаж
  • широкий диапазон внешних условий, в которых допускается эксплуатация задвижек
  • низкое сопротивление потоку в открытом состоянии

В числе основных недостатков задвижек чаще всего упоминают следующие:

  • большое время полного открытия или закрытия
  • постепенный износ уплотнений в корпусе и затворе задвижки, в итоге приводящих к необходимости ремонта, который затруднительно выполнить без вывода задвижки из эксплуатации
  • требования к свободному пространству в месте установки задвижки, что обусловлено большой эксплуатационной высотой (в первую очередь у задвижек с выдвижным шпинделем) для обеспечения полного хода затвора.

СОСТАВНЫЕ ЧАСТИ ЗАДВИЖКИ

В зависимости от принципа действия запорной части, различают клиновые, шиберные, параллельные и шланговые задвижки. Рассмотрим из чего состоит стальная задвижка на примере клиновой задвижки со шпинделем. Корпус и крышка задвижки образуют рабочую полость, внутри которой перемещается затвор (в данном случае клинового типа). На двух сторонах корпуса располагаются соединительные узлы для монтажа задвижки в состав трубопровода. Данные узлы чаще всего предназначены для фланцевого соединения, однако также встречаются варианты с монтажом при помощи муфты или путем сварного соединения. В внутренней полости корпуса располагаются 2 седла с уплотнительными поверхностями (в зависимости от типа затвора, эти поверхности могут быть расположены под углом друг к другу или параллельно), к которым в закрытом положении герметично прилегают уплотнительные поверхности клинового затвора. При помощи шпинделя и ходовой гайки, которые составляют резьбовую пару, затвор перемещается перпендикулярно оси трубопровода вдоль которой транспортируется рабочая среда. Такой способ перемещения затвора при помощи резьбовой пары используется в случае ручного или электрического привода задвижки. Если же задвижка оборудуется гидравлическим или пневматическим приводом, то шток, прикрепленный к затвору, совершает поступательное перемещение под воздействием привода. В нашем случае шпиндель проходит через уплотнительный сальник в крышке и соединяется со штурвалом, который и является органом управления задвижкой.

ЗАДВИЖКИ С ЖЕСТКИМ КЛИНОМ

Клиновые задвижки имеют несколько разновидностей, которые отличаются формой, видом и материалом клина. Вне зависимости от типа клина, общее устройство задвижки выглядит следующим образом. В корпусе располагаются седла, которые образуют по отношению друг к другу небольшой угол. На эти седла в закрытом положении плотно садится клин и полностью перекрывает пространство между ними. Если в конструкции задвижки применяется жесткий клин, то при условии соблюдения высокой точности обработки уплотнительных поверхностей клина и седел, обеспечивает отлична герметичность запирания. Однако у клина такого типа есть и недостатки, связанные с возможным заклиниванием затвора в случае приложения излишних усилий при его запирании, а также в случае температурных колебаний, вызванных изменением температуры окружающей среды или транспортируемых жидкости или газа. Коррозия или износ уплотнительных поверхностей также приводят к потере герметичности соединения или затруднениям в открытии задвижки.

ЗАДВИЖКИ С ДВУХДИСКОВЫМ КЛИНОМ

Для снижения риска заклинивания в конструкции задвижки применяется так называемый двухдисковый клин, который состоит из двух жестко соединенных дисков, размещенных под углом друг относительно друга. Таким образом, состав стальной задвижки с двухдисковым клином увеличивается на несколько деталей. Благодаря самоустановке дисков относительно седел, снижаются требования к идентичности углов расположения седел и дисков, а также повышается герметичность затвора в закрытом положении. Конструкция двухдискового клина сложнее, чем у традиционного, но в сложность компенсируется меньшим износом поверхностей уплотнения в процессе эксплуатации и сниженным усилием, прилагаемым для надежного закрытия задвижки. Запорная арматура с двухдисковым клином, применяемая на судах, также носит наименование клинкетной.

ЗАДВИЖКИ С УПРУГИМ КЛИНОМ

Промежуточным типом, который обладает удобствами двухдискового клина, в области компенсации деформаций корпуса задвижки вследствие температурных колебаний, и при этом представляющий собой более простую конструкцию, является упругий клин. В отличие от жесткого клина, он не требует такой точной подгонки поверхностей затвора и седел. Это связано с конструкцией упругого клина, которая представляет собой два диска, связанных упругим изгибающимся элементом, за счет которого обеспечивается необходимая герметичность контакта между уплотнительными поверхностями.

ПАРАЛЛЕЛЬНЫЕ И ШИБЕРНЫЕ ЗАДВИЖКИ

Конструкция параллельных задвижек отличается наличием двух параллельных дисков и двух седел параллельных друг другу. В закрытом положении диски плотно прижимаются к седлам при помощи опускающегося клиновидного грибка специальной конструкции. Разновидностью параллельной задвижки считается задвижка шиберного типа. В такой задвижке используется только один диск, что снижает герметичность запирания и обеспечивает возможность применения задвижки только в трубопроводах с одним направлением движения транспортируемой рабочей среды. Чаще всего задвижки такого типа применяются в трубопроводах для перекачки канализационных и прочих стоков, пульпы или шламов.

ЗАДВИЖКА ШЛАНГОВОГО ТИПА

Шланговая задвижка конструктивно полностью отличается от прочих типов запорной арматуры отсутствием седел и уплотнительных поверхностей затвора. Ответ на вопрос из чего состоит задвижка этого типа следующий. Такая задвижка содержит установленный в корпусе патрубок или шланг из эластичного материала, по которому транспортируется через задвижку рабочая среда. В процессе перекрытия задвижки осуществляется полное пережатие данного шланга вследствие воздействия на него штока. Применяются шланговые задвижки в трубопроводах, перекачивающих рабочие среды с повышенным показателем вязкости. К задвижкам такой тип арматуры относят потому, что принцип ее действия также связан с перемещением шпинделя или штока в плоскости, перпендикулярной оси трубопровода.

ВЫДВИЖНОЙ ИЛИ НЕВЫДВИЖНОЙ ШПИНДЕЛЬ

По расположению ходового узла, которое представляет собой резьбовую пару из шпинделя и гайки, входящих в состав трубопроводной задвижки, устройства делятся на арматуру с выдвижным и невыдвижным шпинделем. Первый тип шпинделя подразумевает расположение шпинделя снаружи корпуса. В процессе открытия или закрытия задвижки происходит вращение ходовой гайки, что приводит к поступательному перемещению шпинделя, верхний конец которого выдвигается на величину, равную ходу затвора. Для обеспечения возможности движения шпинделя ходовая гайка размещена над верхней частью крышки. К примеру, задвижка стальная 30с41нж и 30лс41нж относится именно к такому типу с выдвижным шпинделем. Плюсом такой конструкции является отсутствие контакта данного узла с рабочей средой, которая может оказывать агрессивное воздействие, а также обеспечение свободного доступа к ходовому узлу для проведения процедур по его обслуживанию. К минусам данной конструкции относят требования к свободному месту для перемещения шпинделя, что приводит к большей строительной высоте при монтаже такой задвижки.

В задвижках с невыдвижным шпинделем достоинства и недостатки прямо противополжны предыдущей конструкции. В такой задвижке шпиндель совершает только вращательные движения, а ходовая гайка, которая соединена с затвором, в процессе открытия или закрытия задвижки наворачивается на шпиндель и перемещает затвор. Поскольку в конструкции данного типа ходовой узел находится под воздействием транспортируемой рабочей среды, задвижки с невыдвижным шпинделям применяют в трубопроводах, перекачивающих неагрессивные жидкости, масла и нефтепродукты. В связи с тем, что такая конструкция шпинделя существенно затрудняет доступ к нему для проведения процедур по обслуживанию, задвижки данного типа редко применяются в объектах повышенной ответственности. Зато низкие требования к наличию дополнительного места для монтажа задвижки, позволяют использовать ее в условиях ограниченного пространства для установки запорной арматуры, таких как скважины, колодцы и прочие подземные коммуникации.

СПОСОБЫ ИЗГОТОВЛЕНИЯ ЗАДВИЖЕК И ПРИМЕНЯЕМЫЕ В КОНСТРУКЦИИ МАТЕРИАЛЫ

Корпуса задвижек чаще всего изготовляются методом литья из сталей различных марок, чугуна или алюминиевого сплава. Однако, некоторые стальные корпуса, а также корпуса из титановых сплавов изготавливаются так называемым штампосварным методом, которые подразумевает на первом этапе штамповку заготовок из катаного листа, а втором этапе осуществление сварки заготовок (в инертной среде для титановых сплавов). Второй метод изготовления ничем не уступает литью, более того, по своим прочностным характеристикам, за счет использования материалов повышенной прочности и износостойкости, такие задвижки применяются в условиях увеличенных требований к характеристикам материала запорной арматуры. Применение в производстве современных методов контроля качества соединений, полученных методом сварки, позволяет гарантировать высочайшее качество сворных швов и обеспечивает возможность применения таких задвижек на объектах повышенной ответственности вплоть до атомных электростанций.

Для уплотнительных поверхностей большинства задвижек применяется латунь или фторопласт, сорта стали, устойчивой к коррозионному воздействию. В некоторых типах клиновых задвижек уплотнительные поверхности могут покрываться резиной, а задвижках шлангового типа из резины или аналогичных эластичных материалов изготавливается пережимной шланг.Остались вопросы?

Устройство клиновой задвижки: виды, принцип работы

Запорная арматура — обязательный элемент любого трубопровода. Ее назначение — частичное или полное перекрытие потока рабочей среды. По конструкции запорная арматура может быть самой разной: на сегодняшний день существуют десятки разновидностей кранов, вентилей других подобных устройств. Одним из вариантов запирающего оборудования является клиновая задвижка.

Где применяются клиновые задвижки

Принцип работы клиновой задвижки прост, а ее устройство наделяет оборудование надежностью и долговечностью, поэтому сфера применения запорной арматуры достаточно широка. Задвижки могут иметь разный размер и доходить до 2 м в диаметре. Их можно устанавливать и на внутридомовые системы, и на магистральные трубопроводы.

Работать клиновые задвижки способны в широком диапазоне давлений и температур. Их можно использовать в системах с давлением до 2 МПа и при температуре свыше 500 градусов. Они подходят для контакта с жидкими и газообразными рабочими средами, а также выдерживают воздействие агрессивных веществ, в частности нефти и нефтепродуктов.

Устройства с клиновой задвижкой могут управляться:

  • вручную,
  • автоматически.

Задвижки клиновые с ручным устройством управления проще и дешевле. Их монтируют на легкодоступных участках трубопроводов. Автоматизированную запорную арматуру устанавливают в удаленных или труднодоступных местах, куда тяжело или долго добраться при необходимости регулирования или перекрытия потока жидкости или газа.

Принцип работы клиновых задвижек

Типовое устройство клиновой задвижки представлено на рисунке.

На конструкции клиновой задвижки цифрами обозначены:

  1. корпус;
  2. крышка;
  3. шпиндель;
  4. клиновой запирающий элемент;
  5. направляющие клина;
  6. гайка;
  7. втулка с 0-образными сальниками;
  8. 0-образные сальники;
  9. резиновая манжета;
  10. кольцо;
  11. пыльник;
  12. прокладка;
  13. болты крепления крышки;
  14. защитное кольцо;
  15. шайбы.

Принцип работы клиновой задвижки зависит от того, выдвигается ли у устройства клин. Наиболее распространенным видом запорной арматуры этого класса является та, у которой шток не выдвигается. У таких конструкций винтовая часть располагается внутри, и они работают по принципу домкрата. Клиновые задвижки с выдвижным устройством позволяют регулировать положение затвора.  

Что касается материалов, то конструкция клиновой задвижки может быть изготовлена из стали или чугуна. Выбирать изделия необходимо, опираясь на особенности рабочей среды и характеристики трубопровода.

Вам будет интересно:

Колесные погрузчики Case получили новую систему управления
450-километровая пробка из тракторов: в Нидерландах очередная акция протеста
Спецтехникой Bobcat можно будет управлять с телефона
Новый роторный смеситель RM400 будет выпущен в 2020 году
Бульдозер гусеничный: как выбрать надежную технику
Какие бывают трактора: фото, классификация и виды

Самое интересное о спецтехнике читайте в разделе «Новости спецтехники»!

Шиберные задвижки: конструкция, особенности, применение

Шиберные задвижки – один из видов запорной арматуры, применяемый при регулировке движущихся жидкостных, газовых или смешанных потоков в различных промышленных и бытовых сферах. Такая распространенность и популярность объясняются простотой, надежностью и удобством использования этого типа элементов. На схемах задвижки обозначаются двумя горизонтально ориентированными треугольниками, расположенными вершинами друг к другу и разделенными вертикальной чертой.

Конструкция

Конструктивно шиберная задвижка представляет собой обычную заслонку (затвор) – плоскую или клиновидную в сечении – которая перекрывает поток жидкости (газа) перпендикулярно его течению. В зависимости от своего положения элемент может закрывать трубопровод полностью или частично.

Устройство шиберной задвижки предполагает также наличие дополнительных элементов – помимо самого ножа (шибера) – стойки, шпинделя, маховика, уплотнителей. Все вышеперечисленные элементы крепятся к корпусу или располагаются внутри него.

Устройство и принцип работы

Говоря о том, из чего состоит шиберная задвижка, следует отметить ее следующие основные составляющие:

  • Стойка, через которую проходит шпиндель с прикрепленным к нему маховиком. Эти элементы обеспечивают движение элемента и перекрытие потока рабочей жидкости или газа;
  • Шибер – то есть сама заслонка, которая может иметь различную форму и конструкцию – в зависимости от типа конкретной запорной арматуры;
  • Уплотнительные элементы, которые обеспечивают герметизацию узла. Они могут располагаться на шибере или корпусе – за ножом по ходу движения среды. В последнем случае герметизация обеспечивается за счет прижатия заслонки давлением рабочей жидкости;
  • Сальник. Задача этого элемента – обеспечивать герметичность верхней части узла;
  • Корпус – тройник с центральным расширением. Часто выполняется разборным или с крышкой – для доступа к запорному механизму.

Задвижка перемещается по специальным направляющим (салазкам) внутри корпуса элемента. Она приводится в движение вращением маховика и посредством штока. Перемещаясь по направляющим, затвор частично или полностью перекрывает поток. Сама она при этом прижимается образующимся внутри трубопровода давлением к направляющим и уплотнителям, что обеспечивает герметичность узла.

Разновидности

В зависимости от формы затвора различают несколько разновидностей. Наиболее распространенными являются клиновидная и ножевая. Каждая из них в свою очередь может иметь разную конструкцию. Так клиновидный затвор может быть цельным или изготавливаться из двух соединенных под определенным углом дисков. Преимущества задвижки такого типа в высокой надежности и способности выдерживать большое давление рабочей среды. Но клин требует очень точной подгонки с направляющими (седлом). Также такая арматура не может использоваться с рабочими средами высокой температуры, так как затвор при этом подвергается тепловой деформации, что нарушает герметичность узла.

Ножевой затвор представляет собой пластину относительно небольшой толщины. Принцип работы шиберной задвижки такого типа схож с принципом ножа – затвор опускается и как бы «разрезает» поток жидкости или газа. Для повышения надежности и герметичности узла ножей может быть несколько. На нашем сайте доступны для заказа шиберно-ножевые задвижки CMO.

Также шиберная арматура может различаться по принципу приведения заслонки в движение: ручная, электрическая, пневматическая.

  • Первые – наиболее простые и надежные, но область их применения ограничена жидкостями и газами небольшой плотности с малой скоростью движения.
  • Электрические могут применяться на крупных трубопроводах и магистралях. Их единственным недостатком является энергозависимость.
  • Задвижки с пневматическим приводом самые сложные по конструкции, но позволяют работать практически с любыми средами и обеспечивают тонкую регулировку потока.

Вне зависимости от конструкции все виды арматуры присоединяются к трубопроводу классическими типами соединений: фланцевыми, межфланцевыми или под сварку. При фланцевом и межфланцевом соединении рекомендуют использовать уплотнительные проставки.

Сфера применения

Несмотря на то, что функционал задвижек такого типа ограничен только двумя основными действиями – перекрытие и регулирования потока рабочей жидкости или газа – они находят самое широкое применение в различных сферах народного хозяйства.

Чаще всего шиберные задвижки используются в следующих областях:

  • Коммунальное хозяйство. Арматуру монтируют на городских сетях водоснабжения и водоотведения, а также устанавливают на трубопроводах, по которым осуществляется транспортировка теплоносителей, питьевых, технических или сточных вод;
  • Нефтегазовая сфера. Благодаря своей надежности затворы являются важным элементов нефте- и газодобывающего оборудования, а также применяются на магистральных трубопроводах при транспортировке и переработке углеводородов;
  • Добыча и обогащение полезных ископаемых. Наиболее широко шиберные задвижки применяются на перерабатывающих и обогатительных фабриках – в трубопроводах и оборудовании для транспортировки, измельчения, сортировки, обогащения и т.д.;
  • Химическая и пищевая промышленность. Задвижки используются на производственных линиях при изготовлении широкого спектра химической и пищевой продукции. В этих сферах обычно используются узлы, изготовленные из высокопрочных инертных материалов, не подверженных коррозии и обеспечивающих высокую степень герметизации среды;
  • Производство строительных и отделочных материалов. Наиболее широко такие элементы применяются на цементных заводах и в оборудовании по его транспортировке. Благодаря своей высокой прочности и надежности этот тип запорной арматуры исключает потери сырья и материала на всех этапах переработки и производства;
  • Электроэнергетика. Задвижки устанавливаются на трубопроводах атомных, тепловых и гидроэлектростанций, обеспечивая регулировку жидкости охладительного контура.

Кроме того, арматура может применяться и в других сферах, где присутствуют трубопроводы большого диаметра или с большим давлением/скоростью потока.

Достоинства

В сравнении с другими типами запорной арматуры, шиберная задвижка имеет ряд преимуществ по принципу работы, устройству, техническим и эксплуатационным качествам. Среди основных достоинств следует отметить:

  • Простота и надежность конструкции, что существенно упрощает ее монтаж и эксплуатацию;
  • Высокая степень герметичности даже при работе с агрессивными и химически активными средами;
  • Долгий срок службы, благодаря отсутствию застойных зон и способности к самоочищению;
  • Быстродействие и универсальность, что дает возможность применять такую арматуру практически в любой промышленной и бытовой сфере.

Высокие эксплуатационные характеристики в сочетании с доступной стоимостью делают шиберную арматуру оптимальным и экономически выгодным решением для сфер, где основными требованиями являются высокая надежность и безопасность.

Смотрите также:

Возврат к списку

Запорные задвижки: виды и принцип работы

Современные трубопроводы сложно представить без запорной арматуры. Задвижки, затворы, вентиля, клапана – все эти изделия позволяют регулировать давление в системах трубопроводов вплоть до полного перекрытия транспортируемой среды. Запорная арматура устанавливается на любом типе трубопровода – нефть, газ, пищевое производство, вода, пар и т.д. Ассортимент запорной арматуры разнообразен, и подбирается под любую транспортную среду и условия. Самой объемной группой запорно-регулирующей арматуры по распространению являются задвижки. Широкое применение задвижки получили благодаря универсальности конструкции и высоким эксплуатационным показателям (температура окружающей и транспортируемой среды, давление, щелочные/кислотные среды и т.д.). По степени герметичности задвижки делятся на классы А, В, C, D, B1, C1, D1. Классы герметичности регламентируются по ГОСТ 9544-2005.

Содержание

Виды и устройство задвижек
Конструкционные типы задвижек
Расположение шпинделя
Преимущества и недостатки задвижек

Виды и устройство задвижек

Задвижки, в зависимости конструкции запорных деталей, можно поделить на следующие типы:

  • Клиновые задвижки
  • Параллельные задвижки
  • Шланговые задвижки
  • Шиберные (или ножевые) задвижки

Если абстрагироваться от нюансов, строение задвижки в общих чертах представляет собой стальной или чугунный корпус и крышку, которые соединены между собой. От корпуса отходят присоединительные патрубки, через которые запорная арматура врезается в трубопровод. По вариативности видов присоединений можно выделить основные типы задвижек:

  • Приварные – патрубки представляют собой трубы соответствующие диаметру трубы, которые с помощью электродуговой сварки врезаются в трубопровод. Встречаются не так часто.
  • Фланцевые. На концах патрубков находятся фланцы, через которых и происходит монтаж на трубопроводе. Такой тип соединения более распространен, т.к. позволяет произвести быстрый герметичный монтаж задвижки, а так же обеспечивает дальнейший простой демонтаж арматуры, если таковой понадобится.
  • Муфтовые задвижки – самый редкий вид присоединения, встречается до диаметра 50 мм.

Основной запорной деталью в задвижке является клин (который может быть обрезиненным, а может быть стальным). При прокручивании штока (шпинделя) клин перемещается в теле задвижки перпендикулярно движению потока среды трубопровода. В закрытом состоянии клин герметично прилегает к уплотнительным седлам, которые располагаются с двух сторон от клина чаще всего под углом. При вращении маховика (или штурвала) происходит прокручивание шпинделя вокруг своей оси, что приводит в движение сам клин. Это очень упрощенная схема клиновой задвижки, которая может отличаться в деталях у разных производителей.

 

Корпус задвижек может быть выполнен из латуни, бронзы, стали и чугуна. Латунные и бронзовые задвижки выпускаются в муфтовом исполнении и используются крайне редко. Стальные задвижки чаще используются при высоких температурах внутренней среды. Чугунные задвижки устанавливаются на большинстве объектов ЖКХ ввиду дешевизны и простоты монтажа, но требуют бережного отношения при установке, так как чугун очень хрупок и может расколоться при ударах, скручивании и сжатии.

В последнее время большую популярность приобрели задвижки, оснащенные электроприводом. Электропривод позволяет быстрее открыть или закрыть запорный механизм, причем делать это удаленно. Достаточно одного оператора, который будет контролировать работу задвижек на участке трубопровода.

Конструкционные типы задвижек

Так как устройства задвижек незначительно, но все же отличаются, есть смысл остановиться на каждом типе подробнее.

Клиновые задвижки — в подобных задвижках используется жесткий, обрезиненный или двусторонний клин, который плотно примыкает под углом к седлам и герметично перекрывает поток. В зависимости от эксплуатационных параметров выбирают тот или другой вариант клина:

  • Жёсткий клин – позволяет достичь надежной герметичности узла, но требует высокой точности подгонки клина и уплотнительных седел (в идеале вытачивается идентичный угол на клине и седлах, только так достигается высокая герметичность устройства). Основными недостатками можно считать частые заклинивания из-за перепадов температур во внутренней среде, а так же износа резиновых прокладок и уплотнительных колец. Если механизм задвижки заклинило, то открыть ее очень сложно!
  • Двухдисковый клин – такой вариант исполнения запорного механизма подразумевает два диска, соединенных между собой. Благодаря такой конструкции клин самовыравнивается при примыкании к уплотнительным седлам, что позволяет допустить некоторые огрехи при вытачивании угла седел и клина. Невзирая на то, что двухдисковый клин усложняет механизм запорной арматуры и повышает стоимость изделия в целом, плюсы такого варианта очевидны – долгий срок службы резиновых уплотнителей, надежная герметичность, меньше усилий, требуемых для открытия/закрытия механизма.
  • Упругий клин – это разновидность двухдискового запорного элемента. Два диска стыкуются между собой упругим материалом, способным деформироваться и подгоняться под седла при закрытии затвора. Таким образом, упругий клин представляет собой золотую середину между жестким клином и двухдисковым. Например, упругий клин позволяет пренебречь точной подгонки к седлам, а его строение более надежное, чем у двухдискового механизма.

Параллельные задвижки от всех остальных отличаются тем, что уплотнительные кольца расположены не под углом, а строго параллельно, и сам запорный механизм представляет собой два диска, которые с помощью особого клина плотно прилегают к уплотнительным седлам.

Шиберные задвижки (которые чаще называют ножевыми) – еще более простая конструкция, в которой затвор расположен строго перпендикулярно току среды. Чаще всего устанавливается на канализациях, пульпопроводах и прочих системах, где среда густая и не требуется высокая герметичность узла. В таком случае запорный элемент как бы разрезает транспортируемый поток, за что задвижки и получили название ножевые.

Шланговые задвижки – самый необычный вид задвижек, принципиально отличающийся от остальных и встречающийся наиболее редко. Такой тип задвижек не имеет ни уплотнительных седел, ни запорного элемента как такового. Представляет собой резиновый шланг, транспортирующий чаще всего вязкую среду и проходящий через тело задвижки. С помощью штока шланг пережимается и полностью перекрывает движение в путепроводе. Обычно такие задвижки используются на трубопроводах небольшого диаметра, где в качестве среды выступают пульпа, шлам, различные примеси и т.д.

Расположение шпинделя

По типу выдвижения шпинделя задвижки можно разделить на две большие группы:

  • Задвижки с выдвижным шпинделем – представляют собой конструкцию, где шпиндель вынесен за пределы корпуса задвижки, не контактируя с транспортируемой средой. Таким образом, резьбовое соединение доступно для ухода и осмотра и не подвергается коррозии в теле задвижки. Но такая конструкция имеет ряд минусов – из-за того, что при открытии потока шпиндель выдвигается из задвижки на длину, равную как минимум диаметру трубопровода, требуется место для легкого доступа к такому механизму. Из-за особенностей конструкции увеличивается масса и строительная высота, что тоже важно учитывать при проектировании трубопровода. Зато такие изделия можно устанавливать на особо важные объекты, так как срок службы сальников и прочих рабочих элементов механизма увеличен, и есть возможность контролировать состояние резьбы шпинделя и проводить своевременный ремонт и обслуживание.
  • Задвижки с невыдвижным шпинделем – в таких устройствах ходовой узел гайка-шпиндель находятся полностью в теле задвижки, не выдвигаются за пределы задвижки и контактируют с транспортируемой средой. Ввиду этого шпиндель и уплотнительные элементы подвергаются коррозии среды. Такие задвижки рекомендуется ставить на трубопроводы, транспортирующие воду, нефть и прочие неагрессивные жидкости без примесей, так как в ходе эксплуатации невозможно следить за состоянием шпинделя и произвести плановый ремонт, не разбирая задвижку. Из-за этого такую арматуру не рекомендуется ставить на особо важные трубопроводы, зато они незаменимы в узких колодцах и других труднодоступных местах из-за относительно небольших габаритов.

Преимущества и недостатки задвижек

Задвижки – самый популярный тип запорной арматуры, применяющийся в нашей стране. Это обусловлено следующими преимуществами:

  • Относительно простая конструкция запорного механизма;
  • Сравнительно небольшая монтажная длина, что удобно для колодцев, нефтяных скважин и т.д.;
  • Вариативность использования – задвижки можно применять на различных типах трубопроводов с самыми разными эксплуатационными параметрами;
  • Возможность изменения направления потока транспортируемой среды в обратную сторону.
  • Невысокое гидравлическое сопротивление;

Последний благоприятный фактор повлиял на широкое применение задвижек на магистральных трубопроводах, где отсутствие гидравлического сопротивления подходит для высоких скоростей и давления транспортируемой среды.

К основным минусам задвижек можно отнести:

  • Длительное время открытия/закрытия механизма;
  • Увеличенную строительную высоту (особенно актуально для задвижек с выдвижным шпинделем, т.к. шпиндель выдвигается как минимум на диаметр условного прохода)
  • Быстрый износ резиновых уплотнительных колец, трудоемкий ремонт и обслуживание деталей внутри корпуса задвижек;
  • Дорогой ремонт при невысокой цене на задвижки – зачастую ремонт задвижки составляет минимум 50% от ее первоначальной стоимости.

Водопроводные задвижки: классификация, устройство и их виды

На чтение 7 мин. Просмотров 3.2k. Обновлено

Водопроводная задвижка – это элемент, относящийся к запорной арматуре, и предназначенный для полного перекрытия потока рабочей среды в трубе. Основная подвижная деталь – затвор, расположенный перпендикулярно оси потока.

Конструкция данного приспособления позволяет использовать ее не только для остановки воды, но и для перекрытия потока сжатого воздуха, жидких углеводородов и так далее.

Кроме того, широкое распространение некоторых типов данных устройств (например, секущие задвижки) получили в нефтяной отрасли.

Устанавливаться запорная арматура может не только на металлические, но и на пластиковые трубы. Главное – обеспечить надежное соединение элементов системы.

Принцип действия

Вне зависимости от типа все приспособления для перекрытия водопроводной трубы состоят из следующих деталей:

  • Корпус с крышкой.

В корпусе находится полость, в которой размещены запорные элементы. В большинстве случаев корпус изготавливается из чугуна или стали, соединение с другими элементами инженерной системы происходит при помощи фланцев или посредством сварки. Главное достоинство первого способа – возможность быстрой и простой замены элемента в случае поломки. Сварочный же шов является самым надежным способом соединения, поэтому чаще всего в системах водоснабжения применяется именно он.

  • Запорный узел.

В состав запорного узла входит направляющая и затвор. Чаще всего направляющая является частью корпуса, что обеспечивает максимальную надежность данного приспособления и точность всех движений. Все детали изготавливаются из высококачественной стали, на затвор же дополнительно наносится слой специального покрытия, препятствующего образованию коррозии.

  • Элемент управления.

Узел для управления состоит из винтового штока (вентиля), махового колеса и резьбовой втулки, при помощи которой крутящий момент преобразуется в поступательное перемещение затвора. Узел устанавливается в верхней части приспособления, причем все его элементы располагаются в собственном металлическом кожухе. Соединение с основным корпусом происходит при помощи фланцев.

Кроме того, в конструкцию входит бугельный узел задвижки, обеспечивающий вынос соединения шток-гайка за пределы основного корпуса. Таким образом, соединение защищается от негативного воздействия перемещаемой среды (например, высокой температуры).

Работа трубопроводной задвижки происходит по следующему принципу:

  1. Оператор или электропривод приводит в движение маховое колесо.
  2. Благодаря резьбовому соединению приводится в движение шток.
  3. Шток перемещает затвор (данный процесс контролируется направляющей).
  4. Затвор перекрывает корпус, препятствуя перемещению жидкой среды в трубопроводе.

Для открытия затвора необходимо повернуть маховик в обратном направлении.

Важно! Не стоит использовать данное приспособление для регулирования потока жидкости. При длительном воздействии воды, металлические элементы со временем шлифуются, а значит, впоследствии будут неэффективны для полного перекрытия системы. Для частичного перекрывания трубопровода следует применить специальную регулирующую арматуру.

В большинстве случаев сильно изношенные водопроводные запорные устройства не подлежат ремонту, единственное верное решение – замена. Поэтому внимательно следите за правильностью ее применения.

Достоинства водопроводных задвижек

Водопроводная задвижка – самая популярная разновидность запорной арматуры во всем мире, главное достоинство которой – низкая стоимость. Кроме того, запорная задвижка обладает следующими преимуществами:

  • Простота конструкции.

Данное приспособление не содержит сложных элементов, поэтому вероятность его поломки минимальна. Кроме того, при износе или повреждении какой-либо детали замена происходит достаточно быстро, что важно для водоснабжения, используемого круглосуточно.

  • Небольшой размер.

Длина данного приспособления не превышает нескольких сантиметров, поэтому они являются оптимальным вариантом для установки в ограниченном пространстве (например, в колодце).

  • Обширная сфера применения.

Водопроводные запорные устройства могут быть использованы для трубопроводов, изготовленных из любых материалов и используемых для любых целей.

  • Универсальность.

После установки водопроводной запорные устройства можно менять направление движения жидкости, переворачивать элемент нет необходимости.

  • Малое гидравлическое сопротивление.

При проектировании системы водоснабжения нет необходимости учитывать гидравлическое сопротивление, создаваемое водопроводной арматурой для остановки движения жидкости в трубе, так как оно практически равно нулю. Главное – следить за тем, чтобы открытие происходило полностью. В противном случае возможно не только создание существенного гидравлического сопротивления (способного повлиять на работоспособность системы водоснабжения), но и быстрый износ запорного элемента.

  • Возможность установки на трубопроводы, по которым перемещается жидкость с высокой температурой.

Максимальная температура перемещаемой среды – 565 °С.

  • Большой выбор размеров.

Водопроводные запорные устройства выпускаются диаметром от 40 до 2000 миллиметров, поэтому могут быть использованы абсолютно во всех системах.

  • Герметичность.

Данный элемент (в отличие от других видов запорной арматуры) позволяет добиться максимальной герметичности.

  • Высокая надежность.

Данное приспособление способно сдерживать жидкость с рабочим давлением до 25 Атмосфер.

Виды и классификация водопроводных задвижек

В зависимости от способа перекрывания трубы различают запорную арматуру с выдвижным и не выдвижным шпинделем. В первом случае вращательное движение передается поступательному, благодаря которому шпиндель выдвигается и перекрывает трубу, во втором – закрытие происходит исключительно благодаря вращению.

В зависимости от типа используемого материала различают стальные и чугунные устройства. Приспособления первого типа дешевле и могут быть присоединены к трубе при помощи муфт или фланцев, во втором случае возможно исключительно фланцевое соединение.

Особое строение клиновой задвижки с не выдвижным шпинделем позволяет добиться минимального размера (как в длину, так и в ширину).

Основная же классификация задвижек – по типу запорного элемента. В настоящее время существуют следующие виды водопроводных задвижек:

  • клиновые;
  • параллельные;
  • шланговые;
  • шиберные.

Клиновые задвижки: особенности

Школа трубопроводной арматуры. Видеоурок 7. Клиновая и шланговая задвижки.


Watch this video on YouTube

Главное достоинство клинового приспособления для перекрытия потока жидкости в водопроводной трубе – расположение седел под малым уклоном. Таким образом, подвижный элемент принимает форму жесткого, двухдискового или упругого клина. В любом случае в закрытом состоянии клин плотно входит между седлами, обеспечивая абсолютную герметичность системы. Выбирается же тип запорного элемента в зависимости от области применения.

Жесткий клин обеспечивает максимальную надежность, однако сильно подвержен неблагоприятному воздействию перемещаемой среды. Он может заклинить в результате образования ржавчины или повредиться из-за сильного перепада температур.

Клин, состоящий из двух дисков, не требует максимальной точности при изготовлении (в отличие от жесткого элемента), при этом обеспечивая достаточную герметичность. Главный недостаток такого элемента – более сложная конструкция, влияющая на стоимость готового изделия.

Упругий клин сочетает в себе достоинства первых двух видов: простота конструкции и обеспечение герметичности в случае неточности при подборе устройства.

Параллельные задвижки: конструкция

В отличие от клинового устройства в параллельных водопроводных запорных устройствах для перекрытия трубы поверхности седел расположены параллельно друг другу. Надежность такой системы несколько ниже, однако ее вполне достаточно для большинства сфер применения.

Главное достоинство параллельного приспособления (в сравнении с клиновым) – простота конструкции (детали, расположенные параллельно гораздо проще изготовить, а значит, вероятность погрешности и ошибки минимальна).

Параллельные водопроводные приспособления могут быть как с выдвижным, так и с не выдвижным шпинделем. Первый вариант является более долговечным, так как резьбовое соединение не контактирует с перемещаемой средой, второй – более компактный.

Диаметр проходного отверстия и длина устройства могут быть различными, поэтому вы всегда сможете подобрать оптимальный вариант для своей системы.

Задвижка Лудло

Задвижка Лудло – это параллельное двухдисковое устройство с распорным клином, повсеместно используемые во всем мире более 150 лет. Название устройства произошло от имени компании, которая впервые поставила его на рынок – Ludlow Valve Manufacturing Company.

Такие устройства изготавливаются исключительно из чугуна и отличаются предельной долговечностью (более 100 лет). В нашей стране производство налажено с 80х годов прошлого столетия в Санкт-Петербурге.

Шланговые задвижки

Строение шланговой водопроводной задвижки кардинально отличается от устройства запорной арматуры остальных видов. В конструкции элемента нет седел и затвора, перекрывание среды происходит за счет пережима эластичного шланга, находящегося в корпусе запорного элемента.

Основное достоинство такой системы – исключение контакта стальных деталей с перемещаемой средой, что положительно влияет на долговечность приспособления. Главное – при выборе шланговой арматуры – правильно подобрать марку резины. Выбор зависит от области применения, чаще всего такие приспособления используются на трубах, по которым перемещаются агрессивные и вязкие жидкости.

Шиберные устройства

Устройство шиберной задвижки практически идентично параллельной. Единственное отличие – использование одного шибера вместо двух седел для перекрытия трубы. Такое устройство является наименее надежным из всех представленных, поэтому используется только в системах, не требующих абсолютной герметичности (например, канализация и другие системы с большим количеством примесей).

Задвижка клиновая фланцевая. Задвижка с обрезиненным клином трубопроводная — видеообзор UKSPAR.


Watch this video on YouTube Регулирующие клапаны

и принципы их работы

Почему используются регулирующие клапаны?

Технологические установки состоят из сотен или даже тысяч контуров управления, объединенных в сеть для производства продукта, который будет выставлен на продажу. Каждый из этих контуров управления предназначен для поддержания некоторых важных переменных процесса, таких как давление, расход, уровень, температура и т. Д., В требуемом рабочем диапазоне для обеспечения качества конечного продукта. Каждый из этих контуров принимает и внутренне создает помехи, которые пагубно влияют на переменную процесса, а взаимодействие со стороны других контуров в сети создает помехи, которые влияют на переменную процесса.

Чтобы уменьшить влияние этих возмущений нагрузки, датчики и преобразователи собирают информацию о переменной процесса и ее отношении к некоторой желаемой уставке. Затем контроллер обрабатывает эту информацию и решает, что нужно сделать, чтобы вернуть переменную процесса туда, где она должна быть после нарушения нагрузки. Когда все измерения, сравнения и вычисления выполнены, какой-либо тип конечного элемента управления должен реализовывать стратегию, выбранную контроллером.

Принципы работы

Наиболее распространенным конечным элементом управления в отраслях управления технологическими процессами является регулирующий клапан.Регулирующий клапан управляет текучей средой, такой как газ, пар, вода или химические соединения, чтобы компенсировать возмущение нагрузки и поддерживать регулируемый параметр процесса как можно ближе к желаемой уставке.

Регулирующие клапаны могут быть наиболее важной, но иногда наиболее игнорируемой частью контура регулирования. Причина, как правило, заключается в незнании инженером КИП многих аспектов, терминологии и областей инженерных дисциплин, таких как механика жидкости, металлургия, контроль шума, а также проектирование трубопроводов и сосудов, которые могут быть задействованы в зависимости от серьезности условий эксплуатации.

Любой контур управления обычно состоит из датчика состояния процесса, преобразователя и контроллера, который сравнивает «переменную процесса», полученную от преобразователя, с «уставкой», то есть желаемым условием процесса. Контроллер, в свою очередь, отправляет корректирующий сигнал на «конечный элемент управления», последнюю часть контура и «мускул» системы управления технологическим процессом. Если датчиками переменных процесса являются глаза, а контроллером — мозг, то конечным элементом управления являются руки контура управления.Это делает его наиболее важной, а иногда и наименее понятной частью системы автоматического управления. Частично это происходит из-за нашей сильной привязанности к электронным системам и компьютерам, что приводит к некоторому пренебрежению к правильному пониманию и правильному использованию всего важного оборудования.

Что такое регулирующий клапан?

Регулирующие клапаны автоматически регулируют давление и / или расход и доступны для любого давления. Если разные системы завода работают до и при комбинациях давления / температуры, для которых требуются клапаны класса 300, иногда (если позволяет конструкция), все выбранные регулирующие клапаны будут соответствовать классу 300 для взаимозаменяемости.Однако, если ни одна из систем не превышает номинальные значения для клапанов класса 150, в этом нет необходимости.

Клапаны

обычно используются для управления, и их концы обычно имеют фланцы для облегчения обслуживания. В зависимости от типа питания диск приводится в движение гидравлическим, пневматическим, электрическим или механическим приводом. Клапан регулирует поток за счет движения плунжера клапана относительно порта (ов), расположенного внутри корпуса клапана. Плунжер клапана прикреплен к штоку клапана, который, в свою очередь, соединен с приводом.

Устройство регулирующего клапана

На изображении ниже показано, как можно использовать регулирующий клапан для управления скоростью потока в линии. «Контроллер» принимает сигналы давления, сравнивает их с падением давления для желаемого потока и, если фактический поток отличается, регулирует регулирующий клапан для увеличения или уменьшения потока.

Можно разработать сопоставимые устройства для управления любой из множества переменных процесса. Температура, давление, уровень и скорость потока являются наиболее распространенными контролируемыми переменными.

Изображение взято с http://www.steamline.com/

Типы клапанов и типовые области применения

Тип клапана Обслуживание и функции
IoS TH PR постоянного тока
Ворота ДА НЕТ НЕТ НЕТ
Глобус ДА ДА НЕТ ДА (примечание 1)
Чек (примечание 2) НЕТ НЕТ НЕТ
Остановить проверку ДА НЕТ НЕТ НЕТ
Бабочка ДА ДА НЕТ НЕТ
Мяч ДА (примечание 3) НЕТ ДА (примечание 4)
Заглушка ДА (примечание 3) НЕТ ДА (примечание 4)
Мембрана ДА НЕТ НЕТ НЕТ
Устройство безопасности НЕТ НЕТ ДА НЕТ

Условные обозначения:

  • DC = изменение направления
  • IoS = Изоляция или останов
  • PR = Сброс давления
  • TH = Дросселирование

Примечания:

  1. Для изменения направления потока на 90 градусов можно использовать только угловые шаровые краны.
  2. Обратные клапаны (кроме запорных) останавливают поток только в одном (обратном) направлении. Запорные клапаны могут использоваться и используются в качестве запорных, запорных или стопорных клапанов в дополнение к использованию в качестве обратного клапана.
  3. Некоторые конструкции шаровых кранов (обратитесь к производителю клапана) подходят для дросселирования.
  4. Многопортовые шаровые и пробковые краны используются для изменения направления потока и смешивания потоков.
Принцип работы регулирующего клапана

| Анимация регулирующего клапана

Регулирующие клапаны — это клапаны, используемые для управления такими условиями, как расход, давление, температура и уровень жидкости, путем полного или частичного открытия или закрытия в ответ на сигналы, полученные от контроллеров, которые сравнивают «уставку» с «переменной процесса», значение которой обеспечивается датчиками, отслеживающими изменения в таких условиях.

Регулирующий клапан

также называется конечным элементом управления .

Анимация работы регулирующего клапана

Открытие или закрытие регулирующих клапанов обычно выполняется автоматически с помощью электрических, гидравлических или пневматических приводов. Позиционеры используются для управления открытием или закрытием привода на основе электрических или пневматических сигналов.

Эти управляющие сигналы, традиционно основанные на 3-15 фунтов на квадратный дюйм (от 0,2 до 1,0 бар), сейчас более распространены в промышленности.

Почему используются регулирующие клапаны?

Технологические установки состоят из сотен или даже тысяч контуров управления, объединенных в сеть для производства продукта, который будет выставлен на продажу.

Каждый из этих контуров управления предназначен для поддержания некоторых важных переменных процесса, таких как давление, расход, уровень, температура и т. Д., В требуемом рабочем диапазоне для обеспечения качества конечного продукта.

Каждый из этих контуров принимает и внутренне создает помехи, которые пагубно влияют на переменную процесса, а взаимодействие со стороны других контуров в сети создает помехи, которые влияют на переменную процесса.

Чтобы уменьшить влияние этих возмущений нагрузки, датчики и преобразователи собирают информацию о переменной процесса и ее отношении к некоторой желаемой уставке. Затем контроллер обрабатывает эту информацию и решает, что нужно сделать, чтобы вернуть переменную процесса туда, где она должна быть после нарушения нагрузки.

Когда все измерения, сравнения и вычисления выполнены, какой-либо тип конечного элемента управления должен реализовывать стратегию, выбранную контроллером.

Принципы работы

Наиболее распространенным конечным элементом управления в отраслях управления технологическими процессами является регулирующий клапан. Регулирующий клапан управляет текучей средой, такой как газ, пар, вода или химические соединения, чтобы компенсировать возмущение нагрузки и поддерживать регулируемый параметр процесса как можно ближе к желаемой уставке.

Регулирующие клапаны могут быть наиболее важной, но иногда наиболее игнорируемой частью контура регулирования. Причина обычно заключается в незнании инженером по приборам многих аспектов, терминологии и областей инженерных дисциплин, таких как механика жидкости, металлургия, контроль шума, а также проектирование трубопроводов и сосудов, которые могут быть задействованы в зависимости от серьезности условий эксплуатации.

Любой контур управления обычно состоит из датчика состояния процесса, преобразователя и контроллера, который сравнивает «переменную процесса», полученную от преобразователя, с «уставкой», то есть желаемым условием процесса. Контроллер, в свою очередь, отправляет корректирующий сигнал на «конечный элемент управления», последнюю часть контура и «мускул» системы управления технологическим процессом.

В то время как датчики , переменных процесса — это глаза, контроллер , — мозг, а конечный элемент управления — это руки контура управления.Это делает его наиболее важной, а иногда и наименее понятной частью системы автоматического управления. Частично это происходит из-за нашей сильной привязанности к электронным системам и компьютерам, что приводит к некоторому пренебрежению к правильному пониманию и правильному использованию всего важного оборудования.

Регулирующий клапан состоит из трех основных частей, каждая из которых существует в нескольких типах и исполнениях:

Типы корпусов регулирующих клапанов

Самыми распространенными и универсальными типами регулирующих клапанов являются проходные и угловые клапаны с поступательным движением штока.Их популярность обусловлена ​​прочной конструкцией и множеством доступных опций, которые делают их пригодными для различных технологических процессов, включая тяжелые условия эксплуатации.

Корпуса регулирующих клапанов могут быть отнесены к нижеуказанной категории
  • Угловые клапаны
    • Корпуса клапанов клеточного типа
    • Корпуса клапанов DiskStack
  • Угловые поршневые клапаны
  • Клапаны запорные
    • Корпуса однопортовых клапанов
    • Корпуса клапанов со сбалансированным плунжером в клетке
    • Корпуса клапанов большой емкости с направляющими клетками
    • Корпуса однопортовых клапанов с направляющими отверстиями
    • Корпуса клапанов с двумя отверстиями
    • Корпуса трехходовых клапанов
  • Мембранные клапаны
  • Поворотные клапаны
    • Корпуса дисковых затворов
    • Корпуса регулирующих клапанов с V-образным пазом
    • Корпуса регулирующих клапанов с эксцентриковым диском
    • Корпуса регулирующих клапанов с эксцентриком
  • Клапаны золотниковые
    • Клапан гидрораспределитель
    • Золотниковый клапан
    • Клапан поршневой
  • Пневматические клапаны
    • Пневматический клапан
    • Релейный клапан
    • Пережимной клапан с пневмоприводом

Также читайте: Характеристики регулирующего клапана

Что такое электромагнитный клапан и как он работает?

Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости.Они все в большей степени используются в самых разных типах установок и оборудования. Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

ОБЩЕЕ

Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типах установок и оборудования. Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

СТРОИТЕЛЬСТВО

Электромагнитные клапаны — это блоки управления, которые при включении или отключении электропитания либо перекрывают, либо пропускают поток жидкости. Привод выполнен в виде электромагнита. При подаче напряжения создается магнитное поле, которое натягивает плунжер или поворотный якорь против действия пружины. В обесточенном состоянии плунжер или поворотный якорь возвращается в исходное положение под действием пружины.

РАБОТА КЛАПАНА

По режиму срабатывания различают клапаны прямого действия, клапаны с внутренним управлением и клапаны с внешним управлением.Еще одна отличительная черта — это количество подключений к портам или количество потоков («путей»).

КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ

В соленоидном клапане прямого действия уплотнение седла прикреплено к сердечнику соленоида. В обесточенном состоянии отверстие седла закрыто, которое открывается, когда клапан находится под напряжением.

КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ 2-ХОДОВЫЕ

Двухходовые клапаны — это запорные клапаны с одним входным и одним выходным отверстиями (рис. 1). В обесточенном состоянии пружина сердечника при помощи давления жидкости удерживает уплотнение клапана на седле клапана, перекрывая поток.При подаче напряжения сердечник и уплотнение втягиваются в катушку соленоида, и клапан открывается. Электромагнитная сила больше, чем объединенная сила пружины и силы статического и динамического давления среды.

фигура 1

3-ХОДОВЫЕ КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ

Трехходовые клапаны имеют три штуцера и два седла клапана. Одно уплотнение клапана всегда остается открытым, а другое закрытым в обесточенном режиме. Когда катушка находится под напряжением, режим меняется на противоположный.Трехходовой клапан, показанный на рис. 2, выполнен с сердечником плунжерного типа. Различные операции клапана могут быть получены в зависимости от того, как текучая среда соединена с рабочими портами на рис. 2. Давление текучей среды нарастает под седлом клапана. Когда катушка обесточена, коническая пружина плотно прижимает нижнее уплотнение сердечника к седлу клапана и перекрывает поток жидкости. Порт A выпускается через R. Когда катушка находится под напряжением, сердечник втягивается, седло клапана в Порте R закрывается подпружиненным верхним уплотнением сердечника.Текучая среда теперь течет от P к A.

фигура 2 В отличие от версий с сердечником плунжерного типа, клапаны с поворотным якорем имеют все портовые соединения в корпусе клапана. Изолирующая диафрагма предотвращает контакт текучей среды с камерой змеевика. Клапаны с поворотным якорем могут использоваться для управления любым трехходовым клапаном. Основной принцип конструкции показан на рис. 3. Клапаны с поворотным якорем стандартно оснащены ручным дублером.

фигура 3

ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

В клапанах прямого действия силы статического давления увеличиваются с увеличением диаметра отверстия, что означает, что магнитные силы, необходимые для преодоления сил давления, соответственно становятся больше.Поэтому электромагнитные клапаны с внутренним управлением используются для переключения более высоких давлений в сочетании с отверстиями большего размера; в этом случае перепад давления жидкости выполняет основную работу по открытию и закрытию клапана.

КЛАПАНЫ 2-ХОДОВЫЕ С ВНУТРЕННИМ ПИЛОТОМ

Электромагнитные клапаны с внутренним управлением оснащены 2- или 3-ходовым пилотным соленоидным клапаном. Мембрана или поршень обеспечивают уплотнение для седла главного клапана. Работа такого клапана показана на рис.4. Когда пилотный клапан закрыт, давление жидкости увеличивается с обеих сторон диафрагмы через выпускное отверстие. Пока существует разница давлений между впускным и выпускным портами, запорная сила доступна за счет большей эффективной площади в верхней части диафрагмы. Когда пилотный клапан открыт, давление сбрасывается с верхней стороны диафрагмы. Большая эффективная сила чистого давления снизу теперь поднимает диафрагму и открывает клапан. Как правило, клапаны с внутренним управлением требуют минимального перепада давления для обеспечения удовлетворительного открытия и закрытия.Omega также предлагает клапаны с внутренним управлением, спроектированные с соединенным сердечником и диафрагмой, которые работают при нулевом перепаде давления (рис. 5).

фигура 4

МНОГООБХОДИМЫЕ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ НАПРАВЛЕНИЕМ

4-ходовые электромагнитные клапаны с внутренним управлением используются в основном в гидравлических и пневматических системах для приведения в действие цилиндров двустороннего действия. Эти клапаны имеют четыре патрубка: впуск давления P, два патрубка A и B цилиндра и один патрубок выпуска R.4/2-ходовой тарельчатый клапан с внутренним управлением показан на рис. 6. В обесточенном состоянии пилотный клапан открывается на соединении между входом давления и пилотным каналом. Обе тарелки главного клапана теперь находятся под давлением и переключаются. Теперь соединение порта P подключено к A, а B может выходить через второй ограничитель через R.

цифра 5

КЛАПАНЫ С НАРУЖНЫМ УПРАВЛЕНИЕМ

В этих типах для приведения в действие клапана используется независимая управляющая среда.На рис. 7 показан поршневой клапан с угловым седлом и закрывающей пружиной. В безнапорном состоянии седло клапана закрыто. Трехходовой электромагнитный клапан, который может быть установлен на приводе, управляет независимой управляющей средой. Когда электромагнитный клапан находится под напряжением, поршень поднимается против действия пружины, и клапан открывается. Версия с нормально открытым клапаном может быть получена, если пружина расположена на противоположной стороне поршня привода. В этих случаях независимая управляющая среда подключается к верхней части привода.Версии двойного действия, управляемые 4/2-ходовыми клапанами, не содержат пружины.

фигура 6

МАТЕРИАЛЫ

Все материалы, из которых изготовлены клапаны, тщательно отбираются в соответствии с различными типами применения. Материал корпуса, материала уплотнения и материала соленоида выбирается для оптимизации функциональной надежности, совместимости с жидкостями, срока службы и стоимости.

КУЗОВ

Корпуса клапанов нейтральной жидкости изготовлены из латуни и бронзы.Для жидкостей с высокими температурами, например пара, доступна коррозионно-стойкая сталь. Кроме того, полиамидный материал используется по экономическим причинам в различных пластиковых клапанах.

СОЛЕНОИДНЫЕ МАТЕРИАЛЫ

Все части электромагнитного привода, контактирующие с жидкостью, изготовлены из аустенитной коррозионно-стойкой стали. Таким образом обеспечивается устойчивость к коррозионному воздействию нейтральных или умеренно агрессивных сред.

МАТЕРИАЛЫ УПЛОТНЕНИЯ

Конкретные механические, термические и химические условия в приложении влияют на выбор материала уплотнения.Стандартным материалом для нейтральных жидкостей при температурах до 194 ° F обычно является FKM. Для более высоких температур используются EPDM и PTFE. Материал PTFE универсально устойчив практически ко всем техническим жидкостям.

НОМИНАЛЬНОЕ ДАВЛЕНИЕ — ДИАПАЗОН ДАВЛЕНИЯ

Все значения давления, приведенные в этом разделе, представляют собой манометрическое давление. Номинальное давление указано в фунтах на квадратный дюйм. Клапаны надежно работают в заданных диапазонах давления. Наши цифры действительны для диапазона пониженного напряжения от 15% до перенапряжения 10%.Если 3/2-ходовые клапаны используются в другом режиме, допустимый диапазон давления изменяется. Более подробная информация содержится в наших технических паспортах.

В случае работы в вакууме необходимо следить за тем, чтобы вакуум был на стороне выхода (A или B), в то время как более высокое давление, то есть атмосферное давление, подключено к входному отверстию P.

ЗНАЧЕНИЯ РАСХОДА

Скорость потока через клапан определяется конструкцией и типом потока.Размер клапана, необходимый для конкретного применения, обычно определяется номиналом Cv. Этот показатель разработан для стандартных единиц и условий, то есть расхода в галлонах в минуту и ​​использования воды с температурой от 40 ° F до 86 ° F при перепаде давления 1 фунт / кв. Дюйм. Приведены значения Cv для каждого клапана. Стандартизированная система значений расхода также используется для пневматики. В этом случае воздушный поток в SCFM вверх по потоку и падение давления 15 фунтов на квадратный дюйм при температуре 68 ° F.

СОЛЕНОИДНЫЙ ПРИВОД

Общей чертой всех соленоидных клапанов Omega является система соленоидов с эпоксидной изоляцией.В этой системе вся магнитная цепь — катушка, соединения, ярмо и направляющая трубка сердечника — объединены в один компактный блок. Это приводит к тому, что высокая магнитная сила удерживается в минимальном пространстве, обеспечивая первоклассную электрическую изоляцию и защиту от вибрации, а также внешних коррозионных воздействий.

КАТУШКИ

Катушки Omega доступны для всех обычно используемых напряжений переменного и постоянного тока. Низкое энергопотребление, особенно в случае соленоидных систем меньшего размера, означает, что возможно управление через полупроводниковую схему.

рисунок 7 Доступная магнитная сила увеличивается по мере уменьшения воздушного зазора между сердечником и заглушкой, независимо от того, используется ли переменный или постоянный ток. Электромагнитная система переменного тока имеет большую магнитную силу, доступную при большем ходе, чем сопоставимая соленоидная система постоянного тока. Графики характеристического хода в зависимости от силы, показанные на рис. 8, иллюстрируют эту взаимосвязь.

Ток, потребляемый соленоидом переменного тока, определяется индуктивностью. С увеличением хода индуктивное сопротивление уменьшается и вызывает увеличение потребления тока.Это означает, что в момент обесточивания ток достигает максимального значения. Противоположная ситуация применима к соленоиду постоянного тока, где потребление тока зависит только от сопротивления обмоток. Сравнение во времени характеристик включения соленоидов переменного и постоянного тока показано на рис. 9. В момент подачи питания, то есть когда воздушный зазор максимален, электромагнитные клапаны потребляют гораздо более высокие токи, чем когда сердечник полностью заполнен. втянут, т. е. воздушный зазор закрыт.Это приводит к высокой производительности и расширенному диапазону давления. В системах постоянного тока после включения тока поток увеличивается относительно медленно, пока не будет достигнут постоянный ток удержания. Таким образом, эти клапаны могут управлять только более низким давлением, чем клапаны переменного тока, при тех же размерах отверстий. Более высокие давления могут быть получены только за счет уменьшения размера отверстия и, следовательно, пропускной способности.

ТЕПЛОВЫЕ ЭФФЕКТЫ

Когда на катушку соленоида подано напряжение, всегда выделяется определенное количество тепла.Стандартная версия электромагнитных клапанов имеет относительно небольшой подъем температуры. Они предназначены для достижения максимального повышения температуры 144 ° F в условиях непрерывной работы (100%) и при 10% перенапряжении. Кроме того, обычно допустима максимальная температура окружающей среды 130 ° F. Максимально допустимые температуры жидкости зависят от конкретных материалов уплотнения и корпуса. Эти цифры можно получить из технических данных.

ОПРЕДЕЛЕНИЕ ВРЕМЕНИ (VDE0580) ВРЕМЯ ОТВЕТА

Небольшие объемы и относительно высокие магнитные силы, связанные с электромагнитными клапанами, позволяют получить быстрое время отклика.Для специальных применений доступны клапаны с разным временем отклика. Время реакции определяется как время между подачей сигнала переключения и завершением механического открытия или закрытия.

ПО ПЕРИОДУ

Период включения определяется как время между включением и выключением тока соленоида.

ПЕРИОД ЦИКЛА

Общее время включенного и выключенного периодов — это период цикла. Предпочтительный период цикла: 2, 5, 10 или 30 минут.

ОТНОСИТЕЛЬНЫЙ РАБОЧИЙ ЦИКЛ

Относительный рабочий цикл (%) — это процентное отношение периода под напряжением к общему периоду цикла. Непрерывная работа (100% рабочий цикл) определяется как непрерывная работа до достижения установившейся температуры.

РАБОТА КЛАПАНА

Кодировка клапана всегда состоит из заглавной буквы. Сводка слева подробно описывает коды различных операций клапана и указывает соответствующие стандартные символы цепи.

ВЯЗКОСТЬ

Технические данные действительны для вязкости до указанного значения.Допускается более высокая вязкость, но в этих случаях диапазон допуска напряжения уменьшается, а время отклика увеличивается.

ДИАПАЗОН ТЕМПЕРАТУР

Температурные пределы для текучей среды всегда подробно описаны. Различные факторы, например Однако условия окружающей среды, цикличность, скорость, допуск напряжения, детали установки и т. д. могут влиять на температурные характеристики. Поэтому приведенные здесь значения следует использовать только в качестве общего руководства. В случаях, когда речь идет о работе при экстремальных температурах, вам следует обратиться за советом в технический отдел Omega.

Техническое обучение Информация о продукте

Как работают клапаны | Типы клапанов

Криса Вудфорда. Последнее изменение: 29 ноября 2020 г.

Какой вид транспорта самый любимый в мире? Машина? В велосипед? Реактивный самолет? Если бы я рискнул предположить, я бы не выбрал ни одного из этих вещей. Вместо этого я бы выбрал скромный конвейер. Ты можешь не замечаем трубы, но по ним транспортируется огромное количество жидкости (жидкость и газ) по всему миру тихо и эффективно, изо дня в день выходной. Для эффективной работы трубам необходим способ регулирования через них может проходить жидкость; им также нужен способ переключения стечь полностью.Это та работа, которую выполняют клапаны : клапаны похожи на механические переключатели, которые могут включать и выключать трубы, поднимать или опускать количество жидкости, протекающей через них. Давайте подробнее рассмотрим как они работают!

Фото: Этот запорный клапан управляется вручную: вы открываете и закрываете его, поворачивая колесо. Такое колесо облегчает открытие клапана, поскольку оно увеличивает усилие, прилагаемое к ободу. производят большую и более полезную силу в центре. Если вы не знаете, почему, взгляните на нашу статью об инструментах и ​​машинах.Фото Брайана Слоана любезно предоставлено

Что такое клапаны?

Фото: Клапаны бывают всех размеров. Некоторые из них крошечные, как этот тарельчатый клапан, который скользит вверх и вниз по бутылке с напитками, позволяя воде входить и выходить, когда вы тянете или толкаете ее зубами.

Клапан — это механическое устройство, которое частично блокирует трубу. или полностью изменить количество проходящей через него жидкости. Когда вы включаете кран (кран), чтобы почистить зубы, вы открываете клапан, который позволяет воде под давлением выходить из трубы.Сходным образом, когда вы спускаете воду в унитазе, вы открываете два клапана: один (сифон), который пропускает воду чтобы убежать, чтобы опорожнить кастрюлю и другую (называемую шаровым краном или шаровой кран), который впускает больше воды в бак, готовый к следующему румянец.

Клапаны регулируют как газы, так и жидкости. Если у вас есть газовая варочная панель (варочная панель) На вашей плите регуляторы, которые включают или выключают газ, — это клапаны. Когда вы увеличиваете огонь, вы открываете клапан, который позволяет больше газ поступает по трубе. Больше газа горит с большим пламенем так вы получите больше тепла.

Клапаны

практически гарантированно установлены на любой машине, использующей жидкости или газы. В вашей стиральной машине есть клапан, который вращается подача воды включается или выключается каждый раз при ополаскивании барабана. Есть также клапаны в цилиндрах двигателя вашего автомобиля, открывающиеся и закрывающиеся несколько раз в секунду, чтобы впустить воздух и топливо и дать возможность сгореть выхлопные газы для выхода.

Клапаны используются не только в машинах. У твоего тела есть красивое важные клапаны внутри вашего сердца, которые позволяют ему перекачивать кровь ваши легкие (где он забирает кислород), а затем вокруг вашего тела.

Фото: Клапаны большие и малые. 1) Этот дроссельный клапан диаметром 7,3 м (24 фута) из аэродинамической трубы затмевает человека, стоящего рядом с ним! Фото любезно предоставлено НАСА в Общинном сообществе 2) Этот гораздо меньший по размеру дроссельный клапан работает точно так же, откидываясь в центре, чтобы пропустить воздух через трубу. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Как изготавливаются клапаны?

Фото Перекрытие воды с помощью запорного клапана.Поворот этого рычага на девяносто градусов закрывает шаровой кран в середине трубы, перекрывая протекание воды. В большинстве домов есть такие клапаны на входящей «подаче» холодной воды и на трубах, ведущих в резервуары для воды и выходящие из них. Запорные клапаны очень полезны во время аварийной ситуации (например, при разрыве водопровода) или для выполнения планового технического обслуживания. После закрытия клапана вы можете безопасно проводить ремонт, не допуская вытекания жидкости.

Клапаны обычно изготавливаются из металла или пластика и имеют несколько разные части.Внешняя часть называется сиденьем и часто имеет прочный металлический внешний корпус и мягкое внутреннее резиновое или пластиковое уплотнение, поэтому клапан закрывается абсолютно плотно. Внутренняя часть клапан, который открывается и закрывается, называется корпусом и подходит для седло, когда клапан закрыт. Также есть некоторая форма механизм открытия и закрытия клапана — ручной рычаг или колесо (как кран или запорный кран) или автоматизированный механизм (как в автомобильном двигателе или паровом двигателе).

Часто критически важно, чтобы клапаны были выключены, чтобы не допустить выхода жидкость или газ по трубе, чтобы избежать несчастных случаев, взрывов, загрязнения или потери ценных химикатов (даже капающий кран может быть дорогим, если у вас есть вода с дозатором). Вот почему уплотнение клапана должно быть абсолютно надежным, а закрытый клапан должен быть плотно закрыт. Отключение потока жидкости или газа под высоким давлением путем его перекрытия с клапаном — это физически тяжелая работа: другими словами, вам нужно приложить много усилий, чтобы сделай это.Вот почему некоторые клапаны приводятся в действие рычагами (как на фото здесь, но некоторые могут быть намного длиннее, чтобы обеспечить большее усилие поворота) или большие колеса (как на верхнем фото в этой статье). Если действительно большие клапаны требуют от человека слишком большого усилия, они управляются гидроцилиндрами.

Выбор подходящего материала

Не все клапаны — большие, мощные, промышленные изделия из металла. Внимательно посмотрите на контейнеры для еды на кухне, и вы обнаружите во многих из них есть клапаны.Бутылки с водой (как та, которую я изображал выше) часто имеют тарельчатые клапаны вместо винтовые колпачки. Верхняя часть емкости для еды, которую я сфотографировал ниже, — еще один действительно гениальный пример клапана, сделанного из упругий эластомер (на практике эластичный синтетический силиконовый каучук). Он закрывает банку для раздачи еды, которая обычно стоит вверх дном, поэтому, теоретически, еда может просто капать на стол под ним! Этот оригинальный клапан останавливает его. В резиновом материале есть четыре прорези, через которые проходит еда, но он также довольно твердый, поэтому открывается только тогда, когда вы сжимаете банку.Давление, которое вы оказываете, когда вы сжимаете, заставляет пищу проходить через четыре щели, которые открываются. Когда вы отпускаете давление, эластичность клапана заставляет щели снова опуститься вниз и снова запечатать банку. Это так просто и обыденно что вы, вероятно, даже не замечали этого, но это гениальная инженерная разработка, которая опирается на очень осторожные подбор именно подходящего материала.

Фото: Эластомерный клапан для герметизации пищевых продуктов. Слева: вид снизу на запечатанный клапан.В центре: вид сверху на тот же запечатанный клапан. Справа: глядя сверху, мой палец поднимается вверх, чтобы увидеть, как работает самоуплотняющийся щелевой механизм. (Если вам интересно, я считаю, что это щелевой клапан SimpliSqueeze® производства Aptar, и вы можете прочитать все технические подробности о том, как это работает, в их US10287066B2: Дозирующий клапан.)

И выбор материалов для клапанов — это не просто вопрос того, как они будут работать в течение всего срока службы, но что с ними происходит после этого.Например, в случае упаковки для пищевых продуктов переработка становится все более важным фактором. Возьмите маленькие клапаны, которые вы найдете на пакетиках для кофе. После того, как кофе обжаривается и разливается по пакетам, ему, возможно, придется простоять на полке магазина до года, в течение которого он продолжает выделять углекислый газ. Без клапана на сумке он взорвался бы и потенциально лопнул в магазине (или на вашей кухне), разбрызгивая кофе повсюду. На пакетиках с кофе есть оригинальные односторонние «дегазирующие» клапаны, состоящие из мембран, которые открываются, когда внутри повышается давление.Вот почему вы можете «проснуться и почувствовать запах кофе», даже не открывая пакет. Когда воздух пытается проникнуть внутрь снаружи, он сглаживает мембрану и плотно закрывает мешок. Пока все хорошо, но как насчет утилизации? Если вы начнете ставить сложные пластиковые клапаны на пакеты, это сделает мешки намного сложнее утилизировать. Какой ответ? Сейчас производители делают кофейные пакеты и клапаны полностью из компостируемые биопластики для устранения проблемы утилизации отходов.

Фото: Принцип работы кофейных клапанов.Верхний ряд: Слева: Типичный клапан внутри пакета с кофе. В центре: этот компостируемый клапан из биопласта (производства швейцарской компании Wipf) имеет фиксированное внешнее седло (черное) и внутренний корпус (красный) с выпускным отверстием для газа. Справа: Разберите его, и вы обнаружите, что внутри него также пластиковая мембрана. (синий). На рисунке ниже показано, как эти три части работают вместе. Мембрана изгибается, позволяя Углекислый газ улетучивается, затем снова становится плоской, чтобы не допустить попадания воздуха и водяного пара.

Типы клапанов

Иллюстрации: Восемь распространенных типов клапанов, значительно упрощенных.Цветовой ключ: серая часть — это труба, по которой течет жидкость; красная часть — это клапан и его ручка или элемент управления; синие стрелки показывают, как клапан движется или поворачивается; а желтая линия показывает, в каком направлении движется жидкость при открытом клапане.

Многие типы клапанов имеют разные названия. В самые распространенные — бабочка, петух или пробка, ворота, глобус, игла, тарелка и катушка:

  • Шар : В шаровом кране полая сфера (шар) плотно прилегает внутри трубы, полностью перекрывая поток жидкости.Когда вы поворачиваете ручку, она заставляет шар поворачиваться на девяносто градусов, позволяя жидкости течь через его середину.
  • Butterfly : Дроссельная заслонка — это диск, который сидит в середина трубы и поворачивается вбок (для впуска жидкости) или в вертикальном положении (чтобы полностью перекрыть поток).
  • Кран или пробка : В кране или пробковом клапане расход заблокирован конической заглушкой, которая отодвигается при повороте колеса или справиться.
  • Задвижка или шлюз : Задвижки открывают и закрывают трубы опускать через них металлические ворота.Большинство клапанов этого типа спроектирован так, чтобы быть полностью открытым или полностью закрытым и не может функционируют должным образом, когда они открыты лишь частично. В водопроводных трубах используются такие клапаны.
  • Globe : Водопроводные краны (краны) являются примерами глобуса клапаны. Когда вы поворачиваете ручку, вы закручиваете клапан вверх или вниз, и это позволяет воде под давлением течь вверх по трубе и выходить через носик ниже. В отличие от затвора или шлюза, такой клапан можно настроить так, чтобы пропускать через него больше или меньше жидкости.
  • Игла : Игольчатый клапан использует длинную скользящую иглу для точно регулируют поток жидкости в таких машинах, как карбюраторы двигателей автомобилей и системы центрального отопления.
  • Тарелка : Клапаны в цилиндрах двигателя автомобиля являются тарелками. Этот Тип клапана подобен крышке, сидящей на верхней части трубы. Время от времени крышка поднимается, чтобы выпустить или впустить жидкость или газ.
  • Золотник : Золотниковые клапаны регулируют поток жидкости в гидравлические системы. Клапаны, подобные этому, скользят назад и вперед, чтобы поток жидкости в одном или другом направлении вокруг контура трубы.

Как работают предохранительные клапаны?

Клапаны часто используются для хранения опасных жидкостей или газов — возможно, токсичных химикатов, легковоспламеняющейся нефти, пара высокого давления, или сжатый воздух — его нельзя выпускать ни при каких обстоятельствах. Теоретически клапан должен быть полностью защищен и, будучи закрытым, никогда не должен пропускать жидкость или газ через него. На практике это не совсем так. Иногда лучше, чтобы клапан вышел из строя намеренно, чтобы защитить какую-то другую часть системы или машины.Например, если у вас есть паровой двигатель, приводимый в действие водогрейным котлом, в котором накапливается пар, но давление внезапно становится слишком высоким, вам нужен клапан, который бы открылся, позволил пару уйти и безопасно сбросить давление до того, как все произойдет. котел катастрофически взрывается. Клапаны, работающие таким образом, называются предохранительными клапанами. Они предназначены для автоматического открытия, когда жидкость или газ, которые они содержат, достигают определенного давления (хотя многие системы и машины имеют предохранительные клапаны, которые можно открывать вручную для той же цели).

Иллюстрация: Пример предохранительного клапана, установленного в обычный водопроводный кран (кран).

В обычном смесителе вы поворачиваете оранжевую ручку вверху по часовой стрелке или против часовой стрелки, чтобы повернуть клапан вверх или вниз. Это позволяет воде течь слева направо через горизонтальную трубу, вокруг изгиба (через зазор, где был клапан) и наружу через вертикальную трубу справа.

Вы можете повернуть ручку на разную величину, чтобы открыть клапан на разную высоту, пропуская разное количество воды.

В этой конструкции Пола Вессона, запатентованной в 1923 году, внизу есть дополнительный предохранительный клапан зеленого цвета. Он имеет коническую форму и обычно плотно удерживается на месте желтой пружиной, намотанной вокруг него. Однако, если давление воды увеличивается слишком сильно, она давит на конус, открывает клапан, и вода уходит вниз, сбрасывая давление.

Изображение из патента США: 1 449 472: предохранительный кран Пола Б. Вессона и компании Hampden Brass, любезно предоставлено Управлением по патентам и товарным знакам США.

Узнать больше

На этом сайте

Книги

  • Справочник по клапанам Филиппа Л. Скоузена. McGraw-Hill Education, 2011. Подробное руководство по различным типам клапанов, их выбору, размерам и типам проблем, с которыми вы можете столкнуться.
  • Справочник по клапанам и приводам Брайана Несбитта. Баттерворт-Хайнеманн, 2007/2011. Практическое руководство по выбору и использованию клапанов, включая руководство для покупателя.
  • Справочник по клапанам, трубопроводам и трубопроводам Т.Кристофер Диккенсон. Elsevier, 1999. Подробный технический справочник. Много информации о различных типах клапанов и о том, как выбрать клапаны для конкретного применения.

Статьи

  • Создание лучшего клапана, Джина Колата. Нью-Йорк Таймс. 20 июня 2015 г. Новый тип операции на сердечном клапане (транскатетерная замена аортального клапана) снижает риск хирургического вмешательства для пациентов.
  • Мужчина из Великобритании получил искусственное пластиковое сердце: NHS Choices, 3 августа 2011 г.Описывает структуру искусственного сердца, в котором используются пластиковые клапаны.
  • Предохранительные клапаны предотвращают опасность ожога: BBC News, 5 сентября 2005 г. Отчет о разработке термостатических кранов для защиты пожилых людей.

Патенты

Патенты

дают прекрасное представление о технических деталях того, как все работает на самом деле. Существуют тысячи, охватывающие множество различных типов клапанов; вот небольшой и довольно случайный выбор для начала:

  • US3425439: Дисковый затвор от Дона В. Даффи.Duriron Co. Inc., 4 февраля 1969 г.
  • US3394915: Шаровой кран с кольцевым уплотнением от Жана Гашо. Duriron Co. Inc., 4 февраля 1969 г.
  • US20030159737A1: Шаровой клапан большой пропускной способности от Джеймса Стареса. ООО «Дрессер», 30 августа 2005 г.
  • US20030159737A1: Тарельчатый клапан и способ его изготовления Чарльз Питер Деклер. Colder Products Co, 16 марта 2004 г.,
  • US10287066B2: Дозирующий клапан Джейсона Хаттона и др., AsparGroup. 14 мая 2019 г. Техническое описание желтого самоуплотняющегося пищевого клапана, сфотографированного выше.

Терминология клапана

Терминология электромагнитного клапана

Сейчас хорошее время для объяснения некоторых используемых терминов, чтобы помочь вам с выбором.

  • 2-ходовой — двухходовой клапан, который включает или выключает поток
  • 3-ходовой — это трехходовой клапан, позволяющий проходить через клапан в камеру, а затем выходить через выпускной клапан. Универсальная функция также может использоваться как переключающий клапан.
  • 5/2 ходовой — пятиходовой двухпозиционный клапан, который будет подавать жидкость или воздух в один конец устройства двойного действия, а также позволять выпускать вентиляционное отверстие на другом конце.
  • Нулевой перепад давления — это соленоидные клапаны, которые могут работать при нулевом напоре (для работы не требуется перепад давления на клапане). Он делится на две категории: диафрагма прямого действия и соединенная диафрагма.
  • Прямое действие — это соленоидные клапаны, которые активируются исключительно электромагнитными силами в клапане, а не полагаются на давление жидкости.Следовательно, они используются там, где давление жидкости мало или отсутствует, например, в условиях вакуума или при низком давлении.
  • Дифференциальные клапаны — это соленоидные клапаны, которые с по зависят от давления жидкости, помогая приведения в действие клапана. Это помогает в разработке клапанов с большими отверстиями, более высоким давлением и меньшими змеевиками.
  • Нормально закрытый (Н.З.) означает, что когда на соленоидный клапан не подается питание, порт давления питания закрывается.В случае трехходовых клапанов выходное отверстие открыто для выпускного отверстия.
  • Нормально открытый (Н.О.) означает, что, когда на соленоидный клапан не подается питание, порт давления питания открыт для выходного порта. В случае трехходовых клапанов выходное отверстие закрыто по отношению к выходному отверстию.
  • Степень защиты IP — это международный стандарт, обозначающий степень защиты от воды и твердых предметов. Все наши электрические катушки с разъемами DIN имеют степень защиты IP65.Цифра 6 означает полную защиту от таких мелких предметов, как пыль, а цифра 5 означает защиту от струй воды под низким давлением со всех сторон.
  • Огнестойкость относится только к электрической части соленоидного клапана (обычно это катушка и узел привода) и представляет собой способ сделать клапан безопасным для использования во взрывоопасной атмосфере. Эти клапаны должны быть установлены в соответствии со стандартами электропроводки для данного типа утверждения и в зоне, совместимой с утвержденными нормами и температурным режимом.
  • Рейтинг D.I.P относится к защите от пыли и воспламенения.
  • N.B. бар относится к давлению: 1 бар = 14,7 фунтов на квадратный дюйм = 100 кПа = 1 атмосфера.

Терминология по шаровому крану
Сейчас хорошее время для объяснения некоторых используемых терминов, чтобы помочь вам с выбором.

Компоненты
2-ходовые клапаны

  • 2 шт. — Корпус изготовлен из двух отливок и соединен резьбой.
    Преимущество: более низкая стоимость
    Недостаток: трудно снимается с трубопровода, обычно не подлежит замене
  • 3 штуки — Корпус изготовлен из трех отливок и закреплен стяжными шпильками.
    Преимущество: возможность снятия с трубопроводов без разрушения, ремонтопригодность, обычно клапан более высокого класса
    Недостаток: обычно более дорогой

3-ходовые клапаны

  • 4 штуки — Корпус изготовлен из четырех отливок и соединен резьбой.

Функция
2-ходовой / 2-позиционный

  • Двухходовой клапан, который включает или выключает поток

3-ходовой / 2-позиционный

  • Трехходовой клапан, доступный в двух конфигурациях
    1. L-образный патрубок — обычно используется в качестве переключателя потока. В одной позиции порт C подключен к порту A, во второй позиции порт C подключен к порту B.
  • Т-образный патрубок — обычно используется в качестве клапана для слива или сброса давления на выходе.В одной позиции порт C подключен к порту A, во второй позиции порт A подключен к порту B.

Приводы
Пневматические

  • Двойного действия (DA) — пневматический привод, для включения которого требуется воздушный сигнал, а для выключения — второй сигнал
    Преимущество: быстрая работа и меньшая стоимость
  • Spring Return (SR) — пневматический привод с пружинным возвратом, для срабатывания которого требуется воздушный сигнал — пружина для закрытия (также известная как одностороннее действие).Преимущество: для работы требуется только один сигнал — отказоустойчивость в случае сбоя питания или подачи воздуха

Электрический

  • Моторизованный редуктор приводит в действие клапан. Обычно используется там, где нет сжатого воздуха. Более медленная работа — обычно от 12 до 15 секунд. Они также доступны в Spring Return.

Реле давления / вакуума

Сейчас хорошее время для объяснения некоторых терминов, используемых с реле давления, чтобы помочь вам с выбором.

Single Pole Double Throw (SPDT)
С этим типом переключателя электрическая цепь может быть «замкнута», когда переключатель активирован (общий для Н.О.), или «разомкнут», когда переключатель активирован (общий для Н.З.).

Однополюсный однопроходный (SPST), нормально замкнутый
С этим типом переключателя электрическая цепь будет «разорвана», когда переключатель активирован.

Однополюсный однопроходный (SPST) нормально разомкнутый
С этим типом переключателя электрическая цепь будет «замкнута», когда переключатель активирован.

Зона нечувствительности / гистерезис / дифференциал — все термины, используемые для описания разницы между активацией переключателя и его сбросом. Из-за механики микровыключателя это редко бывает в одном и том же положении.Некоторые из наших коммутаторов имеют фиксированные зоны нечувствительности (серии PMM, VCM), а другие имеют ограниченные регулируемые зоны нечувствительности (серии PSM, PSP, VSM, регулируемые до 30% от полной шкалы).

Set Point — это настройка, при которой переключатель активируется.

Меры расхода

Cv Имперские единицы измерения расхода воды в галлонах США в минуту при 60 ° Фаренгейта с перепадом давления на клапане 1 фунт / кв. Дюйм

Kv Метрическая система измерения расхода воды клапана в м³ в час при температуре от 5 ° C до 40 ° C с перепадом давления на клапане 1 бар

Qn Пневматический поток клапана, литров воздуха в минуту при входном давлении 20 ° C, 6 бар, перепад давления на 1 бар

Расход через клапан рассчитывается по следующей формуле;

1.3)

cv = Номинальный расход клапана

2. Газы

Q = 400cv √ (P2 + 1.013) x? P x √273 / 273 + t

где

P2 = Давление на выходе

t = Температура газов

Тренировка ампер / вольт или ватт

Ампер = Ватт / Вольт

Вольт = Амперы x Ом

Рабочий цикл — соответствие стандарту IEC

Рабочий цилиндр означает начальную частоту.Формула его расчета следующая:

Время работы / (Время работы + Время отдыха) x 100% = Рабочий цикл

Время отдыха = Время работы x (1 — Рабочий цикл) / Рабочий цикл

Например, время работы 0M-2 составляет 15 секунд.

1. 30% рабочий цикл 15 x (1 — 30%) / 30% = 35 секунд паузы

2. Рабочий цикл 75% 15 x (1 — 75%) / 75% = 5 секунд отдыха.

Чем выше рабочий цикл, тем короче время отдыха.

Как работает гидрораспределитель?

Клапаны регулирования расхода используются для регулирования расхода и давления жидкостей или газов в трубопроводе.Клапаны управления потоком необходимы для оптимизации производительности системы, полагаясь на проточный канал или порт с переменным проходным сечением. Здесь представлены функции клапанов управления гидравлическим потоком, различные типы и компоненты, а также принципы их работы, а также некоторые важные соображения при выборе соответствующего клапана управления гидравлическим потоком для конкретного применения.

Функция гидравлических регулирующих клапанов

Назначение клапана регулирования расхода — регулировать расход в определенной части гидравлического контура.В гидравлических системах они используются для управления скоростью потока к двигателям и цилиндрам, тем самым регулируя скорость этих компонентов.

Гидравлические клапаны регулирования расхода также регулируют скорость передачи энергии при заданном давлении. Это основано на концепции физики работы, энергии и мощности:

Усилие привода x пройденное расстояние = работа, выполненная под нагрузкой

Передаваемая энергия должна равняться общей проделанной работе. Поскольку скорость привода определяет скорость передачи энергии, скорость является функцией скорости потока.Направленные регулирующие клапаны служат другой цели, направляя систему передачи энергии в нужное место в нужное время, хотя некоторое регулирование давления и расхода может быть достигнуто с помощью гидрораспределителей, поскольку они могут дросселировать поток жидкости.

Как работают гидрораспределители

Существует множество конструкций регулирующих клапанов, большинство из которых предназначены для конкретных применений. Поэтому понимание того, как работают клапаны управления гидравлическим потоком, имеет решающее значение при выборе правильного клапана для применения.К наиболее распространенным типам клапанов управления потоком относятся:

  • Мяч
  • Диафрагма
  • Игла
  • Бабочка
  • Заглушка

Простейшие клапаны управления потоком имеют отверстие, которое открывается или закрывается для увеличения или уменьшения скорости потока. Шаровые краны — один из самых простых вариантов, состоящий из шара, прикрепленного к ручке. В шаре есть отверстие в центре, и когда ручка поворачивается, отверстие совмещается с отверстиями клапана для обеспечения потока.Чтобы перекрыть поток, ручка используется для поворота отверстия перпендикулярно отверстию клапана, что препятствует потоку.

Другие типы клапанов работают аналогичным образом с некоторым механизмом для разрешения или блокировки потока. Например, дроссельная заслонка имеет внутреннюю металлическую пластину, прикрепленную к поворотному механизму. Пластина открывается или закрывается при повороте механизма. Игольчатые клапаны, которые являются одними из наиболее точных вариантов клапана, имеют регулируемую иглу и шток клапана, который ограничивает или позволяет поток жидкости.Иглу можно отрегулировать так, чтобы полностью блокировать поток жидкости, обеспечивать свободный поток жидкости или частично препятствовать потоку в различной степени, что позволяет более точно контролировать скорость потока.

Когда дело доходит до гидравлических контуров, существует множество вариантов управления потоком, от простых до сложных, включая гибриды, которые сочетают срабатывание гидравлического клапана со сложными электронными средствами управления. Эти варианты включают:

  • Отверстия
  • Регуляторы расхода
  • Регуляторы байпасного потока
  • Регуляторы расхода с компенсацией потребности
  • Клапаны регулируемого расхода с компенсацией давления
  • Клапаны регулируемого расхода с компенсацией давления и температуры
  • Приоритетные клапаны
  • Клапаны замедления
  • Делители потока
  • Роторные делители потока
  • Пропорциональные регулирующие клапаны
  • Пропорциональные регулирующие клапаны с компенсацией давления
  • Пропорциональные клапаны с логикой расхода

Отверстия представляют собой наиболее упрощенный вариант клапана управления гидравлическим потоком, в котором отверстие помещается последовательно с насосом в виде фиксированного отверстия или калиброванной иглы.Закупорка отверстия приводит к уменьшению или блокированию потока.

Более сложные опции могут определять изменения давления и соответствующим образом реагировать, или контролировать скорость потока и реагировать, когда скорость потока превышает определенный порог. Клапаны переменного расхода с компенсацией давления имеют компенсатор, который автоматически настраивается на различную нагрузку и давление на входе для поддержания постоянной скорости потока (с типичной точностью в пределах от 3% до 5%). Добавьте к смеси температурную компенсацию, чтобы учесть изменения вязкости гидравлического масла (на которую влияют колебания температуры).

Проблемы гидравлических клапанов управления потоком

Гидравлические регулирующие клапаны потока обеспечивают экономичное решение проблем, связанных с расходом. Однако у них есть свои проблемы, приводящие к потере давления при частичном закрытии клапанов, что может повлиять на производительность. При использовании более простых клапанов управления потоком изменения скорости потока могут происходить, даже когда регулирующий клапан находится в статическом положении, из-за системного давления, температуры (которая изменяет вязкость некоторых жидкостей) или других переменных, что приводит к проблемам с надежностью.

Выбор правильного клапана управления гидравлическим потоком может решить некоторые из этих проблем, хотя для полного устранения этих проблем может потребоваться сложный регулирующий клапан, такой как регулирующий клапан с компенсацией давления и температуры.

Рекомендации по проектированию гидравлических клапанов регулирования расхода

В гидравлическом контуре исполнительные механизмы управляются клапаном регулирования расхода. Помимо регулирующего клапана, существуют другие переменные, которые влияют на расход, включая температуру, производительность насоса и другие факторы.Разработка подходящего клапана для конкретного применения требует тщательного рассмотрения различных факторов, которые могут влиять на производительность, расход и долговечность, например:

  • Плотность жидкости
  • Максимальный и минимальный расход
  • Коррозионные свойства жидкости
  • Требуемый перепад давления на клапане
  • Предел допустимой утечки при закрытом положении клапана
  • Максимальный уровень шума
  • Связь с процессом (винты, сварка и т. Д.)

Плотность жидкости, а также минимальная и максимальная скорость потока важны для определения правильного размера клапана, в то время как коррозионные свойства жидкости следует учитывать при выборе материалов для клапана.

Дополнительные ресурсы

Для получения дополнительной информации о приводах клапанов и регулирующих клапанах посетите следующие посты:

Рабочий регулирующий клапан

, компоненты и типы

Работа регулирующего клапана, компоненты и типы

Работа регулирующего клапана, компоненты и типы: — Регулирующий клапан используется в качестве конечного элемента управления в замкнутой системе для автоматизации определенных процессов, которые включают транспортировку жидкостей из одного места в другое.Это устройство, которое используется для управления скоростью потока жидкости путем изменения размера проточных каналов. Размер проточных каналов определяется сигналом, который не может быть ни пневматическим, ни гидравлическим, ни электрическим по своей природе. Расход текучей среды регулируется напрямую с помощью регулирующего клапана, с помощью которого параметры процесса, такие как уровень жидкости, температура и давление, могут контролироваться косвенно. Их можно рассматривать как последствия управляющего воздействия на расход жидкости.Команды сигналов подаются контроллером, присутствующим в замкнутом контуре управления.

Рабочий

регулирующего клапана

Контроллер, присутствующий в системе обратной связи с обратной связью процесса, отправляет сигнал на конечный элемент управления, регулирующий клапан, чтобы проинструктировать его, насколько поддерживать открытие штока клапана, чтобы скорость потока могла быть увеличена, уменьшена или поддержана на устойчивое состояние. Если сигнал пневматического типа, то он соответствует диапазону 3-15 фунтов на квадратный дюйм, а если сигнал имеет электрическую природу, он соответствует диапазону 4-20 мА.Регулирующий клапан работает именно в этом диапазоне. Чтобы гарантировать, что положение штока клапана изменяется в соответствии с уставкой и сигналом, продиктованным контроллером, расположенный клапан устанавливается рядом с клапаном в сборе.

Компоненты регулирующего клапана

Основными компонентами регулирующего клапана являются сам клапан, привод и позиционер клапана.

Клапан :

Это регулирующий элемент регулирующего клапана, внутри которого находится шар, пробка, бабочка или пробка.Основные конструкции клапана бывают двух типов; клапан конструкции плунжера и седла, в котором плунжер прижимается к седлу, и клапан на четверть оборота, в котором шар, диск или конус вращаются и поворачиваются против седла. Часть клапана, которая регулирует поток, известна как затвор клапана. Создает разнообразие в конструкциях затворов клапанов.

Привод :

Его функция заключается в том, что он используется для перемещения штока клапана. Перемещение может осуществляться пневматически, гидравлически или электрически.Пневматические исполнительные клапаны являются самыми простыми из всех, поскольку для них требуется только сжатый воздух. Клапаны с электрическим приводом требуют дополнительных кабелей, а также переключателя. Для клапанов с гидравлическим приводом требуются линии подачи и возврата высокого давления, а также гидравлическая жидкость.

Позиционер клапана :

Позиционер клапана обеспечивает соответствие положения штока клапана заданному значению системы контроллера.Для этого требуется обратная связь по положению от штока клапана, и он подает пневматическое давление на привод, чтобы открыть или закрыть клапан.

Типы регулирующих клапанов

Типы могут быть разными в зависимости от используемой исполнительной среды, функциональности, профиля движения управляющего элемента.

На основе используемой рабочей среды

Ручной клапан:

Они не являются частью автоматической системы процесса. Они содержат маховик или рычаг и управляются вручную.

Пневматический клапан:

Они приводятся в действие сжатой материальной средой. Самая распространенная среда — Воздух. Также можно использовать другие среды, такие как азот, углеводороды и т. Д.

Гидравлический клапан:

Они приводятся в действие несжимаемой материальной средой. Наиболее распространенной средой обычно является вода, иногда также используется масло.

Электрический клапан:

Они приводятся в действие электродвигателем.

В зависимости от функциональности клапана

Пропорциональный регулирующий клапан:

Скорость потока регулируется автоматическим пропорциональным действием на основе сигнала, полученного контроллером.Можно использовать шаровые краны, шаровые краны и т. Д.

Двухпозиционный клапан:

Клапан полностью закрыт или полностью открыт. Можно использовать задвижки, шаровые краны, шаровые краны и т. Д.

.
Обратный клапан:

На основе профиля движения контролирующего элемента

Раздвижная штанга:

: Он содержит заглушку и комплект сиденья.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*