Расчет батарей отопления: Как рассчитать радиаторы отопления

Содержание

Расчет количества батарей отопления онлайн

Конструкция обогрева гаража насчитывает важные компоненты. Система обогревания имеет, расширительный бачок котел отопления, провода или трубы, механизм управления тепла, автоматические развоздушиватели, крепежную систему терморегуляторы, циркуляционные насосы, радиаторы, фиттинги. На этой странице сайта мы попбробуем найти и подобрать для гаража определенные части монтажа. Эти комплектующие конструкции весьма важны. Посему подбор каждого элемента конструкции необходимо планировать технически обдуманно.

Расчет количества батарей отопления онлайн

Эти две характеристики алюминиевых радиаторов практически всегда приводятся, как идентичные величины и во многих статьях используются, как синонимы. Вместе с тем, каждая из них все же имеет свои нюансы, которые вытекают из их физического определения:


  • Теплоотдача – это термодинамический процесс, который заключается в передаче тепла от твердого тела (поверхности радиатора) в окружающую среду через теплоноситель;

Происходит двумя способами – конвекцией и излучением. У алюминиевого прибора отопления соотношение конвекции и излучения составляет примерно 50:50

  • Мощность – физическая величина, которая показывает, сколько тепла в единицу времени может произвести то или иное устройство. Чем мощнее радиатор, тем большую площадь он может обогреть.
  • Установленный в квартире алюминиевый радиатор

    Фактически алюминиевый радиатор производит полезную работу по обогреву определенной площади, которая зависит от его мощности, за счет явления теплоотдачи. Обе обсуждаемые величины измеряются в ваттах (Вт) или киловаттах (кВт) и часто отождествляются. Хотя более правильно было бы оперировать понятием мощность, которое определяет количество передаваемой энергии, а не сам процесс передачи. Мы будем употреблять оба выражения, согласно сложившейся в последнее время практике.

    На эту тему существует масса статей и обзоров в интернете. Довольно часто обсуждался этот вопрос и на страницах нашего сайта. Поэтому здесь мы приведем лишь самые основные формулы, позволяющие произвести необходимый расчет. Различные методы определяют значение мощности, необходимой обогрева заданной площади, в зависимости от учета тех или иных параметров помещения:

    1. Продольные размеры. Зная длину и ширину, можно рассчитать площадь комнаты. Согласно строительным нормам, для отопления 10 м 2 стандартно утепленного помещения требуется теплоотдача в 1 кВт. Соответственно, полную мощность алюминиевого радиатора в киловаттах можно рассчитать, разделив площадь на 10;
    2. Объем. Более точный расчет получается при учете третьего измерения – высоты потолков. В этом случае также применяется заданное в СНиП значение – 41 Вт на 1 м 3. Таким образом, требуемая теплоотдача радиатора в ваттах будет равна объему, умноженному на 41;
    3. Конструкционные особенности помещения. Фактически это тоже расчет, за основу которого взят объем, но с некоторыми уточнениями. Так, например, для каждой двери необходимо добавить к полученному значению 0,1 кВт, а для окна – 0,2 кВт. При расположении комнаты в углу здания умножаем мощность на 1,3, а для частного дома – на 1,5, чтобы учесть утечку тепла через пол и крышу.

    Кроме того, в приведенные формулы необходимо вводить поправочные коэффициенты, учитывающие географическое положение рассматриваемого объекта

  • Комплексный учет всех факторов. толщины утепления, количества окон, материала полов и потолка, наличия или отсутствия естественной вентиляции. Такие методы довольно сложны, полный объем вычислений выполняется лишь специалистами при необходимости проведения точного расчета системы отопления.
  • Приблизительный расчет количества секций алюминиевых радиаторов на комнату

    Определение требуемой мощности является предварительной стадией расчета алюминиевых радиаторов. Далее обычно следует расчет количества секций, необходимого для обеспечения этой мощности.

    На этом этапе все, казалось бы, довольно просто: если известна общая теплоотдача, то разделив ее на паспортную мощность одной секции, мы легко получим необходимое значение количества секций радиатора.

    Но эта простота является довольно обманчивой: для не очень хорошо разбирающегося в тонкостях пользователя этот расчет может стать источником серьезных ошибок:

    • Если у вас в результате получилось дробное число, его надо обязательно округлять в большую сторону;
    • Паспортная теплоотдача алюминиевых радиаторов обычно приводится для значения теплового напора 60° С (это значит, что теплоноситель имеет рабочую температуру  90° С). Однако в реальности в частных домах устанавливают системы отопления, рассчитанные на меньшее значение напора. Поэтому перед применением формул эффективную мощность необходимо пересчитать;

    Теплоноситель в современных домах обычно нагревается до меньших температур, поэтому эффективная мощность секции становится ниже, а самих секций требуется больше

  • Мощность радиатора зависит от схемы его подключения к системе. Для больших радиаторов (12 секций и более) оптимальным является диагональный способ, для менее протяженных батарей лучше использовать боковую схему.
  • Различные варианты расположения радиатора и сопутствующие теплопотери

    асчет количества секций алюминиевых радиаторов является одной из наиболее ответственных операций при проектировании всей системы отопления. От правильности его выполнения напрямую зависит комфорт и уют в доме в самую ненастную погоду.

    Любые, даже самые простые способы расчета можно понять намного быстрее, если изучать их на конкретном примере.

    Допустим, нам нужно рассчитать радиатор для небольшой комнаты, имеющей размеры 4,2х5 м, высоту потолков 3,3 м, два окна и входную дверь. Комната находится внутри дома, т. е. угловых стен в ней нет. Применим все описанные выше методы по очереди:

    1. Площадь помещения равна 5*4,2=21 м 2. Значит требуемая мощность радиатора, рассчитанная по первому способу, равна 21/10=2,1 кВт;
    2. Объем комнаты равен ее площади, умноженной на высоту, т. е. 21*3,3=69,3 м 3. Тогда теплоотдача по объемному методу составит 69,3*41=2,84 кВт. Нетрудно заметить, что полученная величина превышает полученное первым способом значение почти на 1 кВт;
    3. Дальнейшие поправки лишь еще более увеличивают эту разницу. Так, два окна и дверь добавят к мощности алюминиевых радиаторов еще 0,4 кВт, а при учете поправочного коэффициента на частный дом необходимая мощность достигнет почти 5 кВт.

    Алюминиевые радиаторы обычно имеют секции мощностью около 200 Вт при напоре 60° С. Если теплоноситель в вашей системе имеет такие же параметры теплового напора, то, по разным оценкам, вам потребуется от 11 до 25 секций. При таком разбросе окончательное значение необходимо вычислить, применяя более точные методы.

    Если число секций получится больше 12, имеет смысл применять не 1, а 2 радиатора, разнеся их по разным углам комнаты.

    Приведенный пример свидетельствует о том, что при вычислении размеров и мощности алюминиевого радиатора разные методы могут давать совершенно разные значения. Поэтому такой расчет необходимо проводить максимально тщательно, проверяя границы применимости каждого используемого способа. Ошибки, полученные на этом этапе, могут очень серьезно сказаться на комфортности проживания в доме в течение многих лет его эксплуатации.

    Источник: http://all-for-teplo.ru/batarei/raschet-moshhnosti-i-sekcij-alyuminievogo-radiatora.html

    Расчет количества батарей отопления онлайн

    Для климатических зон европейской части России, с учётом стандартных условий (одна внешняя стенка, одно окно или обычные окна), часто берётся стандартное значение – 41 Ватт термической мощности на один кубический объём помещения. Учесть все это необходимо до того как построить дом. Благодаря этим данным несложно произвести расчёт количества секций радиаторов, которые необходимы для обогрева помещений.

    Например, имеется комната, ширина которой составляет – четыре метра, длина – пять метров и стандартная высота потолка – 2,7 м. Теперь необходимо найти объём нашей комнаты, то есть ширину умножить на длину и высоту, в итоге получается – 54 м³. Затем требуется умножить на 41 Ватт полученный объём. Получаем – 2 214 Ватт, то есть именно такая тепловая мощность потребуется, чтобы обогреть нашу комнату.

    Так как же теперь произвести расчет количества радиаторов отопления для такой комнаты? Если же тип отопительного радиатора определён, то можно без большого труда произвести расчёт их количества, зная значение теплоотдачи одной секции (это значение можно узнать из документов комплектации данного радиатора). К примеру, возьмём 180 Ватт теплоотдачи одной секции радиатора, значит, количество их будет составлять 12,3, то есть тепловую мощность, требуемую для обогрева комнаты, которую рассчитали ранее (2 214 Ватт), разделили на тепловую мощность радиатора (180 Ватт). Значит, для того чтобы обогреть нашу комнату нам потребуется 13 (число 12,3 округленно в большую сторону) секций радиаторов, каждая из которых по 180 Ватт.

    Если же комнатная дверь выполнена в виде арки и не закрывается, то площадь соседнего помещения следует добавить к её площади.

    Этот расчёт производился при условии что теплоноситель имеет температуру 70 С, если температура ниже то нужно увеличивать количество секций. Также расчет количества радиаторов отопления предусматривает теплопотерю помещения. Например, стеклопакет способен уменьшить потерю тепла на 15-20%, что соответственно сократит количество секций. Теплопотеря также зависит от степени теплоизоляции стен и месторасположения комнаты (этаж квартиры). При расчете мощности за образец я брал радиаторы отопления биметаллические отзывы о них покорили меня, на них и остановил свой выбор.

    В случае если Вам необходима замена чугунных батарей на другой тип радиаторов – можно произвести более «лёгкий» расчёт. У чугунных радиаторов теплоотдача составляет 150 Вт. Здесь потребуется посчитать количество установленных секций радиаторов и умножить их на теплоотдачу чугунных радиаторов (150 Вт). В итоге получиться общее количество тепла, излучаемое чугунными батареями.

    Также читайте

    Любая отопительная система призвана к тому, чтобы поддерживать постоянную комфортную температуру в помещении. В своём частном доме вы сами выбираете вид отопления.

    Источник: http://vozvedi-dom.ru/otoplenie/raschet-kolichestva-radiatorov-otopleniya.php

    Так же интересуются
    18 сентября 2021 года

    Расчёт количества секций радиатора отопления

    Очень важно купить современные качественные и эффективные батареи. Но куда важнее правильно произвести расчёт количества секций радиатора, чтобы в холодную пору он должным образом прогревал помещение и не пришлось думать об установке дополнительных переносных отопительных приборов, которые увеличат расход средств на отопление.

    Содержание статьи:

    СНиП и основные предписания

    Сегодня можно назвать огромное количество СНиПов, которые описывают правила проектирования и эксплуатации отопительных систем в различных помещениях. Но наиболее понятным и простым является документ «Отопление, вентиляция и кондиционирование» под номером 2.04.05.

    В нем подробно описаны следующие разделы:

    1. Общие положения, касающиеся проектирования систем отопления
    2. Правила проектирования систем отопления зданий
    3. Особенности прокладки труб отопительной системы

    Монтировать радиаторы отопления необходимо также согласно СНиП под номером 3.05.01. Он предписывает следующие правила монтажа, без которых произведенные расчеты количества секций окажутся малоэффективны:

    1. Максимальная ширина радиатора не должна превысить 70% от аналогичной характеристики оконного проема, под которым он устанавливается
    2. Радиатор должен крепиться по центру оконного проема (допускается незначительная погрешность – не более 2 см)
    3. Рекомендуемое пространство между радиаторами и стеной – 2-5 см
    4. Над полом высота не должны быть более 12 см
    5. Расстояние до подоконника от верхней точки батареи – не менее 5 см
    6. В иных случаях для улучшения теплоотдачи поверхность стен покрывают отражающим материалом

    Следовать таким правилам необходимо для того, чтобы воздушные массы могли свободно циркулировать и сменять друг друга.

    Читайте так же, наш сравнительный обзор различных видов радиаторов отопления

    Расчет по объему

    Чтобы точно произвести расчёт количества секций отопительного радиатора, необходимых для эффективного и комфортного отопления жилого помещения, следует принимать во внимания его объем. Принцип весьма прост:

    1. Определяем потребность тепла
    2. Узнаем количество секций, способных его отдавать

    СНиП предписывает учитывать потребность в тепле для любого помещения – 41 Вт на 1 м. куб. Однако этот показатель весьма относителен. Если стены и пол плохо утеплены, это значение рекомендуют увеличить до 47-50 Вт, ведь часть тепла будет утрачиваться. В ситуациях, когда по поверхностям уже уложен качественный теплоизолятор, смонтированы качественные окна ПВХ и устранены сквозняки – данный показатель можно принять равным 30-34 Вт.

    Если в комнате расположены экранированные радиаторы отопления, потребность в тепле необходимо увеличить до 20%. Часть тепловой нагретых воздушных масс не будет пропускаться экраном, циркулируя внутри и быстро остывая.

    Формулы расчета количества секций по объему помещения, с примером

    Определившись с потребностью на один куб, можно приступит к вычислениям (пример на конкретных цифрах):

    1. На первом шаге рассчитываем объем помещения по простой формуле: [высота]*[длина]*[ширина] (3х4х5=60 куб м.)
    2. Следующий этап – определение потребности теплоты для конкретно рассматриваемого помещения по формуле: [объем]*[потребность на м. куб.] (60х41=2460 Вт)
    3. В паспорте, прилагаемом к радиатору отопления, необходимо узнать мощность одной секции – средний показатель современных моделей 170 Вт
    4. Определить желаемое количество ребер можно по формуле: [общая потребность в тепле]/[мощность одной секции] (2460/170=14.5)
    5. Округление рекомендуется делать в большую сторону – получаем 15 секций

    Многие производители не учитывают, что теплоноситель, циркулирующий по трубам, имеет далеко не максимальную температуру. Следовательно, мощность ребер будет ниже, чем указанное предельное значение (именно ее прописывают в паспорте). Если нет минимального показателя мощности, значит имеющийся для упрощения расчетов занижают на 15-25%.

    Расчет по площади

    Предыдущий метод расчета – прекрасное решение для помещений, у которых высота более 2.7 м. В комнатах с более низкими потолками (до 2.6 м) можно воспользоваться другим способом, приняв за основу площадь.

    В этом случае, рассчитывая общее количество тепловой энергии, потребность на один кв. м. берут равной 100 Вт. Каких-либо корректировок в него покуда вносить не требуется.

    Формулы расчета количества секций по площади помещения, с примером

    1. На первом этапе определяется общая площадь помещения: [длина]* [ширина] (5х4=20 кв. м.)
    2. Следующий шаг – определение тепла, необходимого для обогрева всего помещения: [площадь]* [потребность на м. кв.] (100х20=2000 Вт)
    3. В паспорте, прилагаемом к радиатору отопления, необходимо узнать мощность одной секции – средний показатель современных моделей 170 Вт
    4. Для определения необходимого количества секций следует воспользоваться формулой: [общая потребность в тепле]/[мощность одной секции] (2000/170=11.7)
    5. Вносим поправочные коэффициенты (рассмотрены далее)
    6. Округление рекомендуется делать в большую сторону – получаем 12 секций

    Поправки, вносимые в расчет и советы

    Рассмотренные выше методы расчёта количества секций радиатора прекрасно подходят для помещений, высота которых достигает 3-х метров. Если этот показатель больше, необходимо увеличивать тепловую мощность прямо пропорционально росту высоты.

    Если весь дом оснащен современными пластиковыми окнами, у которых коэффициент тепловых потерь максимально снижен – появляется возможность сэкономить и уменьшить полученный результат до 20%.

    Считается, что стандартная температура теплоносителя, циркулирующего по отопительной системе – 70 градусов. Если она ниже этого значения, необходимо на каждые 10 градусов увеличивать полученный результат на 15%. Если выше – наоборот уменьшать.

    Помещения, площадь которых более 25 кв. м. отопить одним радиатором, даже состоящим из двух десятков секций, будет крайне проблематично. Чтобы решить подобную проблему, необходимо вычисленное число секций поделить на две равные части и установить две батареи. Тепло в этом случае будет распространяться по комнате более равномерно.

    Если в помещении два оконных проема, радиаторы отопления нужно размещать под каждым из них. Они должны быть по мощности в 1.7 раза больше номинальной, определенной при расчетах.

    Купив штампованные радиаторы, у которых поделить секции нельзя, необходимо учитывать общую мощность изделия. Если ее недостаточно, следует подумать о покупке второй такой же батареи или чуть менее теплоемкой.

    Поправочные коэффициенты

    Очень многие факторы могут оказывать влияние на итоговый результат. Рассмотрим, в каких ситуациях необходимо вносить поправочные коэффициенты:

    • Окна с обычным остеклением – увеличивающий коэффициент 1.27
    • Недостаточная теплоизоляция стен – увеличивающий коэффициент 1.27
    • Более двух оконным проемов на помещение – увеличивающий коэффициент 1.75
    • Коллекторы с нижней разводкой – увеличивающий коэффициент 1.2
    • Запас в случае возникновения непредвиденных ситуаций – увеличивающий коэффициент 1.2
    • Применение улучшенных теплоизоляционных материалов – уменьшающий коэффициент 0.85
    • Установка качественных теплоизоляционных стеклопакетов – уменьшающий коэффициент 0.85

    Количество вносимых поправок в расчет может быть огромным и зависит от каждой конкретной ситуации. Однако следует помнить, что уменьшать теплоотдачу радиатора отопления значительно легче, чем увеличить. Потому все округления делаются в большую сторону.

    Подводим итоги

    Если необходимо произвести максимально точный расчёт количества секций радиатора в сложном помещении – не стоит бояться обратиться к специалистам. Самые точные методы, которые описываются в специальной литературе, учитывают не только объем или площадь комнаты, но и температуру снаружи и изнутри, теплопроводность различных материалов, из которых построена коробка дома, и множество других факторов.

    Безусловно, можно не бояться и набрасывать несколько ребер к полученному результату. Но и чрезмерное увеличение всех показателей может привести к неоправданным расходам, которые не сразу, порой и не всегда удается окупить.

    Расчет количества секций радиаторов отопления по площади и объему

    Любой хозяин понимает, как важно произвести точный расчёт количества секций радиаторов отопления: если секций мало, прибор будет плохо отапливать квартиру; если же много, отопление будет неэффективным, и лишние джоули нужно будет выпускать в форточку.

    Существует несколько вариантов расчётов батарей отопления частного дома. Если вы живёте в хорошо утеплённой стандартной квартире – воспользуйтесь быстрыми расчётами. Итак, как как рассчитать количество радиаторов?

    Расчет батарей отопления на площадь

    Расчет радиаторов отопления по площади помещения – это не самый точный вариант, но подходит, если квартира с высотой потолков 2,6 – 2,7 м.

    Порядок действий:

    1. Узнаём общую площадь отапливаемого пространства (данные берутся в документации). Например, это 50 м2.
    2. Умножаем это число на 100 (Вт). Пример: 50 х 100 = 5000 Вт. (Или 5 кВт) – это общее количество тепла необходимое для данной квартиры.
    3. Смотрим в документах к радиатору, сколько тепла может выделить одна секция (см. ниже Таблицу 1). Например, биметаллический L 500 = 180 Вт.
    4. Теперь общее тепло делим на тепло из одной секции. 5000 Вт : 180 Вт = 27,77. Округляем до 28. Результат: для обогрева квартиры 50 м2 нужно 28 секции радиаторов.

    Секции радиаторов отопления

    Нужно будет произвести такие же расчёты батареи отопления для каждой комнаты отдельно.

    Если батареи планируется монтировать в нише или скрыть за экраном, то нужно добавить 15%. Например, мы получили для спальни в 14 м2, радиатор в 8 секций. Но т.к. батареи будут «прятаться», поэтому 8 + 1,2 (15% от 8) = 9,2 т.е. 9 секций.

    Для кухни округлять число радиаторов можно в меньшую сторону. А для угловой комнаты и комнаты с балконной дверью – в большую.

    Расчет по объему

    Если высота потолков в квартире нестандартная, это нужно учитывать при расчётах и вычислять не площадь, а объём.

    Порядок действий:

    1. Считаем объём комнаты. Для этого умножаем площадь на высоту потолков. Пример: комната 12 м2. Потолки – 3,1 м. 12 х3,1 = 37,2 м3.
    2. Расчет тепловой энергии на отопление. Узнаём из СНИП, сколько тепловой мощности нужно на обогрев 1 м3 в нашем доме (см. ниже таблицу 2). Например, у нас кирпичный дом, значит показатель =34 Вт.
    3. Перемножаем два получившихся значения. Пример: 37,2 х 34 = 1264,8
    4. Смотрим в документах к радиатору, какова теплоотдача 1 секции. Например, для алюминиевого радиатора А350, это 138 Вт.
    5. Делим итог из пункта 3 на теплоотдачу. Пример: 1264,8 : 138 = 9 секций.

    Примерный метод

    Упрощенный вариант расчётов основан на принятие за стандарт нескольких показателей:

    В помещении с обычными потолками 1 секция батареи обогреет 1,8 м2. Например, если комната 14 м2. 14 : 1,8 = 7,7. Округляем = 8 секций.

    Или так:

    В комнате с 1 окном и 1 внешней стеной, 1 кВт мощности радиатора может обогреть 10 м2. Пример: комната 14 м2. 14 : 10 = 1,4. То есть для такой комнаты нужен обогреватель мощностью 1,4 кВт.

    Такие методы можно использовать для примерных расчётов, но они чреваты серьёзными погрешностями.

    Если результатами вычислений стал длинный радиатор более 10 секций, то имеет смысл разделить его на два отдельных радиатора.

    Причины возможных ошибок

    Производители стараются указывать в документах к батареям максимальные показатели теплоотдачи. Они возможны только если температура воды в отоплении будет на уровне 90 0С (в паспорте тепловой напор указан 60 0С).

    В реальности такие значения достигаются теплосетями далеко не всегда. Это значит, что мощность секции будет ниже, а секций нужно больше. Теплоотдача одной секции может быть 50-60 против заявленных 180 Вт!

    Боковое подключение радиаторов отопления

    Если в сопроводительном документе к радиатору указано минимальное значение теплоотдачи, опираться в расчётах теплоотдачи радиатора батарей отопления лучше на этот показатель.

    Ещё одно обстоятельство, которое влияет на мощность радиатора – схема его подключения. Если, например, длинный радиатор из 12 секций подключить боковым методом, дальние секции всегда будут намного холоднее, чем первые. А значит, и расчёты мощности были напрасными!

    Длинные радиаторы нужно подключать по диагональной схеме, коротким батареям подойдёт любой вариант.

    Самый точный расчёт

    Чтобы наиболее точно рассчитать количество секций нужно принимать во внимание больше условий, чем объём и теплоотдача.

    100 Вт х S(площадь помещения) х А х Б х В х Г х Д х Е х Ж

    Буквы в этой формуле означают:

    А – вид остекления. Если у вас:

    • обычные стёкла = 1,26;
    • двойной стеклопакет = 1;
    • тройной стеклопакет = 0,85.

    Б – теплоизоляция стен.

    • современная, качественная = 0,85;
    • в два кирпича или утепление = 1;
    • некачественная изоляция = 1,26.

    В – сколько занимают площади окна по сравнению с площадью пола.

    • 10% = 0,8;
    • 20% = 0,9;
    • 30% = 1;
    • 40% = 1,1;
    • 50% = 1,2.

    Г – минимальная tна улице.

    • -10 0С = 0,7;
    • -20 0С = 1,1;
    • -30 0С = 1,4;
    • -40 0С = 1,7.

    Д – количество наружных стен.

    • 1 = 1,1;
    • 2 (угол) = 1,2;
    • 3 = 1,3;.
    • 4 = 1,4
    Е – что над квартирой?
    • другая квартира = 0,8;
    • тёплое чердачное помещение = 0,9;
    • холодный чердак = 1.

    Ж – Высота потолков.

    • до 2,9 = 1;
    • 3-3,5 = 1,1;
    • 3,6 – 4,5 = 1,2.

    Рассмотрим пример. Комната 14 м2 в стареньком доме. Радиаторы будут алюминиевые с теплоотдачей 205. По обычным формулам (для идеальных условий) получается, что нужно 7 радиаторов.

    Теперь попробуем учесть все факторы.

    • В окнах обычное остекление (А=1,26).
    • Теплоизоляция оставляет желать лучшего (Б=1,26).
    • Окна занимают 29% площади пола (В = 1).
    • На улице бывает до 35 0С (Г = 1,5).
    • Наружная стена одна (Д = 1,1).
    • Предпоследний этаж. Сверху другая квартира (Е = 0,8).
    • Потолки 3,2м (Ж = 1,1).

    Подставляем данные в формулу:

    100 х 14 (м2) х 1,26 х 1,26 х 1 х 1,5 х 1,1 х 0,8 х 1,1 = 3227

    Теперь если разделить 3227 на теплоотдачу 205 Вт, получим 16 (!) секций радиаторов!

    Но и это ещё не всё! Указанная теплоотдача будет действительно такой при 70 0С в трубах. Но если t меньше, нужно вносить поправки и в эти данные.

    Если t теплоносителя ниже стандартной (70 0С), на каждые 10 градусов нужно добавить +15%.

    В нашем примере t в трубах около 60 0С. Значит к полученным 17 секциям нужно прибавить 2,4 (округляем до 2) секции. Итог – 19 секций. Большая разница с примерными расчётами!

    При выборе системы отопления владельцы домов часто отталкиваются от критериев эффективности с экономичностью. Однотрубная система отопления частного дома – простой и удачный вариант для загородного жилища. Узнайте подробнее о достоинствах и недостатках этой системы.

    Возможно, вам будет интересно узнать об организации водяного отопления в частом доме. Монтаж по шагам вы найдете здесь.

    Пройдя по этой ссылке https://microklimat.pro/otopitelnoe-oborudovanie/obogrevateli/dlya-doma-energosberegayushhie.html вы узнаете, какие обогреватели для дома являются энергосберегающими и на чем строится экономия энергии.

    Полезная информация

    Показатели теплоотдачи для 1 секции некоторых видов радиаторов (Вт):

    • Алюминиевый А 350 – 138.
    • Алюминиевый А 500 – 185.
    • Алюминиевый S500 – 205.
    • Биметаллический L350 – 130.
    • Биметаллический L500 – 180.
    • Чугунные – 160.

    Чугунные батареи

    Рекомендации СНИП по тепловой мощности для:

    • Для кирпичного дома – 34 Вт
    • Для панельного дома – 41 Вт.
    • Новостройка, сделанная по всем стандартам. – 20 Вт.

    Итак. Приблизительные расчёты подходят для новых добротных домов с пластиковыми окнами. Если же квартира угловая и/или с большими стеклянными окнами, на последнем этаже, с высокими потолками – это всё поводы пересчитать более основательно. Разница может быть немалой!

    Для тех, кто далёк от математики, существуют онлайн–калькуляторы. Необходимо знать запрашиваемые показатели, ввести их и ответ будет тут же готов. Калькуляторы можно найти на сайтах изготовителей радиаторов.

    Водяное отопление – самый распространенный варианта обогрева помещения. Для максимальной эффективности важно правильно подобрать радиаторы. Батареи отопления – какие лучше? Обзор основных характеристик: температура, давление, теплоотдача, материал.

    О вреде инфракрасного обогревателя читайте в этом материале.

    Видео на тему

    Расчет радиаторов отопления — как узнать нужное количество секций для обогрева

    Расчет необходимого количества секций

    Содержание:

    Среди большого количества потребителей, самым популярным устройством для отопления является радиатор.

    В своем роде, он является классическим вариантом оборудования отопительной системы. Батарея представляет собой полый элемент, который наполнен веществом – теплоносителем, чью роль, как правило, выполняет вода.

    Выбирая радиатор, необходимо обращать внимание на несколько технических факторов, благодаря которым можно обеспечить наибольшую эффективность работы отопительной системы.

    К тому же, расчет отопительных радиаторов является обязательной процедурой перед монтажом отопительной системы в дома.

    Основной параметр — мощность радиатора

    Мощности этих секций равны!

    Монтаж отопительной системы, как и проведения любых других сложных монтажно-демонтажных работ, требует предварительной работы специалиста, цель которой заключается анализ факторов, учет которых необходим для установки отопительной системы.

    Необходимо учесть следующее:

    • Материал, из которого будет выполнены основные элементы отопительной системы.
    • Дизайн радиаторов и их тип.
    • Приблизительная сумма, необходима для проведения работ.

    Кроме этого,  необходим еще и дополнительный расчет батарей отопления.

    Необходимую мощность радиаторов можно произвести исходя из того, какая площадь помещения нуждается в обогреве. Чтобы получить площадь помещения, следует его ширину умножить на длину, скорее всего вам это известно.

    После этого, следует также замерить высоту комнаты, а также посчитать количество дверных проемов и окон. При этом учитывается материал, использованный для изготовления оконных рам и дверей.

    Здесь же нужно сказать и о необходимости определить наименьшую температуру воздуха в зимнее время года, а также температуру теплоносителя, которой будет достаточно для обогрева комнаты. Можно сделать вывод, что данные расчеты требуют особого внимания, а также определенных знаний в области математики.

    При расчете, нужно учитывать и дополнительные факторы, исходя из которых, мощность отопительного прибора должна быть увеличена на 20-25%.

    Помните: Согласно установленным стандартам, для обогрева одного квадратного метра нужно чтобы мощность отопительных элементов составляла не менее 100 Вт.

    Далее, необходимо умножить всю площадь помещения на 100 Вт, а также учесть коэффициенты уменьшения и увеличения мощности для того, чтобы получить более точный результат.

    Уменьшение мощности возможно при следующих условиях:

    • В случае если в обогреваемом помещении присутствуют стеклопакеты.
    • В случае если показатель температуры отопительного котла больше чем установленная норма, на каждые 10 градусов ее следует уменьшать приблизительно на 15%.
    • В случае если высота комнаты составляет менее чем 3 метра, мощность радиаторов можно уменьшить.

    Что касается увеличения мощности, то ее можно произвести если:

    • Потолок в квартире находится на высоте более трех метров.
    • Если ваша квартира находится на углу дома, следует увеличить на 1.8.
    • Если в такой квартире более двух оконных отверстий, необходимо умножить показатель на 1.8
    • Необходимо повысить на 8% в том случае, если они подключены снизу.
    • Вода, которая играет роль теплоносителя, может иметь недостаточную температуру. В таком случае на каждые 10 градусов необходимо увеличить показатель на 17 %
    • Если дом или квартира находится в климатических условиях, при которых температура воздуха зимой значительно падает, следует увеличить производительность отопительной системы в 2 раза.

    Расчет требуемого количество секций на комнату

    Таблица: Расчет секций для радиаторов CONDOR

    Для того чтобы выяснить, сколько секций радиатора нужно для обогрева помещения, необходимо знать точное показание мощности.

    Расчет происходит путем деления необходимой показателя мощности на показатель производительности одной отдельной секции.

    Узнать данный показатель вы сможете в технических характеристиках, которые должны быть указаны производителями.

    Рассчитать количество секций можно и другим способом.

    Необходимо знать точный показатель того, какой объем может обогревать одна секция радиатора. Далее, нужно вычислить объем помещения, и полученный показатель разделить на показатель объема, который эффективно обогревается одной секцией радиатора.

    Рассчитать объем помещения, можно перемножив его ширину, длину, и высоту.

    Конечно, произвести такие вычисления, и определить необходимое число секций, в целом, способен даже ученик младших классов. Однако, при наличии возможности, рекомендуется все же обратиться за помощью высококвалифицированных специалистов, что позволит избежать возможных ошибок.

    Если вы допустите хотя бы минимальную неточность или упустите один из важных факторов, это, в конечном итоге, способно весьма негативно отразится на эффективности работы отопительной системы вашего дома.

    В свою очередь, это может повлиять на микроклимат в помещении, а также привести к дополнительным денежным затратам.

    В связи с этим необходимо выделить основные факторы, которые могут влиять на результат расчета количества тепловой энергии, которая необходима для того, чтобы обогревать ваш дом. К ним можно отнести следующие:

    1. Окно расположено на северной или восточной стене дома – 10%
    2. Отопительный радиатор расположен в специальном углублении – 5%
    3. Вся батарея будет полностью закрыта панелью, с несколькими щелями – 15:
    4. В комнате присутствуют 2 стены, являющиеся наружными, а также 1 окно – 20%
    5. В комнате присутствуют 2 стены, являющиеся наружными и 2 окна – 30%

    Очевидно, что если из данного списка, под ваше жилье подходит несколько примеров, процентный показатель необходимо сложить.

    Посмотрите наглядное видео по сборке и установке радиаторов отопления с подробными комментариями профессионального сантехника:

    Таким образом вы сможете получить показатель того количества тепловой энергии, которая необходима для эффективного поддержания температуры в комнате.

    Расчет радиаторов отопления — способы и коэффициенты

    Расчет количества секций радиаторов отопления

    Радиаторы отопления — это самый распространенный отопительный прибор, который устанавливается в жилых, общественных и производственных помещениях. Он представляет собой полые внутри элементы, заполненные теплоносителем. Через них тепловая энергия поступает в помещение для его обогрева. При выборе радиаторов необходимо в первую очередь обращать внимание на два технических показателя. Это мощность прибора и выдерживаемое им давление теплоносителя. Но чтобы окончательно определиться с температурным режимом помещения, необходимо провести точный расчет радиаторов отопления.

    Сюда входит не только количество самих приборов и их секций, но и материал, из которого они изготовлены. Современный рынок отопительного оборудования предлагает огромный ассортимент батарей с разными техническими характеристиками. Главное, что нужно знать — это возможности одной секции батареи, а именно, ее способность выделять максимальное количество тепловой энергии. Этот показатель и ляжет в основу проводимого расчета для всей системы отопления.

    Проведем расчет

    Зная, что на 1 квадратный метр площади помещения необходимо 100 ватт тепла, можно легко подсчитать и количество необходимых радиаторов. Поэтому вначале нужно точно определить площадь комнаты, куда будут устанавливаться батареи.

    Обязательно учитывается высота потолков, а также количество дверей и окон — ведь это проемы, через которые тепло улетучивается быстрее всего. Поэтому материал, из которого изготовлены двери и окна, также идет в расчет.

    Теперь определяется самая низкая температура в вашем регионе и температура теплоносителя в это же самое время. Все нюансы рассчитываются с помощью коэффициентов, которые занесены в СНиП. С учетом этих коэффициентов можно высчитать и мощность отопления.

    Быстрый расчет производится простым умножением площади помещения на 100 ватт. Но это будет не точно. Для коррекции и используются коэффициенты.

    Коэффициенты корректировки мощности

    Их два: уменьшения и увеличения.

    Коэффициенты уменьшения мощности применяют следующим образом:

    • Если на окнах установлены пластиковые многокамерные стеклопакеты, то показатель умножается на 0,2.
    • Если высота потолка меньше стандартной (3 м), то применяется понижающий коэффициент. Его определяют как отношение фактической высоты к стандартной. Пример — высота потолка равна 2,7 м. Значит, коэффициент рассчитывается по формуле: 2,7/3 = 0.9.
    • Если отопительный котел работает с повышенной мощностью, то каждые 10 градусов вырабатываемой им тепловой энергии понижают мощность отопительных радиаторов на 15%.

    Коэффициенты увеличения мощности берутся во внимание в следующих ситуациях:

    1. Если высота потолка выше стандартного размера, то коэффициент подсчитывается по той же формуле.
    2. Если квартира является угловой, то для повышения мощности отопительных приборов применяется коэффициент 1,8.
    3. Если радиаторы имеют нижнее подключение, то к расчетной величине прибавляют 8%.
    4. Если отопительный котел понижает температуру теплоносителя в самые холодные дни, то на каждые 10 градусов понижения необходимо увеличение мощности батарей на 17%.
    5. Если иногда температура на улице достигает критических отметок, то придется увеличивать мощность отопления в 2 раза.

    Определяем количество секций одного радиатора

    Секции оборудования

    Специалисты предлагают несколько вариантов расчета количества радиаторов отопления и их секций.

    Первый — это так называемый обыкновенный способ. Он самый простой. Обычно в паспорте или сертификате качества, которые выдают как сопроводительный документ к каждому изделию, установлены технические параметры. Здесь можно найти информацию о том, какую мощность имеет одна секция радиаторов отопления.

    К примеру, она равна 200 ватт. Высчитывается мощность, необходимая для обогрева комнаты, с учетом понижающих и повышающих коэффициентов. Предположим, что она равна 2400 ватт.

    Теперь производятся чисто математические выкладки: 2400/200 = 12. Это и есть количество секций, которые необходимо установить в данной комнате. Можно использовать одну 12-секционную батарею или две 6-секционные.

    Второй вариант — производится расчет с учетом прогревающей способности одной секции для определенного объема пространства. Для этого высчитывается полный объем комнаты и делится на показатель объемного прогревания секции.

    Расцветка оборудования отопления

    Третий — примерный расчет, которым пользуются мастера, исходя из своего личного опыта. Все батареи отопления имеют практически одинаковые размеры. Отличия есть, но незначительные. Так вот было замечено, что при высоте потолка в 2,7 метра, одна секция может обогреть площадь, равную 1,8 квадратным метрам.

    Например, комната имеет площадь 25 м2. Проводим расчет: 25/1,8=13,8. То есть, 14 секций необходимо будет установить.

    Как видите, провести расчет батарей отопления не так уж и сложно. Здесь важно учесть все параметры, которые влияют на саму систему. Правда, иногда сделать это бывает сложно.

    Поэтому совет: привлекайте к данному процессу профессионалов — ведь небольшая ошибка или минимальный недочет могут привести к нежелательной ситуации. Вам будет просто не комфортно в квартире или доме зимой — когда температура воздуха не доходит до комнатной.

    Расчет мощности батарей отопления | Всё об отоплении

    Как рассчитать мощность радиатора отопления — делаем расчет мощности правильно

    Когда проектируется система теплоснабжения для частного дома или квартиры, расположенной в новостройке, необходимо знать, как рассчитать мощность радиаторов отопления, чтобы определить требуемое количество секций для каждой комнаты и подсобных помещений. В статье приводится несколько несложных вариантов вычислений.

    Особенности проведения расчетов

    Расчет мощности радиатора отопления сопряжен с рядом проблем. Дело в том, что на протяжении отопительного сезона температура за окном постоянно меняется, а соответственно отличаются потери тепла. Так при 30 градусах мороза и сильном северном ветре, они будут гораздо больше, чем при — 5 градусах, да еще при безветренной погоде.

    Многих владельцев недвижимости волнует, что неправильно рассчитанная тепловая мощность радиаторов отопления может привести к тому, что в морозы в доме будет холодно, а в теплую погоду придется держать нараспашку форточки целый день и таким образом отапливать улицу (детальнее: «Расчет мощности батарей отопления — как рассчитать самому «).
    Однако имеется понятие, которое называется температурный график. Благодаря чему температура теплоносителя в отопительной системе меняется в зависимости от погоды на улице. По мере того, как будет расти температура воздуха на улице, повышается теплоотдача каждой из секций батареи. А раз так, то относительно любого отопительного оборудования можно говорить о средней величине теплоотдачи.

    Что касается жильцов частных домовладений, то после установки современного электрического или газового теплоагрегата или отопления с применением тепловых насосов они не должны волноваться о том, какую температуру имеет теплоноситель, циркулирующий в контуре отопительной конструкции.

    Созданное с применением новейших технологий тепловое оборудование позволяет управлять им при помощи термостатов и корректировать мощность батарей в соответствии с потребностями. Наличие современного котла не требует контроля над температурой теплоносителя, но, чтобы установить радиаторы отопления расчет мощности все равно потребуется.

    Порядок расчета мощности радиаторов отопления

    Все расчеты, связанные с обустройством отопительной конструкции, неразрывно связаны с таким понятием как тепловая мощность. Вариантов как рассчитать мощность радиатора отопления существует несколько. При этом следует отметить, что у приборов от известных и хорошо себя зарекомендовавших производителей данный параметр всегда указывается в прилагаемых к ним документах (прочитайте также: «Как рассчитать отопление в доме правильно «).

    У таких агрегатов, как электрический конвектор, тепловентилятор, масляный радиатор или инфракрасная керамическая панель тепловая мощность соответствует их электрической мощности (читайте также: «Что выбрать конвектор или масляный радиатор «). При создании системы отопления, где используется жидкий теплоноситель, не обойтись без батарей.
    У чугунных, алюминиевых или биметаллических отопительных приборов мощность одной секции радиатора отопления составляет от 140 до 220 ватт. Усредненным значением считается значение 200 ватт, которое батарея отдает при разнице температур между теплоносителем и воздухом в помещении, равным 70 градусам. Читайте также: «Расчет количества секций биметаллических радиаторов «.

    Чтобы выполнить расчет биметаллических отопительных радиаторов или чугунных батарей, исходя из тепловой мощности, необходимо разделить требуемое количество тепла на величину 0,2 КВт. В результате будет получено количество секций, которые нужно приобрести, чтобы обеспечить обогрев комнаты (детальнее: «Правильный расчет тепловой мощности системы отопления по площади помещения «).

    Если чугунные радиаторы (см. фото) не имеют промывочных кранов специалисты рекомендуют принимать в расчет 130-150 ватт на каждую секцию, учитывая мощность 1 секции чугунного радиатора. Даже когда они первоначально отдают тепла больше, чем требуется, появившиеся в них загрязнения понизят теплоотдачу.

    Как показала практика, батареи желательно монтировать с запасом около 20%. Дело в том, что при наступлении экстремальных холодов чрезмерной жары в доме не будет. Также поможет бороться с повышенной теплоотдачей дроссель на подводке. Покупка лишних нескольких секций и регулятора не сильно отразится на семейном бюджете, а тепло в доме в морозы будет обеспечено.

    Необходимая величина тепловой мощности радиатора

    При расчете отопительной батареи непременно нужно знать требуемую тепловую мощность, чтобы в доме было комфортно жить. Как рассчитать мощность радиатора отопления или других отопительных приборов для теплоснабжения квартиры или дома, интересует многих потребителей.

    1. Способ согласно СНиП предполагает, что на один «квадрат» площади требуется 100 ватт.

    Но в данном случае следует учитывать ряд нюансов:

    — теплопотери зависят от качества теплоизоляции. Например, для обогрева энергоэффективного дома, оборудованного системой рекуперации тепла со стенами, сделанными из сип-панелей, потребуется тепловая мощность меньше, чем в 2 раза;
    — создатели санитарных норм и правил при их разработке ориентировались на стандартную высоту потолка 2,5-2,7 метра, а ведь этот параметр может равняться 3 или 3,5 метра;
    — этот вариант, позволяющий рассчитать мощность радиатора отопления и теплоотдачу, верен только при условии примерной температуры 20°C в квартире и на улице — 20°C. Подобная картина типична для населенных пунктов, расположенных в европейской части России. Если дом находится в Якутии, тепла потребуется гораздо больше.

  • Способ расчета, исходя из объема, не считается сложным. Для каждого кубометра помещения требуется 40 ватт тепловой мощности. Если размеры комнаты составляют 3х5 метра, а высота потолка 3 метра, тогда потребуется 3х5х3х40 = 1800 ватт тепла. И хотя погрешности, связанные с высотой помещений в этом варианте расчетов устранены, он все еще не является точным.
  • Уточненный способ расчета по объему с учетом большего количества переменных дает более реальный результат. Базовым значением остаются все те же 40 ватт на один кубометр объема.

    Когда производится уточненный расчет тепловой мощности радиатора и требуемой величины теплоотдачи, следует учитывать, что:

    — одна дверь наружу отнимает 200 ватт, а каждое окно — 100 ватт;
    — если квартира угловая или торцевая, применяется поправочный коэффициент 1,1 — 1,3 в зависимости от вида материала стен и их толщины;
    — для частных домовладений коэффициент составляет 1,5;
    — для южных регионов берут коэффициент 0,7 — 0,9, а для Якутии и Чукотки применяют поправку от 1,5 до 2.

  • В качестве примера для проведения расчета взята угловая комната с одним окном и дверью в частном кирпичном доме размером 3х5 метров с трехметровым потолком на севере России. Средняя температура за окном зимой в январе составляет — 30,4°C.

    Порядок вычислений следующий:

    • определяют объем помещения и требуемую мощность — 3х5х3х40 = 1800 ватт;
    • окно и дверь увеличивают результат на 300 ватт, итого получают 2100 ватт;
    • с учетом углового расположения и того, что дом частный будет 2100х1,3х1,5 = 4095 ватт;
    • прежний итог умножают на региональный коэффициент 4095х1,7 и получают 6962 ватт.

    Видео о выборе радиаторов отопления с расчетом мощности:

    Расчет мощности радиатора отопления

    • Что нужно для расчета мощности радиаторов отопления
    • Формула расчета мощности радиатора отопления
    • Влияние места расположения на расчет мощности батареи отопления
    • Как нужно размещать приборы

    Что нужно для расчета мощности радиаторов отопления

    Тепло, которое передается радиаторами воздуху в помещении, должно обязательно компенсировать тепловые потери помещения. В упрощенном виде это соответствует тому, что на каждые 10 кв.м площади комнаты понадобится устанавливать биметаллические радиаторы с тепловой мощностью не меньше 1 кВт. На практике данный показатель следует увеличить на 15%, то есть полученная мощность радиатора умножается на 1,15. На сегодняшний день есть и более точные расчеты необходимой мощности стальных радиаторов, которые используют специалисты, однако для грубой оценки будет достаточно и предложенного метода. При данном методе расчета батареи могут оказаться немного большей мощности, чем это необходимо, однако возрастет качество системы отопления, при котором может быть возможной более точная настройка и низкотемпературный отопительный режим.

    Схема радиаторов отопления.

    При приобретении стальных радиаторов в паспорте прибора отопления указываются размеры устройства в миллиметрах. На сегодняшний день в продаже существуют радиаторы, которые имеют высоту 20, 30, 40, 50 и 60 см. Приборы имеющие высоту 20 и менее сантиметров, называются плинтусными. Высота в 60 см является традиционной высотой для старых чугунных батарей, в связи с чем новые радиаторы, которые имеют высоту 60 см, могут с легкостью их заменить.

    Формула расчета мощности радиаторов отопления.

    В данный момент в большинстве случаев используются радиаторы, которые имеют высоту 50 см, потому как в архитектуре все больше начинают использовать высокие окна и низкие подоконники, а при монтаже радиатора под окно понадобится выдержать нормативный зазор между радиатором и подоконной доской не меньше 5 см, при этом расстояние между полом и отопительным устройством должно составлять не менее 6 см. Низкие батареи выглядят компактнее, однако при одинаковой мощности будут длиннее. Следует знать, что размеры помещения не всегда дают возможность устанавливать более длинные радиаторы.

    Говоря о том, как рассчитать мощность, следует отметить, что в паспорте устройства отопления рядом с мощностью, к примеру, 1905 Вт, будут указаны цифры расчетного перепада температуры, например, 70/55. Это значит, что в случае охлаждения с 70°С до 55°С радиаторы со своей поверхности отдадут 1905 Вт тепловой мощности. Многие продавцы указывают мощность радиаторов исключительно для перепада 90/70. В случае использования подобных устройств отопления для среднетемпературных систем с перепадом 70/55 мощность тепловой отдачи подобных радиаторов будет меньше, чем та, которая заявлена в паспорте. Именно поэтому при выборе батарей для низко- (55/45) и среднетемпературных отопительных систем их фактическую мощность понадобится пересчитывать.

    Вернуться к оглавлению

    Формула расчета мощности радиатора отопления

    Варианты присоединения радиаторов.

    Для того чтобы рассчитать мощность прибора отопления, существует следующая формула:

    Q=k×A×dT, где k — коэффициент тепловой отдачи прибора отопления (Вт/кв.м°С), А — площадь поверхности прибора отопления, которая передает тепло (кв.м), dT — температурный напор (°С).

    Из паспортных данных радиаторов становится известна мощность радиатора (Q) и температурный напор (dT), который соответствует данной мощности. Подставляя данные значения в формулу, следует рассчитать произведение k×A. Таким образом, станут известны все составляющие формулы. Если подставить значение dT, которое равняется 50°С или 30°С (в зависимости от средне- и низкотемпературных систем отопления), будет возможность найти мощность имеющихся радиаторов для данных систем. Кроме того, мощность подобных устройств можно пересчитать на свой температурный напор (dT) в случае, если по каким-либо причинам хозяина квартиры не устраивают нормативные величины 30°С и 50°С. Для этого понадобится использовать ту же самую формулу.

    Теплоотдача радиаторов в зависимости от способа установки.

    К примеру, необходимо выбрать отопительные радиаторы для комнаты, которая имеет площадь 16 кв.м. Для того чтобы отопить данную площадь, понадобятся батареи, которые имеют мощность 1,6 кВт. Данное число умножается на коэффициент 1,15, и получается 1,84 кВт. Далее останется только прийти в магазин и выбрать батареи, которые подходят по мощности и размеру.

    Например, был найден прибор, в паспортных данных которого обозначается мощность 1905 Вт (1,9 кВт). Понадобится изучить паспортные данные и найти информацию по поводу того, что данную мощность устройство может выдать исключительно при температурном напоре в 60°С (90/70). Однако заранее известно, что имеющаяся система отопления будет выполнена с качественной регулировкой температуры теплового носителя — с использованием трехходовых смесителей. Она будет работать в низкотемпературном режиме (55/45) с напором температуры dT = 30°C. Соответственно, необходимо пересчитать мощность радиатора, который предлагается. По формуле либо паспортным данным надо найти величину произведения k×A=31,75 Вт/°С и вставить обновленные данные в формулу, которая необходима для расчета мощности.

    Q=k×A×dT=31,75×30=956 Вт, что составит приблизительно 50% от необходимой мощности.

    Далее можно поступить несколькими способами:

    • приобрести вместо одного устройства два;
    • произвести расчет мощности одной секции батареи и на основании данного расчета подобрать отопительный прибор с необходимым количеством секций;
    • выполнить поиск других приборов, которые будут удовлетворять необходимым требованиям.

    Следует добавить, что при приобретении батарей для низкотемпературных систем отопления (dT=30°C), в паспортных данных которых указывается температурный напор в 60°С, результат во всех случаях остается один — количество секций устройства понадобится удвоить. В других случаях, когда в паспорте указываются другие температурные напоры либо к расчетному напору температуры существуют собственные требования, мощность батарей необходимо пересчитать.

    Как рассчитать количество секций радиаторов

    Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.

    Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.

    Есть еще один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.

    Расчет радиаторов зависит от потерь тепла помещением и номинальной тепловой мощности секций

    Расчет радиаторов отопления по площади

    Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:

    • для средней климатической полосы на отопление 1м 2 жилого помещения требуется 60-100Вт;
    • для областей выше 60 о требуется 150-200Вт.

    Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м 2. потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.

    Расчет радиаторов отопления можно сделать по нормам СНиП

    Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»

    Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

    Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

    Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

    Как посчитать секции радиатора по объему помещения

    При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:

    • в панельном доме на обогрев кубометра воздуха требуется 41Вт;
    • в кирпичном доме на м 3 — 34Вт.

    Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объему

    Рассчитаем все для того же помещения площадью 16м 2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м 3 .

    Дальше посчитаем для вариантов в панельном и кирпичном доме:

    • В панельном доме. Требуемое на отопление тепло 43,2м 3 *41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
    • В кирпичном доме. Тепла нужно 43,2м 3 *34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).

    Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.

    Корректировка результатов

    Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

    Количество радиаторов зависит от величины потерь тепла

    На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

    • соотношение площади окна к площади пола:
      • 10% — 0,8
      • 20% — 0,9
      • 30% — 1,0
      • 40% — 1,1
      • 50% — 1,2
    • остекление:
      • трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
      • обычный двухкамерный стеклопакет — 1,0
      • обычные двойные рамы — 1,27.

    Стены и кровля

    Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

    • кирпичные стены толщиной в два кирпича считаются нормой — 1,0
    • недостаточная (отсутствует) — 1,27
    • хорошая — 0,8

    Наличие наружных стен:

    • внутреннее помещение — без потерь, коэффициент 1,0
    • одна — 1,1
    • две — 1,2
    • три — 1,3

    На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

    Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

    Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.

    Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.

    Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

    Климатические факторы

    Можно внести корректировки в зависимости от средних температур зимой:

    Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.

    Расчет разных типов радиаторов

    Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1л/мин примерно равен мощности в 1кВт (1000Вт).

    Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя

    Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

    Осевое расстояние определяют между центрами отверстий для теплоносителя

    Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.

    Чтобы считать было проще, есть усредненные данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50см приняты такие значения мощностей:

    • алюминиевые — 190Вт
    • биметаллические — 185Вт
    • чугунные — 145Вт.

    Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

    При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м 2 площади. Тогда на помещение 16м 2 нужно: 16м 2 /1,8м 2 =8,88шт. Округляем — нужны 9 секций.

    Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:

    • биметаллический радиатор — 1,8м 2
    • алюминиевый — 1,9-2,0м 2
    • чугунный — 1,4-1,5м 2 .

    Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.

    Расчет чугунных радиаторов отопления. Считать может по площади или объему помещения

    Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м 2. Считаем количество секций стандартного размера: 16м 2 /2м 2 =8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.

    Корректировка в зависимости от режима отопительной системы

    Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90 о С, в обратке — 70 о С (обозначается 90/70) в помещении при этом должно быть 20 о С. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.

    Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

    Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

    Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м 2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м 2. Потому нам потребуется 16м 2 /1,5м 2 =10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:

    • высокотемпературная 90/70/20- (90+70)/2-20=60 о С;
    • низкотемпературный 55/45/20 — (55+45)/2-20=30 о С.

    То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м 2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

    При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20 о С а, например, 25 о С просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55 о С. Теперь находим соотношение 60 о С/55 о С=1,1. Чтобы обеспечить температуру в 25 о С нужно 11шт*1,1=12,1шт.

    Зависимость мощности радиаторов от подключения и места расположения

    Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

    Потери тепла на радиаторах в зависимости от подключения

    Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

    Количество тепла зависит и от установки

    Количество тепла зависит и от места установки

    Определение количества радиаторов для однотрубных систем

    Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления. когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

    В однотрубной системе вода на каждый радиатор поступает все более холодная

    Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.

    В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции

    Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

    Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

    Источники: http://teplospec.com/radiatory-batarei/kak-rasschitat-moshchnost-radiatora-otopleniya-delaem-raschet-moshchnosti-pravilno.html, http://1poteply.ru/radiatory/moshhnosti-radiatora-otopleniya.html, http://teplowood.ru/raschet-radiatorov-otopleniya.html

    Расчёт и подбор радиаторов отопления

    Расчет радиаторов отопления

    При выборе радиаторов отопления, сейчас у покупателей проблем не возникает, ведь ассортимент этих элементов отопительно системы впечатляет: алюминиевые, чугунные, биметаллические – что душа пожелает. Но приобретение дорогостоящих радиаторов ещё не означает, что у вас дома теперь точно будет тепло. Для эффективного отопления помещений, существенную роль играет не только качество радиаторов, но и их количество. Но давайте разберемся, как нужно правильно рассчитывать радиаторы отопления, чтобы не купить лишнего и не замёрзнуть зимой.

     

    Одним из основных параметров является тепловая мощность секций

    У каждого отопительного прибора имеется своя тепловая мощность, например у радиаторов отопления из алюминия она составляет 185-200 Вт на одну секцию, если же говорить про чугунные радиаторы, то их тепловая мощность не более 130 Вт. Однако помимо материала, из которого изготовлены секции, на тепловую мощность оказывает влияние показатель «DT», отвечающий за учёт температуры теплоносителя, входящего и выходящего из батареи. К примеру, у алюминиевого радиатора по паспорту высокая тепловая мощность – она составляет 180 Вт. Данный параметр достигается только лишь, при DT = 90/70. Проще говоря, температура поступающей транспортируемой среды должна составлять 90 градусов, а на выходе это уже 70 градусов.

    Но следует учитывать, что котлы в таких условиях практически никогда не эксплуатируются. У котлов настенного типа, выходная температура составляет максимум 85 градусов, а пока горячая вода дойдёт до трубы она потеряет ещё несколько градусов. Следовательно, даже при покупке алюминиевых радиаторов, необходимо отталкиваться от того, что тепловая мощность их секций будет не более 120 Вт.

     

    Методика расчёта радиаторов отопления в зависимости от площади помещения

    Если неправильно посчитать необходимое количество радиаторов, то это может стать причиной недостаточного отопления, высоких счетов за отопление или же высоких температур в помещениях. Расчёты следует делать как при установке радиаторов, так и если меняется старая отопительная система, где на первый взгляд с числом секций всё ясно. Также учитывайте, что в зависимости от типа радиатора, теплоотдача у них может быть разной.

    Проще всего – это выполнить расчёт количества тепла, которое необходимо на отопление, исходя из площади помещения, где планируется установка радиаторов. Если площадь помещения известна, то необходимое количество тепла можно высчитать на основании СНиПа:

    • Если вы живёте в средней климатической полосе, то чтобы отопить 1 м2 жилой площади, необходимо затратить от 60 до 100 Вт тепла;
    • Для более холодных районов, на отопление 1м2 жилой площади, нужно от 150 до 200 Вт.

    На основании данных норм, можно сделать расчёт, сколько необходимо тепла одной жилой комнате. Если дом или квартира расположены в средней климатической зоне, то чтобы отопить помещение площадью 18 м2, необходимо затратить 1800 Вт, для этого площадь помещения умножаем на 100. Но учитывая, что нормы СНиПа являются усредненными, а погода часто оставляет желать лучшего, площадь помещения мы умножаем на максимальное значение, необходимое для его отопления – в нашем случае это 100 Вт. Но если вы живете на юге, то площадь своего помещения можно смело умножать на 60 Вт.

    В отоплении запас по мощности необходим довольно небольшой: с повышением необходимой мощности, требуется и большее число радиаторов, в чем больше их будет, тем больше должно быть носителя тепла в системе. Если для жителей квартир, где централизованное отопление это не является критичным, то для тех, у кого автономное отопление, большой объем системы будет значить увеличение затрат на обогрев теплоносителя.

    Выполнив расчёт тепла, которое необходимо помещению, можно точно понять, сколько должно быть секций у батареи, ведь каждый конкретный отопительный прибор может выделять определенное количество тепла в соответствии с его техническими показателями.

    Итак, полученную потребность тепла необходимо разделить на мощность радиатора. В результате мы получим требуемое число секций, которые позволят обеспечить помещение нужным количеством тепла.

    Выполним расчет радиаторов для нашего помещения в 18 м2. Мы посчитали, что для его обогрева требуется мощность в 1800 Вт. Допустим, что одна секция имеет мощность 175 Вт. Значит, 1800/175=10,28 шт. Последние две цифры можно округлить как в большую, так и в меньшую сторону. В меньшую округляем для радиаторов на кухне, где имеются и другие источники тепла, а при расчёте обогрева комнаты или балкона, лучше округлить в большую сторону.

     

    Рассчитываем радиаторы отопления в зависимости от объема помещения

    Принцип расчётов здесь примерно такой же, как и в ранее рассмотренном случае. Прежде всего, нам необходимо вычислить общую потребность в тепле, после чего рассчитать число секций радиаторов. Если батарея будет скрыта экраном, то потребность помещения в тепловой энергии увеличиваем на 20%. В соответствии с требованиями СНИП, чтобы обогреть один кубически метр жилого помещения, требуется 41 Вт тепловой мощности.

    Умножив высоту потолка на площадь комнаты, мы получим объём помещения. Полученное число умножаем на 41 Вт. Теперь у нас есть необходимое количество тепловой мощности для обогрева помещения. Квартиры, где установлены стеклопакеты и имеется внешнее утепление, необходимое количество тепловой мощности составляет 34 Вт на 1 м3.

    Для наглядности давайте выполним расчёт требуемого количества тепла для помещения площадью 21 кв.м. и с потолками, высотой 2,7 метра. Объём такого помещения равен 56,7 куб.м (21 кв.м умножили на 2,7 метра), значит, необходимая для него тепловая мощность будет составлять 2324,7 Вт (56,7 куб.м. умножили на 41 Вт).

    Чтобы сделать расчёт радиаторов отопления берем тепловую мощность одной секции в 175 Вт (как в предыдущем примере). Теперь 2324,7 Вт / 175 Вт = 13,28 – это и есть необходимое количество радиаторов отопления. Число 13,28 округляем в большую или меньшую сторону в зависимости от типа помещения.

    Сколько тепла выделяет свинцово-кислотная батарея?

    Сколько тепла выделяет свинцово-кислотная батарея?

    Иногда нам задают очень интересные вопросы. Недавно нас спросили, сколько тепла выделяет промышленная резервная батарея. Честно говоря, это зависит от того, кого вы спрашиваете. У разных производителей аккумуляторов разные ответы на этот вопрос, и разные методы расчета дают существенно разные ответы.

    Выделяемое или генерируемое тепло иногда называют «потерей тепла».

    Автор статьи не дает рекомендаций по методам, приведенным ниже. Статья подготовлена, чтобы показать, что существует конфликт между различными используемыми методами.

    В общих чертах вопрос задается для расчета требований к вентиляции, и в этой статье исследуются различные методы и демонстрируется изменчивость результатов.

    Тепло выделяется при подзарядке, подзарядке и разрядке. Тепло, выделяемое при зарядке, является конечным, т.е. когда аккумулятор полностью заряжен, тепло больше не выделяется, но в этот момент аккумулятор переходит в фазу плавающего заряда, и пока аккумулятор находится на зарядке, тепло выделяется.Тепло, выделяемое при разряде, также ограничено, потому что, когда аккумулятор полностью разряжен, тепло больше не выделяется. Следовательно, у нас есть три условия, которые следует учитывать:

    1) нагрев при подзарядке.

    2) нагрев на плавающем заряде.

    3) нагрев при разряде.

    Все мы знаем, что свинцово-кислотные батареи тяжелые и имеют большую тепловую массу. Из-за этого во время перезарядки, плавающего заряда и разряда тепло, генерируемое внутри элементов, не будет немедленно рассеиваться в окружающую атмосферу, и существуют разные мнения о том, насколько быстро это будет происходить.Частично разногласия являются результатом разных размеров и форм элементов или моноблоков, составляющих батарею, а также того, являются ли они типами VRLA AGM, VRLA GEL или вентилируемыми.

    В общих чертах, тепло — это ватты, а ватты можно рассчитать из V x I (вольт x ампер) или мы можем использовать I2R (амперы x амперы x сопротивление). Этот принцип эти формулы могут использоваться для расчета выделяемого тепла.

    В этой статье в примерах используется следующая система батарей.В примерах рассматривается следующее: —

    a) Аккумуляторная батарея мощностью 300 кВт в течение 15 м при температуре 20 ° C до не менее 408 В (в среднем 1,70 В на канал).

    b) Батарея состоит из 3 параллельных цепочек, каждая из которых состоит из 40 моноблоков на 12 В; то есть 240 ячеек.

    c) Напряжение холостого хода 2.27Vpc = 545V.

    г) Номинальная емкость каждой гирлянды составляет 110 Ач, т. Е. Общая емкость батареи 330 Ач.

    e) Внутреннее сопротивление каждого моноблока равно 3.8мОм. Это значение взято из информации производителя аккумулятора. Следовательно, сопротивление батареи составляет 3,8 мОм x 40 блоков / 3 струны = общее сопротивление 50,7 мОм.

    f) Полностью заряженный ток холостого хода 1 мА на Ач = 330 мА. Значение 1 мА на Ач соответствует I-поплавку. (примечание ниже) значение из BS EN 50272.

    g) Параметры перезарядки: ток 10% (33A) и постоянное напряжение 2,27Vpc (544,8V).

    (Примечание) — Полностью заряженный ток холостого хода можно получить у производителя батареи.Однако в BS EN 50272 (Требования безопасности для вторичных батарей и их установки) типичное значение можно найти в таблице 1. В таблице приведены значения тока при зарядке с помощью зарядных устройств IU или U. Хотя эти значения используются для расчета выбросов газа при зарядке, их также можно использовать для оценки силы тока при полной зарядке. На практике это значения для наихудшего сценария со встроенным запасом прочности.

    Для вентилируемых свинцово-кислотных аккумуляторов, свинцово-кислотных аккумуляторов VRLA и для никель-кадмиевых аккумуляторов значение дается как 1 мА на Ач для условий плавающего напряжения.Мы должны рассматривать Ah как номинальное значение при скорости 10 часов для свинцово-кислотного продукта и 5 часов для продукта NiCd.

    Во-первых, нам нужно определить «перезарядку», и в этом контексте мы имеем в виду ток / время, необходимое для возврата емкости, удаленной для предыдущей разрядки. Мы только рассматриваем время полной зарядки.

    Количество выделяемого тепла существенно не меняется, даже если параметры подзарядки могут отличаться. Например, ток зарядного устройства, то есть 5%, 10% или 15% C10 ампер, или при использовании истинного плавающего напряжения (например.грамм. 2.27Vpc) или повышенное напряжение (например, 2,40Vpc), существенно не изменяют выделяемое тепло или тепловые потери от батареи. Однако выделяемое тепло будет существенно отличаться в зависимости от глубины предыдущего разряда. Для промышленных резервных батарей и в этой статье мы рассматриваем характеристику перезарядки при постоянном напряжении / ограниченном токе; иначе известный как метод IU или модифицированного постоянного потенциала, такой как 2,27 В на канал или 2,40 В на канал или аналогичный, с ограничением тока.

    На этом этапе стоит отметить, что некоторые производители аккумуляторов считают, что количество тепла, выделяемого при перезарядке, можно рассчитать с использованием того же метода, как если бы аккумулятор находился на плавающем заряде.Этот метод используется в 1.1) ниже. Эта точка зрения принята потому, что любое тепло, выделяемое при перезарядке, не будет немедленно выделено из-за тепловой массы батареи.

    Вычисления тепла усложняются, если мы принимаем во внимание удельные тепловые характеристики аккумулятора и, по крайней мере, один производитель аккумуляторов предоставил результаты, основанные на фактическом типе и конфигурации аккумулятора. Это не помогает определить количество тепла, выделяемого для каждой конфигурации батареи, и нам нужно что-то гораздо более простое для использования в повседневной ситуации.В конце концов, мы смотрим на типичное значение, которое может использоваться для целей охлаждения помещения, а не на конечную «лабораторную оценку». На практике хорошее приближение является достаточно точным.

    Отсюда следует, что если количество тепла, выделяемого при перезарядке, меняется в зависимости от предыдущего разряда, то все остальные параметры в целом не имеют значения. Затем мы можем оценить количество тепла, выделяемого при перезарядке, в зависимости от предыдущего разряда. Чтобы сделать расчет немного более точным, мы должны оценить время до полной зарядки на основе характеристик IU и предыдущей глубины разряда.У большинства производителей есть таблицы или даже программный метод определения времени до различных состояний заряда, включая время полной зарядки. Однако в целом можно сказать, что время до полной зарядки будет составлять много часов, но время до 80% будет зависеть от характеристики IU. Во время перезарядки большая часть тепла будет выделяться в виде потерь, вплоть до того, что батарея будет заряжена на 80%, что будет составлять «постоянный ток» части перезарядки. Во время фазы постоянного тока i.е. до 80% заряда, тепло можно оценить с помощью принципа I2R. От 80% до 100% ток поплавка может использоваться для расчета тепла. Некоторые производители аккумуляторов считают, что ток заряда от 80% до 100% равен удвоенному теоретическому току холостого хода. В контексте реальной жары это можно рассматривать как разумный метод. Этот метод используется в п. 1.2) ниже.

    1.1) Учитывая тепло, такое же, как если бы аккумулятор находился на плавающем заряде, мы имеем: —

    V x I = W , или альтернативно методом I2R = W.

    1.1.1) В x I = Вт.

    Единственная проблема — решить, какое напряжение и какой ток использовать.

    Для напряжения разумно рассматривать напряжение как фактическое напряжение холостого хода на клеммах батареи.

    Для тока разумно использовать значение I float, как определено в BS EN 50272.

    Рассчитать на 1 блок: —

    2,27 В на канал x 6 ячеек x 110 мА = 1,498,2 мВт

    Следовательно, для блоков 40 x 3 = 1498.2 x 40 x 3 = 179 784 мВт = 179,784 Вт.

    Это тепло будет на время перезарядки 76 часов. Следовательно, тепло можно выразить как 180 Вт x 76h = 13 680 Втч , но более 76h = 180 Вт.

    1.1.2) I2R = Вт

    Мы можем использовать тот же ток, что и выше, то есть я плаваю, а для напряжения R мы можем использовать сопротивление блока, то есть 3,8 мОм. Из расчета на 1 блок: —

    110 мА x 110 мА x 3.8 мОм. = 0,04598 мВт

    Следовательно, для блоков 40 x 3 = 5,5176 мВт.

    Это тепло будет на время перезарядки 76 часов. Следовательно, тепло можно выразить как 5,5176 мВт x 76 ч = 0,42 Втч , но за время перезарядки 76 часов = 5,5 мВт.

    1.2) Нагрев до 80% заряда плюс нагрев от 80 до 100% заряда

    1.2.1) Нагреть до 80% заряда

    Учитывая описанную выше систему батарей, мы знаем, что ток перезарядки будет составлять 33 А до 80% заряда, а с 80% мы будем использовать 2-кратный плавающий ток, то есть, если мы используем метод 2-кратного плавающего тока, ток 330 х 2 = 660 мА.Нам нужно установить состояние заряда после разряда. Предположим наихудший случай максимального тока на 15 м: —

    Максимальный ток = 300кВт x 1000 / 408В = 735A

    Удаленная емкость = (735 А x 15 м) / 60 = 184 Ач или 146 Ач заряженных (330 Ач — 184 Ач).

    Эти 184 Ач соответствуют 56% разряженным или 44% заряженным.

    Мы знаем, что ток перезарядки 33 А (11 А на цепочку) будет течь до тех пор, пока батарея не будет заряжена на 80%.Состояние заряда 80%: = 330 Ач x 0,8 = 264 Ач.

    Время от 146Ач в аккумуляторе в конце предыдущего разряда до 264Ач в аккумуляторе = 118Ач / 33А = 3,6ч.

    Теперь мы можем оценить тепло от начала подзарядки до 80% заряда, как показано ниже.

    Использование I2R на блок: —

    11A x 11A x 3,8 мОм = 495,8 мВт.

    Следовательно, для блоков 40 x 3 = 59,496 мВт

    Этот ток будет течь 3.6h, что может быть выражено как 214Wh.

    ПРИМЕЧАНИЕ. Внутреннее сопротивление промышленных аккумуляторов существенно не меняется от 100% заряженных до 10% заряженных. Следовательно, принцип I2R действителен.

    1.2.2) Нагрев с 80% до 100% заряда

    Нам необходимо установить время от 80% заряда до полного заряда, и производитель батареи должен предоставить эту информацию. Однако разумным предположением для оценки тепла было бы 72 часа.Принято считать, что полностью разряженный аккумулятор можно заряжать с помощью постоянного тока и тока перезарядки от 5% до 15% в течение 72 часов. Если мы предполагаем полные 72 часа, мы рассматриваем наихудший сценарий.

    Теплоотдача на блок теперь может быть оценена как: —

    110 мА x 110 мА x 3,8 мОм. = 0,04598 мВт

    Следовательно, для блоков 40 x 3 = 5,5176 мВт.

    Это тепло будет на время перезарядки 72 часа.Следовательно, тепло можно выразить как 5,5176 мВт x 72 ч = 0,40 Вт-ч , и если мы удвоим это значение, мы получим 0,79 Вт-ч.

    Складывая 1.2.1) с 1.2.2), получаем 214Wh + 0,79Wh = 215Wh. Это соответствует времени полной зарядки, что составляет 215 Втч / 76 часов = 2,83 Вт

    .

    Большинство производителей аккумуляторов рассматривают тепловыделение при подзарядке как простое выражение вольт x ток. V x I = W, то есть вольт x ток = ватт. В качестве альтернативы может использоваться принципал I2R.

    Для получения информации о токе мы можем связаться с производителем батарей или обратиться к международным стандартам, таким как BS EN 50272.

    Теперь мы можем произвести расчет. Ниже приведен расчет для той же батареи, о которой говорилось выше, то есть для батареи, состоящей из 40 моноблоков на 12 В по 330 Ач. Можно сделать два альтернативных расчета. В 2.1) мы используем метод V X I, а в 2.2) мы используем метод I2R.

    2.1) С учетом метода V x I: —

    С учетом 1 блока: 2.27 В на канал x 6 ячеек x 1 мА на А · ч x 110 А · ч = 1,496 Вт.

    Следовательно, для полной батареи из 40 блоков и 3-х струн: —

    1,496 Вт x 40 x 3 = 180 Вт.

    Это тепло будет генерироваться, пока аккумулятор находится в режиме постоянного заряда.

    2.2) С учетом метода I2R: —

    Рассмотрим для одного блока: 110 мА x 110 мА x 3,8 мОм = 0,04598 мВт

    Следовательно, для блоков 40 x 3 = 5.5176 мВт или 0,005 Вт.

    Это тепло будет генерироваться, пока аккумулятор находится в режиме постоянного заряда.

    Интересно, что многие производители аккумуляторов не указывают значение тепла, выделяемого при разряде, потому что свинцово-кислотные аккумуляторы считаются эндотермическими. Однако производители обычно соглашаются с тем, что все внутренние компоненты и внешние соединения имеют сопротивление и будут выделять тепло при протекании тока.

    Опять же, можно использовать простой математический расчет, и большинство производителей батарей принимают I2R как разумное приближение к потерям тепла при разряде.Нам нужно знать ток разряда и внутреннее сопротивление аккумуляторной системы.

    Используя ту же батарею 40 x 12 В, разряженную на 300 кВт на 15 м, нам сначала нужно изменить 300 кВт на ток, который можно использовать в расчетах. «Безопасный вариант» — это рассмотреть конец напряжения разряда, а затем рассчитать максимальный ток. Конечное напряжение разряда было задано как 408 В (см. Выше). Следовательно, максимальный ток составляет 300кВт x 1000 / 408В = 735А.

    Тепловые потери рассчитываются как: —

    735A x 735A x 50.7 мОм = 27,4 кВт.

    Это может быть выражено как Вт-ч, т. Е. 27,4 кВт x 0,25 ч = 6,85 кВт-ч

    Поскольку аккумулятор имеет тепловую массу, может пройти много часов, прежде чем это тепло передастся в окружающий воздух. Батарея в этой статье будет весить приблизительно 4800 кг. Некоторые производители считают, что тепло, рассеиваемое в комнате, будет распределяться в 10 раз больше времени разряда. В этом примере это будет 2,5 часа. Это будет 2.74кВт за 10ч.

    Стоит посмотреть на общие размеры и вес батареи, чтобы оценить потери тепла по сравнению с физическими параметрами батареи. Если бы тепло производилось в пределах 1 м3, это было бы значительно. Однако, если бы тепло находилось в пределах 10 м3, воздействие было бы минимальным. Следующие параметры являются реальными для батареи из блоков 3 x 40 x 110 Ач x 12 В, что дает такую ​​перспективу.

    Несмотря на то, что размеры и вес, указанные ниже, являются действительными, мы должны помнить, что подставка открытого типа с большим свободным объемом вокруг моноблоков.Общий объем с учетом открытой площади внутри ячеек, а также между рядами и ярусами рассчитывается как: —

    3,7 x 0,8 x 1,3 = 3,8 м3

    Тип стойки: 2 ряда х 3 яруса открытого стального типа.

    Длина: 3,7 м

    Глубина: 0,8 м

    Общая высота: 1.3м

    Объем: 3,8 м3

    Вес: 4000 кг

    Трудно обосновать результаты нагрева, когда батарея находится на подзарядке или в режиме плавающего заряда, потому что батареи не соответствуют стандартным электрическим характеристикам, и поэтому результаты должны быть сомнительными. Мы знаем, что закон Ома применительно к батареям не работает. Во многом это связано с характеристиками ОБРАТНОЙ ЭДС батарей, что делает расчеты V x I сомнительными.Следовательно, любые математические результаты, основанные на этом принципе, должны вызывать подозрение. Соответственно, расчеты V x I должны вызывать подозрение. Чтобы понять это более полно, мы можем рассчитать теоретический ток холостого хода, используя метод I = V / R. В наших примерах мы знаем, что приложенное напряжение холостого хода составляет 2,27 В на канал, то есть 13,62 В для блока из 6 ячеек 12 В, и мы знаем, что сопротивление составляет 3,8 МОм. По закону Ома ток холостого хода должен быть I = V / R = 13,62 В / 3,8 мОм = 3584 А. Ясно, что это неверно.

    Если расчеты V x I ненадежны, мы также должны подвергнуть сомнению результаты I2R.Что мы действительно знаем, так это то, что ток — это реальная величина, и внутреннее сопротивление также реально. Поэтому, надеемся, результаты должны быть более точными!

    Результаты I2R более реальны, потому что мы знаем, что такое ток, и мы знаем внутреннее сопротивление продукта. Результаты I2R для подзарядки очень малы, и с практической точки зрения нагрев можно не учитывать. В данном примере это всего 5,5 мВтч.

    Опять же, если результаты I2R более реальны, а метод V x I ненадежен, то 0.005 Вт тепла на плавающем заряде снова можно считать несущественным.

    Единственный метод, который, похоже, используется для нагрева при разряде, — это I2R, и, как и ожидалось, нагрев при разряде значительно выше, чем при подзарядке или плавающем заряде. Что мы должны помнить, так это то, что тепло не будет прекращено немедленно, и необходимо произвести некоторую оценку времени, в течение которого оно будет прекращено. Без сомнения, это будут часы, а не минуты, но это вопрос мнения без консультации с инженером-теплотехником.

    При подзарядке и подзарядке нагревается очень мало, особенно если учесть массу аккумулятора. Это к счастью, потому что, хотя используются разные методы, результаты незначительны, если рассматривать их в контексте отвода тепла из аккумуляторной.

    Что касается тепла, выделяемого при разряде, ситуация иная, потому что большинство производителей аккумуляторов считают метод I2R наиболее точным. Кроме того, мы можем с большей готовностью принять результаты, потому что при разряде нет обратной ЭДС.В этом примере выделяемое тепло может быть выражено как 27,4 кВт · ч, но, учитывая массу батареи, мы должны учитывать, что это тепло выделяется в течение более длительного времени, чем фактический период разряда, равный 15 мес. Не все производители считают, что время разряда в 10 раз превышает время разряда, но ясно, что тепло не будет отдано мгновенно.

    Энтропия и тепловыделение литиевых элементов / батарей

    1. Введение

    В законах термодинамики энергия Гиббса — это максимально возможная работа без расширения, выполняемая замкнутой системой в процессе с постоянными температурой и давлением.В закрытой электрохимической системе нерасширяющейся выходной мощностью является электрическая энергия, поэтому, когда химическая энергия преобразуется в электрическую в обратимом процессе, электрическая энергия равна энергии Гиббса, то есть Δ G = — nFE . Когда химическая энергия преобразуется в электрическую при необратимом процессе, электрическая энергия меньше энергии Гиббса, то есть nFE <–Δ G . Остаточная энергия Гиббса преобразуется в тепловую энергию. [1]

    Во втором законе термодинамики энтропия — это обширная функция состояния при обратимом процессе: d S ≡ d q / T , то есть при обратимом процессе с постоянными температурой и давлением

    и в замкнутой электрохимической системе Δ S = –Δ G / T = нФ ( E / T ). Затем в закрытой электрохимической системе выделение тепла Q = T Δ S = nFT ( E / T ) в обратимом процессе.

    Основываясь на законах термодинамики, теоретический потенциал электрохимической системы может быть рассчитан на основе данных энергии Гиббса, а максимальная электрическая энергия, которая может быть доставлена ​​химическими веществами, которые хранятся внутри или подводятся к электродам в ячейке, зависит от изменение энергии Гиббса Δ G электрохимической пары. Открытый потенциал ячейки может быть получен экспериментально и меньше или равен теоретическому потенциалу. И теоретический потенциал, и открытый потенциал определяются типом электрохимических пар и электролитом, содержащимся в ячейке.

    В практическом элементе желательно, чтобы вся энергия Гиббса могла быть преобразована в полезную электрическую энергию во время разряда. Однако потери энергии из-за поляризации происходят, когда ток нагрузки проходит через элемент, сопровождающий электрохимические реакции.

    Наиболее важным фактором, влияющим на потери энергии в элементе, является поляризация. Общие поляризации ячейки включают: () Омическую поляризацию, которая вызывает падение напряжения во время работы, а также потребляет часть полезной энергии в виде отработанного тепла.Полная омическая поляризация ячейки — это сумма поляризаций, вызванных ионным сопротивлением электролита, электронным сопротивлением электродов, токосъемников и электрических выводов обоих электродов, а также контактным сопротивлением между активными материалами и токосъемниками. . Омическая поляризация подчиняется закону Ома с линейной зависимостью между током и падением напряжения. (ii) активационная поляризация, которая запускает электрохимическую реакцию на границе раздела электрод / электролит, и (iii) концентрационная поляризация, которая возникает из-за разницы концентраций между реагентами и продуктами на границе раздела электрод / электролит и разницы концентраций в сыпучие материалы в результате массопереноса.

    Все эти поляризации вызывают потребление энергии Гиббса, которая выделяется в виде тепловой энергии в процессе заряда-разряда.

    В литиевых элементах активные материалы являются пористыми, что позволяет ионам лития вводиться в них или извлекаться из них во время процесса заряда-разряда, поэтому поляризация литиевого элемента более сложная, а тепловыделение в литиевых элементах также больше сложный из-за тепла, выделяемого при каждом физическом процессе.

    Литиевые элементы имеют высокую удельную энергию, поэтому энергия Гиббса в элементах высока.Они будут генерировать высокую тепловую энергию, сопровождающую процесс преобразования энергии Гиббса в полезную электрическую энергию. Если такая тепловая энергия не может быть распределена, температура закрытого литиевого элемента / батареи увеличивается, что может повлиять на характеристики элемента / батареи.

    Кроме того, из-за высокой энергии Гиббса в литиевых элементах, если происходят побочные реакции, из энергии Гиббса преобразуется больше тепловой энергии, что приводит к увеличению температуры. Когда температура литиевых элементов достаточно высока, чтобы вызвать разложение электродов или электролитов, может произойти авария.

    Таким образом, исследования энтропии в литиевых элементах были сосредоточены на оценке тепла и оценке деградации элементов, поскольку энтропия — это обширная функция состояния. Исследования тепла в литиевых элементах были сосредоточены на оценке и измерении тепла. Основываясь на оценке тепла и точных измерениях, управление литиевыми элементами / батареями / системами и управление ими можно было бы осуществлять плавно, и количество аварий могло бы быть меньше. [2]

    2. Энтропия 2.1. Определение энтропии

    Согласно законам термодинамики, в замкнутой электрохимической системе Δ S = –Δ G / T = нФ ( E / T ), поэтому изменение энтропии (Δ S ) можно получить через наклон напряжения холостого хода (OCV) в зависимости от температуры. Изменение энтропии обычно можно определить потенциометрическим методом. [3] При таком способе элемент разряжается до желаемого состояния заряда (SOC), и после релаксации напряжение холостого хода достигает равновесия, затем элемент подвергается пошаговому изменению температуры, в течение которого контролируется напряжение холостого хода.Типичные результаты потенциометрического метода включают кривую соответствующих OCV в зависимости от температуры и линию наклона графика зависимости OCV от температуры (рис. 1).

    Рис. 1.

    Рис. 1. Кривые зависимости соответствующих OCV от температуры для ячеек NCA / C при различных SOC. (а) SOC = 0,122; (б) SOC = 0,458; (c) SOC = 0,644; (d) SOC = 0,813.

    Недавно Schmidt et al .разработал метод спектроскопии электротермического импеданса для определения изменения энтропии, при котором время измерения может быть в 100 раз короче, чем в потенциометрическом методе. [4] Точность этого метода аналогична точности потенциометрического метода. В спектроскопии электротермического импеданса можно использовать взаимосвязь между тепловым потоком внутри ячейки и результирующим изменением температуры, используя источник синусоидального тока. Когда функция теплопередачи (тепловое сопротивление) известна и измерена температура поверхности, можно рассчитать тепловой поток внутри ячейки.Изменение энтропии (Δ S ) можно вычислить с помощью линейной функции между тепловым потоком и умножением тока на энтропию. Δ S в ячейках LiFePO 4 , определенных обычным потенциометрическим методом и спектроскопией электротермического импеданса, показали аналогичное поведение и находятся в хорошем соответствии. Однако наблюдается гистерезисное поведение Δ S из-за наложения тока заряда и разряда.

    2.2. Применение в оценке тепла

    Тепловыделение литиевых элементов в процессе заряда и разряда можно отнести к двум основным источникам: обратимое тепло и необратимое тепло. Необратимое тепло является сложным и описывается в разных формах в разных моделях оценки тепла, но обратимое тепло последовательно описывается как Q об. = T Δ S = nFT ( E / T ) во всех тепловизионных моделях.

    В типичной электрохимико-термической модели [5] скорость обратимого тепловыделения описывается как

    , где a s , j — удельная межфазная площадь электрода, i n , j — поверхностная плотность тока, E j — потенциал разомкнутой цепи электродной реакции, N — отрицательный электрод, а p — положительный электрод.

    В типичной эквивалентной схеме — тепловой модели, [6] , скорость обратимого тепловыделения описывается как

    , где I представляет ток.

    Следовательно, скорость обратимого тепловыделения может быть легко рассчитана на основе изменения энтропии или изменения d E / d T .

    2.3. Применение в оценке деградации

    Если состояния электрода или электрохимической системы изменяются, энтропия должна изменяться одновременно, потому что энтропия является обширной функцией состояния.Следовательно, изменение энтропии можно применять для характеристики изменений электродных структур и оценки состояния элемента / батареи. Язами и др. . исследовали энтропийную кривую и кристаллическую структуру графита, интеркалированного литием. [7, 8] Кривая энтропии показывает резкий повторный рост при x = 0,5 дюйма Li x C 6 , в ответ на переход от хорошо упорядоченного соединения стадии 2 LiC 12 на хорошо упорядоченное соединение стадии 1 LiC 6 , и наличие промежуточной фазы (фаз) между двумя стадиями интеркаляции с высоким содержанием лития подтверждается данными in situ, XRD и спектрами комбинационного рассеяния во время интеркаляции иона лития в графит.Кроме того, отрицательное значение энтропии интеркаляции при x > 0,25 в Li x C 6 объясняется тем, что частота колебаний атомов лития в графите выше, чем в металлическом литии. Лу и др. . исследовали изменения энтропии LiMn 2 O 4 , Li 1,156 Mn 1,844 O 4 и Li 1,06 Mn 1,89 Al 0,05 O 4 катодных материалов в полушпинелевых материалах. -сотовые системы. [9] Результаты показывают, что профили энтропии различных шпинелевых катодов во время циклирования хорошо коррелировали с фазовым переходом и изменениями порядка / беспорядка.

    Кроме того, Махера и Язамиа разработали метод оценки степени деградации ионно-литиевых элементов на основе энтропии и термодинамического поведения. Они исследовали влияние перезаряда, циклического старения и термического старения на энтропию литий-ионных батарей с использованием катодов из оксида лития-кобальта и графитовых анодов.Энтропия сильно зависит от приложенного напряжения отсечки (4,2–4,9 В). Эти изменения хорошо коррелируют с деградацией кристаллической структуры катода и анода. [10] При увеличении номера цикла энтропия показывает более значительные изменения, чем наблюдаемые в кривых разряда и потенциала холостого хода, особенно при определенных состояниях заряда и значениях потенциала холостого хода. Эти различия объясняются более высокой чувствительностью функций состояния энтропии к изменениям кристаллической структуры катода и анода, вызванным циклическим старением. [11] Кроме того, энтропия показывает более очевидные изменения со временем старения, чем потенциал холостого хода, когда клетки хранятся при 60 ° C и 70 ° C. [12] Таким образом, они предполагают, что энтропию можно использовать для характеристики уровня деградации электродных материалов и, следовательно, для оценки состояния здоровья клетки (SOH). Кроме того, Wu et al. предполагают, что дифференциальную тепловую вольтамперометрию (d T / d V ) можно использовать для отслеживания деградации литий-ионных батарей. [13]

    3. Тепловыделение

    Основными исследованиями тепловыделения являются исследования процессов и механизмов, в дополнение к побочным реакциям (реакциям разложения) в литиевых элементах и ​​тепловой энергии, преобразованной из энергии Гиббса в каждом из них. физический процесс и электрохимический процесс.

    3.1. Процесс заряда-разряда

    Оценка нагрева необходима для управления тепловым поведением батареи в увеличенных системах и для повышения эффективности систем охлаждения.Количественные измерения и расчеты тепла — полезные способы оценки тепла.

    3.1.1. Количественные измерения тепловыделения

    Калориметр с ускоренной скоростью (ARC), [14 — 17] теплопроводный калориметр [18] и изотермический калориметр [19] использовались в исследованиях тепловыделения во время зарядки. -увольнять. В тесте ARC не происходит потери тепла в окружающую среду, поэтому вся выделяемая энергия реакции касается только самонагрева батареи.С другой стороны, как в калориметре теплопроводности, так и в изотермическом калориметре тепло, выделяемое во время заряда-разряда, передается количественно. Количественные измерения тепловыделения литиевых элементов важны для управления тепловым режимом увеличенных аккумуляторных систем.

    Selman et al. измерял ячейки Panasonic (тип CGR 18650H), Sony (тип US18650), A&T (тип 18650) и x-18650 (LiCo 0,2 Ni 0,8 O 2 и графит в качестве катода и анода соответственно) при Скорость заряда / разряда C / 6 при использовании ARC. [14] Сайто измерил ячейки Sony (тип US14500, LiCoO 2 и твердый углерод в качестве катода и анода, соответственно) при скорости разряда C / 5, используя теплопроводный калориметр двойного типа. [18]

    3.1.2. Тепловые расчеты

    Расчеты тепла во время заряда – разряда выполняются с помощью моделей литиевых элементов / батарей. Среди них наиболее распространены термические модели эквивалентной схемы и электрохимико-термические модели.

    В схеме замещения — тепловых моделях литиевые элементы представлены схемами, состоящими из традиционных электрических компонентов.Тепло, генерируемое во время заряда-разряда, разделяется на обратимое ( Q рев. ) и необратимое тепло ( Q ирв ). Обратимое тепло ( Q об. ) рассчитывается по изменению энтропии (Δ S ): Q об. = T Δ S = nFT ( E / T ), как обсуждалось выше. Существует два распространенных метода расчета необратимого тепла ( Q ирв ). [20, 21] Один рассчитывается за счет омического тепла: Q ирв = I 2 R , в котором R изменяется с изменением состояний ячеек, работы и условий окружающей среды. , например, SOC, циклы, плотность тока, температура и т. д. [20] Другой метод заключается в вычислении через энергосбережение и напряжение: Q реверв = нФ ( E E cur ), в котором E — это теоретический потенциал системы ячеек, а E cur — фактический потенциал с током. [21] Тепловые расчеты с помощью эквивалентной схемы – тепловых моделей являются краткими, поэтому они используются в большинстве систем управления теплом, а точность результатов зависит от сложности моделей.

    Choi et al. рассчитал тепловыделение литий-ионных элементов, используемых в системах гибридных электромобилей (HEV), с целью разработки простой модели для описания теплового поведения литий-ионной аккумуляторной системы с воздушным охлаждением, предложенной с точки зрения проектировщика компонентов транспортного средства. Посмотреть. [20] Walker et al. рассчитал тепловыделение ионно-литиевых элементов для космических приложений и соединил его со специализированным программным обеспечением для орбитальной тепловой обработки, тепловым рабочим столом (TD), чтобы смоделировать профили зависимости температуры от глубины разряда (DOD) и диапазоны температур для всех разрядов и вариации конвекции с минимальным отклонением. [18] Srinivasan et al. Компания разработала модель для расчета тепловыделения по пяти различным внутренним параметрам: сопротивление электролита ( R с ), сопротивление анода ( R a ), катодное сопротивление ( R c ) и энтропия. изменения катода (Δ S c ) и анода (Δ S a ). [22] Эти пять параметров не зависят друг от друга; они зависят от уровня заряда и температуры окружающей среды. Харихаран разработал модель нелинейной эквивалентной схемы для литий-ионных элементов с использованием переменных резисторов, которые зависят от температуры элемента. Модель может использоваться для прогнозирования напряжения и температуры элемента в широком диапазоне мощностей с глобальным набором параметров. [6]

    В электрохимико-термических моделях процесс заряда-разряда разделен на множество физических и химических процессов, например диффузия иона лития в жидкости и твердом теле, перенос лития между жидкостью и твердым телом, поляризация на поверхности электродов и т. д.Тепло, выделяемое во время заряда-разряда, представляет собой тепловое воздействие каждого физического и химического процесса, которое обычно можно рассчитать как [23]

    , где E разомкнуто : разомкнутая цепь электрода; S a : удельная поверхность пористой области; i loc : скорость реакции поверхности; ϕ 1 : потенциал твердой фазы; ϕ 2 : потенциал жидкой фазы; T : температура Кельвина; : эффективная электронная проводимость твердой фазы; : эффективная ионная проводимость для жидкой фазы; R : постоянная идеального газа; F : постоянная Фарадея; f : средний молярный коэффициент активности соли; c 2 : концентрация фазы раствора; и t + : число катионного переноса.

    Расчет тепла, выделяемого во время заряда-разряда, на основе электрохимико-термических моделей очень сложен, поэтому он используется в теоретических исследованиях, но не часто в приложениях.

    Кумаресан и др. . разработала тепловую модель литий-ионных элементов LiCoO 2 / MCMB для прогнозирования характеристик разряда при различных температурах (15–45 ° C). [21] Палс и Ньюман разработали одномерную тепловую модель литиево-полимерного элемента для прогнозирования профиля температуры в Li / PEO 15 -LiCF 3 SO 3 / TiS 2 стопка элементов разряд с 3-часовой скоростью. [24] Баба и др. . разработала улучшенную одночастичную модель для понимания теплового поведения литий-ионных элементов и распределения информации, связанной с локальным тепловыделением по всей плоскости электрода, а также был разработан метод двустороннего электрохимико-термического моделирования. [5]

    3.1.3. Применение в системах управления

    Управление нагревом / температурой является важной частью систем управления литиевыми батареями.Выделение тепла литиевыми элементами во время заряда-разряда является основой для управления теплом / температурой. Джулиано и др. показал, что система с жидкостным охлаждением является жизнеспособным вариантом для управления температурным режимом. [25] И система охлаждения может легко охладить батареи и достичь установившегося состояния значительно ниже максимальной рабочей температуры. Тонг и др. Компания разработала активную систему управления температурой, включающую принудительное жидкостное охлаждение, на основе электрохимических и тепловых характеристик биполярной батареи. [26] Более высокая скорость охлаждающей жидкости и толщина охлаждающей пластины помогают контролировать максимальную температуру и температурную неравномерность; однако такой подход увеличивает паразитную нагрузку, а также вес и объем упаковки.

    3.2. Термический разгон

    При аварии химическая энергия в электродах может преобразоваться в тепловую энергию, а не в электрическую, что может вызвать тепловой разгон литиевых элементов. [27] Есть несколько факторов, которые могут привести литиевые элементы к тепловому разгоне, среди которых температура литиевого элемента является одним из ключевых определяющих факторов.Исследования тепловыделения во время теплового разгона можно использовать для прогнозирования безопасности и критичности литиевых элементов / батарей.

    Выделение тепла во время теплового разгона может быть измерено калориметрами, которые могут выдержать взрыв литиевых элементов, таких как ARC (рис. 2). Измерения тепловыделения во время теплового разгона позволяют получить результаты теплового разгона из первых рук. Feng et al. оценил характеристики теплового разгона крупноформатной призматической литий-ионной батареи емкостью 25 Ач с литиевым (Ni x Co y Mn z ) O 2 (NCM) катодом с помощью катода калориметр с увеличенной скоростью ускорения (EV-ARC).Они обнаружили, что от резкого падения напряжения до мгновенного повышения температуры до теплового разгона требуется 15–40 с. [28] Такой интервал времени можно использовать для раннего предупреждения о тепловом разгоне.

    Рис. 3.

    Рис. 3. Результаты моделирования LiFePO 4 ячейки / C с использованием сепараторов с различной температурой плавления, (а) результаты моделирования температуры кривые; (б) результаты моделирования кривых скорости нагрева.

    Расчеты тепла, выделяемого в процессе теплового разгона, обычно основываются на тепловом поведении материалов в литиевом элементе. Результаты расчетов могут быть использованы для изучения происхождения и последствий теплового разгона с целью повышения безопасности конструкции литиевых элементов.

    Ричард и др. . предложена модель теплового разгона литий-ионного элемента 18650 углерод / Li 1+ x Mn 2– x O 4 литий-ионный элемент, основанный на термостабильности деинтеркалированного Li 1+ x Mn 2– x O 4 и электроды MCMB с интеркалированным литием в LiPF 6 EC: электролит DEC. [29] Модель использовалась для прогнозирования поведения при коротком замыкании и воздействия печи на элемент. Результаты качественно согласуются с результатами экспериментов. Kim et al. расширил подход к одномерному моделированию, сформулированный Hatchard et al. [30] в трех измерениях. Результаты расчетов испытаний на неправильное использование в печи ячеек с катодом из оксида кобальта и графитовым анодом с электролитом LiPF 6 показывают, что тепловой пробой произойдет раньше или позже, чем в модели с сосредоточенными параметрами, в зависимости от размера ячейки, и реакции первоначально распространяются в в азимутальном и продольном направлениях с образованием полой цилиндрической реакционной зоны. [31] Wang et al. рассчитал тепло, выделяемое при тепловом разгоне элементов LiFePO 4 / C, и результаты показывают, что внутреннее короткое замыкание, вызванное плавлением сепаратора, является основным фактором теплового разгона таких элементов, в которых сепаратор с более низкой температурой плавления. Однако, когда в элементе LiFePO 4 / C используется сепаратор с более высокой температурой плавления, реакции разложения электродного материала становятся основным фактором безопасности. [32]

    [PDF] РАССЕЯНИЕ ТЕПЛА ПРИ РАЗРЯДЕ И ЗАРЯДКЕ В течение

    Скачать ТЕПЛОРАДИАЦИЯ ПРИ РАЗРЯДЕ И ЗАРЯДКЕ Во время …

    Начало

    Назад

    РАССЕЯНИЕ ТЕПЛА ПРИ РАЗРЯДЕ И ЗАРЯДКЕ Во время зарядки и разрядки аккумулятора выделяется определенное количество тепла. В целом это относительно мало и не вызывает значительного повышения температуры батареи. Однако в некоторых случаях может наблюдаться значительное краткосрочное увеличение.Фактическая термодинамика этого тепловыделения может быть довольно сложной, и в следующих двух разделах дается простой метод расчета выделяемого тепла, а также повышения температуры, которое произошло бы, если бы не было потерь тепла. На практике фактическое повышение температуры будет меньше расчетного или даже нулевым, поскольку нормальные тепловые потери из-за теплопроводности, конвекции и излучения легко рассеивают небольшой уровень тепла, выделяемого, когда батарея находится в устойчивом состоянии. Таким образом, единственное существенное повышение температуры происходит во время разрядки или при сильном перезаряде аккумулятора.1 Разряд Основными данными, которые следует учитывать при рассмотрении тепловыделения в никель-кадмиевых элементах, является потенциал нулевого тепловыделения. Это термодинамическое значение (V °), которое зависит от электрохимической пары Ni-Cd и имеет значение, равное 1,44 В. Во время разряда рассеиваемое тепло в элементе напрямую связано с разницей между значением V ° и разрядным напряжением. См. Рисунок ниже.

    1

    Начало

    Назад

    Мгновенное количество тепла, выделяемого в элементе во время разряда, связано с разницей напряжений, упомянутой выше, током разряда и продолжительностью.При полном разряде необходимо учитывать среднее значение разрядного напряжения, и можно использовать следующую формулу:

    Qcal = 3600 (с) * C Ah * (1,44 — UV) 4,18 где Qcal — теплота рассеивается в калориях CAh — емкость разряда в А · ч УФ — среднее напряжение разряда в вольтах Следовательно, Qcal = 860 * CAh * (1,44 — УФ)

    As Uv

    Теоретическое повышение температуры внутри элемента без учета внешнего охлаждения может можно вычислить по следующей формуле: ∆ ° K = Qcal / (м * Cp), где Q — тепло, рассеиваемое при разряде, в калориях; m — масса элемента в г. Cp — удельная теплоемкость элемента в кал.g-1. ° K-1 Для никель-кадмиевых промышленных элементов типичное среднее значение Cp принято равным 0,35 кал. g-1. ° K-1.

    2

    Дом

    Назад

    2 Зарядка Когда аккумулятор заряжается, энергия, вырабатываемая зарядным устройством, накапливается в нем. Во время первой части заряда, вплоть до этапа выделения газа, тепловыделение практически отсутствует, поскольку во время этой фазы процесс электрохимической зарядки является эндотермическим. Таким образом, любой небольшой эффект нагрева из-за потери сопротивления маскируется охлаждающим эффектом реакции.

    1,55

    Напряжение элемента (В)

    избыточный заряд 1,5

    заряд

    ЭКЗОТЕРМИЧЕСКИЙ 1,44 В

    1,45 ЭНДОТЕРМИЧЕСКИЙ 1,4

    1,35

    1,3 0

    20

    60

    60 9000 100

    120

    Емкость% C5 (Ач)

    После этапа подачи газа эффективность зарядки аккумулятора снижается и падает до нуля при достижении полностью заряженного состояния. Часть избыточной энергии, которая не используется для зарядки аккумулятора, называемая перезарядкой, используется для разложения воды с образованием газа, а остальная часть преобразуется в тепло.0,24

    Ток (A)

    0,2

    избыточный заряд

    0,16

    заряд

    0,12

    0,08

    0,04

    0 0

    20

    40

    80

    120

    Емкость% C5 (Ач)

    Напряжение, при котором заряд меняется с эндотермической на экзотермическую реакцию, составляет 1,44 В на элемент (напряжение «нулевого нагрева»). Таким образом, чтобы оценить рассеиваемое тепло, разница между напряжением ячейки и 1.Используется 44 вольта на ячейку.

    3

    Home

    Back

    Таким образом, количество тепла, выделяемого в калориях на ячейку =

    Qcal = -860 * Ic * (1,44 -Uc)

    где, а

    Ic = ток заряда в амперы Uc = напряжение заряда

    В случае напряжений зарядки ниже 1,44 В на элемент, тепловыделение не обязательно равно нулю. Это связано с тем, что при низких уровнях напряжения и тока существует определенный уровень рекомбинации газа, и это дает эффект нагрева.В этих случаях для расчета выделяемого тепла необходимо использовать определенную долю от нулевого теплового напряжения (1,44 В). В этом случае количество выделяемого тепла в калориях на ячейку =

    860 * If * (1,44 * Rv)

    где, и

    If = плавающий ток Rv = значение рекомбинации = обычно 0,6 для спеченного / PBE = обычно 0,3 для карманная пластина

    и, опять же, как и при расчете разряда, теоретическое повышение температуры внутри ячейки без учета внешнего охлаждения может быть получено по следующей формуле: ∆ ° K = Qcal / (м * Cp), где Q — тепло, рассеиваемое при разряде в калориях; m — масса ячейки в г; Cp — удельная теплоемкость ячейки в кал.g-1. ° K-1

    4

    На главную

    Назад

    Таблица плавающих токов

    Плавающий ток в зависимости от плавающего напряжения и типа ячейки

    1,4

    Плавающее напряжение 1,41

    1,42

    1,45

    1,6

    Плавающие токи в мА / Ач SBH

    1,00

    1,15

    1,32

    2,20

    20

    SBM

    0,85

    0,93

    1,15

    0,93

    1,1580

    15

    SBL

    0,65

    0,75

    0,86

    1,30

    12

    SPH

    0,40

    0,50

    0,65

    0,70

    0,65

    0,704 0,70

    0,65

    0,70

    SBM161 Зарядка 15 часов при 62 В (1,55 В / пик) с ограничением по току 16 ампер с последующей зарядкой при 58 В (1,45 В / постоянного тока). Разряд 60 ампер за 2 часа. Расчет расхода Qcal = 860 * CAh * (1.44 — УФ) = 860 * (60 * 2) * (1,44 — 1,20). Среднее напряжение разряда 1,20 получается из кривой разряда в брошюре SBM для температуры около 0,75 ° C. = 25 ккал, а повышение температуры во время этого разряда составляет ∆ ° K = Qcal / (м * Cp) = 25 ккал / (8,4 кг * 0,35) = 8,5 ° C (вес SBM161 = 8,4 кг) Расчет для заряда и плавучести Плавающий ток для SBM161 из таблицы

    = 1,8 * 161/1000 ампер = 0,29 ампер

    5

    Home

    Back

    Зарядка 15 часов при 16 ампер и 1.55 ограничение напряжения Первые примерно 10 часов будут эндотермическими и не будут выделять тепло. В течение последних 5 часов будет достигнут предел напряжения, и ток будет быстро падать до плавающего тока 1,55 предела напряжения. Зарядный ток = 16 ампер Плавающий ток для 1,55 В (оценка таблицы 10 мА / Ач), поэтому плавающий ток = 10 * 161/1000 = 1,6 ампер Итак, для 5 часов мы примем среднее значение между током заряда и плавающим током. ток ie (16 + 1,6) / 2 = 8.8 ампер Таким образом, во время зарядки выделяется тепло: Qcal = -860 * Ic * (1,44 -Uc) = -860 * 8,8 * (1,44 — 1,55) = 0,832 ккал, и, следовательно, повышение температуры составляет: ∆ ° K = Qcal / (м * Cp) = 0,832 / (8,4 * 0,35) = 0,3 ° C Во время плавания при 1,45 В выделяемое тепло составляет: Qcal = -860 * Ic * (1,44 -Uc) = -860 * 0,29 * (1,44 — 1,45) = 0,0025 ккал, поэтому теоретическое увеличение температуры составляет: ∆ ° K = Qкал / (м * Cp) = 0,0025 / (8,4 * 0,35) = 0,00085 ° C / час.

    6

    Решение проблем нагрева батареи с помощью теплообмена

    Аккумуляторные технологии — неотъемлемая часть нашей жизни: от смартфонов до массивных электрохимических систем хранения энергии и от гибридных автомобилей до полностью электрических самолетов наша зависимость от аккумуляторов постоянно растет.Однако эта технология далека от совершенства, и оптимизация конструкции батареи, особенно с точки зрения управления температурой и теплопередачей, является сегодня ключевой задачей для инженеров и производителей.

    Хотя литий-ионные батареи являются лучшими перезаряжаемыми батареями, доступными на сегодняшний день, они страдают двумя основными недостатками: (1) они разлагаются, хотя и медленно, и (2) они довольно чувствительны к нагреванию. В этой статье мы сосредоточимся на втором аспекте — более конкретно, мы рассмотрим использование численного моделирования для понимания управления температурой и теплопередачи в аккумуляторных технологиях.Хотя большая часть нижеследующего обсуждения касается аккумуляторных батарей, используемых в электромобилях, оно применимо к любой технологии, в которой используется литий-ионная технология.

    На производительность и срок службы батареи, помимо прочего, влияют конструкция батареи, используемые материалы и рабочая температура. Для аккумуляторных блоков, используемых в электрических или гибридных транспортных средствах, рабочая температура (обычно в диапазоне 20 ° C — 35 ° C) имеет решающее значение для достижения максимальной эффективности. Работа при более низких температурах влияет на емкость, в то время как более высокие температуры снижают срок службы.Отчеты показывают, что пробег электромобилей может снизиться на 60% при температуре окружающей среды ниже –6 ° C и примерно на 50% при эксплуатации при 45 ° C. Еще один фактор, влияющий на срок службы аккумуляторных блоков, — это внутреннее распределение температуры. Разница более чем примерно на 5 ° C в элементе / модуле (многие из которых могут находиться внутри блока) снижает общий срок службы, а также емкость. На Рис.01 показано распределение температуры в стандартной аккумуляторной стойке.

    Рис.01: Распределение температуры в стандартной аккумуляторной стойке.Температура указана в Кельвинах. (Источник: SimScale Public Projects)

    Как показано, в нормальных условиях температура может находиться в диапазоне от 25 ° C до 35 ° C. Несомненно, тепловое поведение аккумуляторов в реальных условиях эксплуатации оказывает сильное влияние на их полезность во всех приложениях, поэтому поддержание эффективного и точного управления температурным режимом имеет первостепенное значение.

    Обзор подхода на основе моделирования

    Численное моделирование систем терморегулирования оказалось отличным способом разработки и улучшения конструкции батареи при значительно меньших затратах, чем при физических испытаниях.Хорошо продуманный и продуманный подход к моделированию может помочь точно предсказать теплофизику внутри батареи и, следовательно, может выступать в качестве полезного инструмента на ранних этапах процесса проектирования.

    Для оценки тепловых характеристик аккумуляторной батареи использовалось множество различных имитационных моделей — от простых моделей сосредоточенной емкости на одном конце спектра до полномасштабных трехмерных имитационных моделей на другом. Однако все эти модели построены с использованием одних и тех же основных частей фундаментального уравнения баланса энергии: (а) Каковы источники тепловыделения? б) Каковы геометрические и термические свойства аккумуляторных элементов? И, наконец, (c) Какой механизм охлаждения используется? В разных моделях эти компоненты учитываются с разной степенью точности, чтобы соответствовать желаемой точности и соображениям стоимости.

    Тепло вырабатывается из двух источников:

    1. Электрохимический процесс, связанный с выделением тепла в результате химических реакций внутри батареи.
    2. Джоулевое нагревание, также известное как омическое нагревание или тепло, выделяемое за счет электрического тока.

    Оба эти источника необходимо рассматривать с помощью их собственных основных уравнений. Каждый из них зависит от свойств материала, местной температуры и, конечно же, от применяемой геометрии. Однако обычной практикой является использование экспериментально подтвержденных уравнений модели для обоих этих аспектов, чтобы значительно сэкономить на некоторых вычислениях, а также упростить структуру моделирования.

    Геометрия аккумуляторных элементов и всего блока также может играть потенциально важную роль в характеристиках теплопередачи системы. Все более распространенным становится использование полных трехмерных геометрий (представленных в виде моделей САПР) в качестве исходных данных для анализа, а не относительно упрощенного двухмерного приближения. Свойства материалов для различных компонентов получены из данных производителя или из других экспериментальных исследований.

    Наконец, конвекция обычно является основным методом отвода тепла (излучение играет минимальную роль, если вообще играет) в окружающую среду.Теплопроводность внутри батареи может рассматриваться или не учитываться, в зависимости от желаемой точности моделирования.


    Изучите три основных механизма теплопередачи в нашей мастерской термического анализа. Посмотрите наше тепловое моделирование прямо сейчас!


    Собираем все вместе

    Возможно, самый простой подход — это использование модели сосредоточенной емкости. Это метод переходной проводимости, который предполагает, что температура твердого тела пространственно однородна и является функцией только времени.Не вдаваясь в подробности, нетрудно заметить, что этим подходам недостает значительных деталей. Тем не менее, бывают случаи, когда эти модели, если их тщательно применять, могут предоставить довольно точные данные о переходных процессах при очень низких затратах.

    С другой стороны, подробное тепловое моделирование (например, предоставленное SimScale) может обеспечить более целостный обзор задействованной термодинамики, учитывая поток жидкости и теплопередачу внутри модуля батареи или блока. Таким образом, можно разработать более совершенные системы охлаждения аккумуляторов.Это моделирование позволяет использовать точные спецификации свойств материала, геометрических деталей, а также начальных и граничных условий. Если все настроено эффективно, можно ожидать очень точных результатов. Методы CFD были с большим успехом применены к термическому анализу. Инструменты облачного моделирования позволяют значительно снизить общие вычислительные затраты, одновременно предоставляя подробные пространственные и переходные данные. Это может иметь неоценимое значение для установления фундаментально правильного понимания рассматриваемой теплофизики.

    Моделирование конструкции батареи с помощью CFD

    Пример успешного моделирования аккумуляторной батареи CFD можно найти в работе Yi, Koo & Shin в их статье «Трехмерное моделирование теплового поведения модуля литий-ионной аккумуляторной батареи для гибридных электромобилей», опубликованной в журнале «Журнал» Энергии ». Модуль литий-ионной батареи был установлен, как показано на рис. 02.

    Рис. 02: Установка CFD для аккумуляторного модуля LIB (Источник: J. Yi, B. Koo и CB Shin, «Трехмерное моделирование теплового поведения литий-ионного аккумуляторного модуля для гибридных электромобилей», Энергия, т.7, pp. 7586-7601 (2014)

    Полученное распределение температуры внутри модуля после 1620 секунд разряда и теплопередачи показано на рис. 03.

    Рис. 03: Распределение температуры ячеек LIB после 1620-х годов (Источник: Дж. Йи, Б. Ку и CB Шин, «Трехмерное моделирование теплового поведения модуля литий-ионной батареи для гибридных электромобилей», Энергия, т. 7, с. 7586 — 7601 (2014)

    Выводы

    Мультифизический характер этой проблемы означает, что в каждом из этих подходов были внесены упрощения в несколько аспектов.Поэтому всегда есть возможности для улучшения. В приведенном ниже списке показаны лишь некоторые из этих сложных аспектов:

    • Более точное моделирование химического состава аккумулятора и циклов заряда / разряда;
    • Батареи, которые состоят из широкого спектра материалов, включая тонкие слои металлов (покрывающих элементы), пористые материалы и т. Д .;
    • Если в конструкции батареи используется несколько слоев из разных материалов, внутренний материал может быть анизотропным по своей природе;
    • Если свойства материала конструкции батареи, как правило, не очень хорошо известны, это может значительно повлиять на точность моделирования; и
    • Моделирование потока охлаждающей жидкости всегда является сложной задачей из-за сложной геометрии и возможной турбулентности жидкости.

    Увеличение вычислительной мощности позволило исследователям точно и эффективно учитывать большее количество этих аспектов. Повышение нашей уверенности в предсказательной способности такого моделирования. Несмотря на остающиеся проблемы, численное моделирование внесло огромный вклад в разработку более совершенных систем терморегулирования при проектировании батарей и будет продолжать делать это в обозримом будущем!

    Прочтите все наши блоги SimScale здесь, чтобы найти больше полезных статей!


    EV design — расчет аккумуляторов — x-engineering.org

    Высоковольтная аккумуляторная батарея — это один из наиболее важных компонентов электромобиля с аккумуляторной батареей (BEV) . Параметры аккумуляторной батареи имеют значительное влияние на другие компоненты и характеристики автомобиля, например:

    • максимальный крутящий момент тягового двигателя
    • максимальный тормозной момент регенерации
    • запас хода
    • общий вес автомобиля
    • цена автомобиля

    Практически все Основные аспекты чисто электрического транспортного средства (EV) зависят от параметров высоковольтной батареи .

    При разработке аккумуляторной батареи для нашего электромобиля мы собираемся начать с 4 основных входных параметров:

    • химии
    • напряжения
    • среднего энергопотребления транспортного средства за цикл движения
    • запаса хода

    Батарея состоит из одного или более электрохимических элементов ( аккумуляторных элементов, ), которые преобразуют химическую энергию в электрическую энергию (во время разрядки) и электрическую энергию в химическую энергию (во время зарядки).Тип элементов, содержащихся в батарее, и химические реакции во время разрядки-зарядки определяют химию батареи .

    Элемент батареи состоит из пяти основных компонентов: электродов — анода и катода, сепараторов, клемм, электролита и корпуса или корпуса. В автомобильной промышленности используются различные типы элементов [1]:

    Изображение: Литий-ионные аккумуляторные элементы разной формы
    Кредит: [1]

    Отдельные аккумуляторные элементы сгруппированы в единый механический и электрический блок, называемый аккумулятором модуль .Модули электрически соединены, образуя аккумуляторный блок .

    Есть несколько типов аккумуляторов (химические), используемых в силовых установках гибридных и электромобилей, но мы собираемся рассмотреть только литий-ионные элементы . Основная причина в том, что литий-ионные батареи имеют более высокую удельную энергию [Втч / кг] и удельную мощность [Вт / кг] по сравнению с другими типами [2].

    Изображение: диаграмма уровня ячеек Рагона, адаптированная из Van Den Bossche 2009
    Кредит: [2]

    Уровень напряжения батареи определяет максимальную электрическую мощность, которая может быть доставлена ​​непрерывно.Мощность P [Вт] — это произведение между напряжением U [V] и током I [A] : \ [P = U \ cdot I \ tag {1} \]

    Чем выше ток, тем больше диаметр высоковольтных проводов и тем выше тепловые потери. По этой причине ток должен быть ограничен до максимума, а номинальная мощность достигается за счет более высокого напряжения. Для нашего приложения мы собираемся рассмотреть номинальное напряжение 400 В .

    В статье «Конструкция электромобиля — энергопотребление» мы рассчитали, что среднее энергопотребление силовой установки E p составляет 137.8 Втч / км на ездовом цикле WLTC. Помимо энергии, необходимой для приведения в движение, высоковольтная батарея должна обеспечивать энергией вспомогательные устройства транспортного средства E aux [Втч / км] , например: электрическая система 12 В, обогрев, охлаждение и т. Д. Необходимо учитывать КПД трансмиссии η p [-] при преобразовании электрической энергии в механическую.

    \ [E_ {avg} = \ left (E_ {p} + E_ {aux} \ right) \ cdot \ left (2 — \ eta_ {p} \ right) \ tag {2} \]

    Для вспомогательных устройств потребление энергии мы собираемся использовать данные из [3], которые содержат типичные требования к мощности некоторых общих электрических компонентов транспортного средства (вспомогательные нагрузки).Длительные электрические нагрузки (фары, мультимедиа и т. Д.) И периодические нагрузки (обогреватель, стоп-сигналы, дворники и т. Д.) Потребляют в среднем 430 Вт электроэнергии. Продолжительность цикла WLTC составляет 1800 с (0,5 ч), что дает энергию 215 Втч для вспомогательных нагрузок. Если мы разделим его на длину ездового цикла WLTC (23,266 км), мы получим среднее потребление энергии для вспомогательных нагрузок E aux 9,241 Втч / км .

    Даже если Втч / км на самом деле не энергия, а факторизованная энергия, поскольку она измеряется на единицу расстояния (км), для простоты мы будем называть ее средней энергией.

    Постоянный ток (DC), подаваемый батареей, преобразуется инвертором в переменный (AC). Это преобразование происходит с соответствующими потерями. Кроме того, у электродвигателя и трансмиссии есть некоторые потери, которые необходимо учитывать. Для этого упражнения мы собираемся использовать средний КПД η p 0,9 от аккумулятора до колеса.

    Замена значений в (2) дает среднее потребление энергии:

    \ [E_ {avg} = \ left (137.8 + 9.241 \ right) \ cdot 1.1 = 161.7451 \ text {Wh / km} \]

    Аккумуляторная батарея рассчитана на среднее потребление энергии 161,7451 Wh / km .

    Архитектура батарейных блоков

    Все высоковольтные батарейные блоки состоят из батарей ячеек , собранных в цепочки и модули. Элемент батареи можно рассматривать как наименьшее деление напряжения.

    Изображение: Элемент батареи

    Отдельные элементы батареи могут быть сгруппированы параллельно и / или последовательно как модули .Кроме того, аккумуляторные модули могут быть подключены параллельно и / или последовательно для создания аккумуляторного блока . В зависимости от параметров батареи может быть несколько уровней модульности.

    Общее напряжение аккумуляторной батареи определяется количеством последовательно соединенных ячеек. Например, общее (цепное) напряжение 6 последовательно соединенных ячеек будет суммой их индивидуальных напряжений.

    Изображение: Строка аккумуляторных ячеек

    Чтобы увеличить текущую емкость аккумулятора, необходимо подключить больше строк в параллельно .Например, 3-х гирлянды, соединенные параллельно, утроят емкость и допустимый ток аккумуляторной батареи.

    Изображение: ряды аккумуляторных элементов, включенные параллельно

    Высоковольтный аккумуляторный блок Mitsubishi i-MiEV состоит из 22 модулей, состоящих из 88 элементов, соединенных последовательно. Каждый модуль содержит 4 призматических ячейки. Напряжение каждой ячейки составляет 3,7 В, а общее напряжение аккумуляторной батареи 330 В.

    Изображение: Аккумулятор (модули и элементы)
    Кредит: Mitsubishi

    Другой пример — высоковольтный аккумуляторный блок Tesla Model S, который имеет:

    • 74 элемента в параллельной группе
    • 6 последовательных групп для модуля
    • 16 модулей в серии
    • Всего 7104 элемента

    Изображение: Аккумулятор Tesla Model S
    Кредит: Tesla

    Аккумулятор расчет

    Чтобы выбрать, какие аккумуляторные элементы будут в нашем пакете, мы проанализируем несколько моделей аккумуляторных элементов, доступных на рынке.В этом примере мы сосредоточимся только на литий-ионных элементах. Входные параметры аккумуляторных элементов приведены в таблице ниже.

    Примечание : Поскольку производители аккумуляторных элементов постоянно выпускают новые модели, возможно, данные, используемые в этом примере, устарели. Это менее важно, поскольку цель статьи — объяснить, как выполняется расчет. Тот же метод можно применить и к любым другим элементам батареи.

    0 16 0 1 на основе параметров ячейки предоставленные производителями, мы можем рассчитать энергосодержание, объем, гравиметрическую плотность и объемную плотность для каждой ячейки.2} {4} \ cdot L_ {bc} \ tag {1} \]

    где:
    D bc [м] — диаметр элемента батареи
    L bc [м] — длина элемента батареи

    \ [V_ { pc} = H_ {bc} \ cdot W_ {bc} \ cdot T_ {bc} \ tag {2} \]

    где:
    H bc [м] — высота аккумуляторного элемента
    W bc [м] — ширина элемента батареи
    T bc [м] — толщина элемента батареи

    Энергия элемента батареи E bc [Вт · ч] рассчитывается как:

    \ [E_ {bc} = C_ {bc} \ cdot U_ { bc} \ tag {3} \]

    где:
    C bc [Ач] — емкость элемента батареи
    U bc [В] — напряжение элемента батареи

    Плотность энергии элемента батареи рассчитывается как:

    • объемная плотность энергии , u V [Вт · ч / м 3 ]
    \ [u_ {V} = \ frac {E_ {bc}} {V_ {cc (pc)}} \ tag {4 } \]
    • гравиметрическая плотность энергии , u G [Втч / кг]
    \ [u_ {G} = \ frac {E_ {bc}} {m_ {bc}} \ tag {5} \] 9 0004 где:
    m bc [кг] — масса элемента батареи

    Плотность энергии для каждой ячейки сведена в таблицу ниже.

    Производитель Panasonic A123-Systems Molicel A123-Systems Toshiba Kokam

    950 цилиндрический цилиндрический 950 950 950 950 950 950 цилиндрический 950

    мешочек мешочек
    Модель NCR18650B ANR26650m1-B ICR-18650K 20Ah 20Ah ] [6] [7] [8] [9]
    Длина [м] 0.0653 0,065 0,0652 0 0 0
    Диаметр [м] 0,0185 0,026 0,0186 0,026 0,0186 9050 9050 0 900 [м] 0 0 0 0,227 0,103 0,272
    Ширина [м] 0 0 0 0 0,115 0,082
    Толщина [м] 0 0 0 0,00725 0,022 0,0077
    кг 0,076 0,05 0,496 0,51 0,317
    Емкость [А · ч] 3,2 2,5 2,6 19,5 20 6
    Напряжение [В] 3,6 3,3 3,7 3,3 2,3 3,6
    C-rate (продолжение) 1 1 1 2
    C-скорость (пиковая) 1 24 2 10 1 3 1
    0 SLPB 5 0

    0

    0

    Энергия52
    Производитель Panasonic A123-Systems Molicel A123-Systems Toshiba Kokam

    950 цилиндрический цилиндрический 950 950 950 950 950 950 цилиндрический 950

    мешочек мешочек
    Модель NCR18650B ANR26650m1-B ICR-18650K 20Ah 20Ah 8,25 9,62 64,35 46 56,16
    Объем [л] 0,017553 0,034510 0,01714605 0,034510 0,04114605 0,25 0,017716 0 плотность
    гравиметрическая [Вт-ч / кг]
    237,53 108,55 192,40 129,74 90,20 177,16
    Плотность энергии
    объем1400 65 л / л.31
    239,06 543,01 244,38 176,52 327

    Для лучшего обзора параметров ячеек и упрощения их сравнения основные параметры отображаются в виде гистограмм на изображениях ниже .

    С учетом вышеуказанных параметров элемента и основных требований к батарее (номинальное напряжение, среднее энергопотребление и запас хода транспортного средства) мы рассчитываем основные параметры высоковольтной батареи.

    Требуемая общая энергия аккумуляторного блока E bp [Wh] рассчитывается как произведение среднего энергопотребления E avg [Wh / км] и запаса хода D v [км]. Для этого примера мы спроектируем блок высоковольтной аккумуляторной батареи для пробега автомобиля 250 км .

    \ [E_ {bp} = E_ {avg} \ cdot D_ {v} = 161.7451 \ cdot 250 = 40436.275 \ text {Wh} = 40.44 \ text {kWh} \ tag {6} \]

    Выполняются следующие вычисления для каждого типа ячеек.В этом примере мы будем считать, что аккумуляторная батарея состоит только из нескольких цепочек , соединенных параллельно .

    Количество элементов батареи, соединенных последовательно N cs [-] в цепочке, рассчитывается путем деления номинального напряжения аккумуляторной батареи U bp [В] на напряжение каждого элемента батареи U bc [ V]. Количество строк должно быть целым числом. Поэтому результат вычисления округляется до большего целого числа.

    \ [N_ {cs} = \ frac {U_ {bp}} {U_ {bc}} \ tag {7} \]

    Энергосодержание строки E bs [Вт · ч] равно произведению между количеством элементов батареи, соединенных последовательно N cs [-], и энергией элемента батареи E bc [Вт · ч].

    \ [E_ {bs} = N_ {cs} \ cdot E_ {bc} \ tag {8} \]

    Общее количество комплектов батарейного блока N sb [-] рассчитывается путем деления батареи упаковать полную энергию E bp [Вт-ч] в энергосодержание струны E bs [Вт-ч].Количество строк должно быть целым числом. Поэтому результат вычисления округляется до большего целого числа.

    \ [N_ {sb} = \ frac {E_ {bp}} {E_ {bs}} \ tag {9} \]

    Теперь мы можем пересчитать общую энергию батарейного блока E bp [Wh] как произведение между количеством струн N sb [-] и содержанием энергии каждой струны E bs [Вт-ч].

    \ [E_ {bp} = N_ {sb} \ cdot E_ {bs} \ tag {10} \]

    Емкость аккумуляторной батареи C bp [Ач] рассчитывается как произведение количества строк N sb [-] и емкость аккумуляторного элемента C bc [Ач].

    \ [C_ {bp} = N_ {sb} \ cdot C_ {bc} \ tag {11} \]

    Общее количество ячеек в аккумуляторном блоке N cb [-] рассчитывается как произведение между количество строк N sb [-] и количество ячеек в строке N cs [-].

    \ [N_ {cb} = N_ {sb} \ cdot N_ {cs} \ tag {12} \]

    Размер и масса высоковольтной батареи являются очень важным параметром, который следует учитывать при проектировании аккумуляторного электромобиля (BEV) . В этом примере мы собираемся рассчитать объем аккумуляторной батареи, учитывая только ее элементы.На самом деле необходимо учитывать и другие факторы, например: электронные схемы, контур охлаждения, корпус батареи, проводку и т. Д.

    Масса аккумуляторного блока (только элементы) м bp [кг] — это произведение между общим числом элементов N cb [-] и масса каждого элемента батареи m bc [кг].

    \ [m_ {bp} = N_ {cb} \ cdot m_ {bc} \ tag {13} \]

    Объем аккумуляторной батареи (только элементы) V bp [m 3 ] — это произведение между общим количеством элементов N cb [-] и массой каждого элемента батареи V cc (pc) [m 3 ].Этот объем используется только для оценки окончательного объема аккумуляторной батареи, поскольку он не принимает во внимание вспомогательные компоненты / системы аккумуляторной батареи.

    \ [V_ {bp} = N_ {cb} \ cdot V_ {cc (pc)} \ tag {14} \]

    Объем также может быть вычислен как функция количества строк и количества ячеек в строке. Этот метод расчета больше подходит для цилиндрической ячейки, так как объем, занимаемый цилиндрической ячейкой, должен учитывать воздушный зазор между ячейками.

    Пиковый ток цепочки I spc [A] является произведением между пиковой скоростью C аккумуляторной ячейки C-rate bcp [h -1 ] и емкостью аккумуляторной ячейки C bc [Ах].

    \ [I_ {spc} = \ text {C-rate} _ {bcp} \ cdot C_ {bc} \ tag {15} \]

    Пиковый ток аккумуляторной батареи I bpp [A] — это продукт между пиковым током цепочки I spc [A] и количеством цепочек аккумуляторной батареи N sb [-].

    \ [I_ {bpp} = I_ {spc} \ cdot N_ {sb} \ tag {16} \]

    Пиковая мощность аккумуляторного блока P bpp [Вт] — это произведение между пиковым током аккумуляторного блока I bpp [A] и напряжение аккумуляторной батареи U bp [В].

    \ [P_ {bpp} = I_ {bpp} \ cdot U_ {bp} \ tag {17} \]

    Непрерывный ток строки I scc [A] — это произведение между непрерывной скоростью C аккумуляторная батарея C-rate bcc [h -1 ] и емкость аккумуляторной ячейки C bc [Ач].

    \ [I_ {scc} = \ text {C-rate} _ {bcc} \ cdot C_ {bc} \ tag {18} \]

    Аккумулятор непрерывного тока I bpc [A] является продуктом между цепочкой постоянного тока I scc [A] и количеством цепочек аккумуляторной батареи N sb [-].

    \ [I_ {bpc} = I_ {scc} \ cdot N_ {sb} \ tag {19} \]

    Батарейный блок , непрерывное питание P bpc [Вт] является продуктом между батарейным блоком непрерывного тока I bpc [A] и напряжение аккумуляторной батареи U bp [V].

    \ [P_ {bpc} = I_ {bpc} \ cdot U_ {bp} \ tag {20} \]

    Результаты уравнений (7) — (20) обобщены в таблице ниже.

    Изображение: Напряжение аккумуляторного элемента

    Изображение: Емкость аккумуляторного элемента

    Изображение: Объемная плотность энергии аккумуляторного элемента

    Изображение: Гравиметрическая плотность энергии аккумуляторного элемента

    905
    Производитель Panasonic A123-Systems Molicel A123-Systems Toshiba Kokam
    ячеек в строке 122 109 122 174 112
    Энергия струны [Вт · ч] 1290 1007 1049 7851 80014 9050 905 80014 9050 905 9050 -] 32 41 39 6 6 7
    Энергия BP [кВтч] 41.29 41,27 40,89 47,10 48,02 44,03
    Емкость BP [А · ч] 102,4 102,5 101,4 9050 11750 11750 11700 # Всего ячеек [-] 3584 5002 4251 732 1044 784
    Масса BP [кг] * 173.8 380,2 212,6 363,1 532,4 248,5
    Объем BP [л] * 63 173 7514502135 1950 Пиковый ток ВР [A] 102,4 2460 202,8 1170 120 327,6
    Пиковая мощность ВР [кВт] 40,96 12 468 48 131,04
    BP длительный ток [A] 102,4 1025 101,4 117 120 00 212

    9 мощность

    9 кВт ]
    40,96 410 40,56 46,8 48 87,36

    BP — аккумуляторный блок
    * — с учетом только аккумуляторных элементов

    Из данных таблицы видно, что Ячейки такого типа имеют лучшее энергосодержание и большую емкость по сравнению с цилиндрическими ячейками.

    Те же результаты могут быть отображены в виде гистограмм для облегчения сравнения между различными типами аккумуляторных элементов.

    Изображение: Энергия батарейного блока

    Изображение: Емкость батарейного блока

    Изображение: Общее количество батарей

    Изображение: Масса батарейного блока (только элементы)

    Изображение: Объем аккумуляторного блока (только элементы)

    Из-за малой емкости цилиндрических элементов по сравнению с ячейками пакета количество элементов, необходимых для аккумуляторного блока, значительно выше.Большое количество ячеек может вызвать дополнительные проблемы в области проводки, контроля напряжения, надежности батареи.

    Масса и объем рассчитываются только на уровне ячейки с учетом размеров и массы ячейки. Аккумулятор, который будет в автомобиле, будет иметь дополнительные компоненты (провода, электронные компоненты, пайка, корпус и т. Д.), Что увеличит как конечный объем, так и массу. Тем не менее, глядя только на объем и массу клеток, мы можем оценить, какая модель будет лучше по сравнению с другой.По массе и объему нет четкого различия между цилиндрическими ячейками и ячейками мешочка. Однако кажется, что аккумулятор с ячейками-чехлами немного тяжелее и больше.

    Батарейные элементы, производимые A123-Systems, имеют очень высокий максимальный непрерывный ток разряда и максимальный импульсный (пиковый) ток разряда. Что касается энергии и емкости, элементы пакетного типа имеют более высокий пиковый (непрерывный) ток и мощность, чем цилиндрические элементы.

    На основании расчетных данных и выводов мы можем выбрать, какие аккумуляторные элементы подходят для аккумуляторной батареи нашего электромобиля.Из наших примеров кажется, что элементы Kokam имеют лучший компромисс между массой, объемом и плотностью энергии / мощности.

    Все параметры, уравнения, результаты и графики реализованы в файле Scilab (* .sce). Для скачивания подпишитесь на страницу Patreon.

    Вы также можете проверить свои результаты, используя калькулятор ниже.

    EV Battery Calculator (on-line)

    Ссылки:

    [1] Моой, Роберт и Айдемир, Мухаммед и Селигер, Гюнтер. (2017). Сравнительная оценка различных форм литий-ионных аккумуляторных элементов.Процедуры Производство. 8. 104–111. 10.1016 / j.promfg.2017.02.013.
    [2] Бернардини, Анналиа и Барреро, Рикардо и Махарис, Кэти и Ван Мирло, Джоэри. (2015). Технологические решения, направленные на рекуперацию энергии торможения в метро: пример многокритериального анализа. BDC — Bollettino del Centro Calza Bini — Università degli Studi di Napoli Federico II. 14. 301-325. 10.6092 / 2284-4732 / 2929.
    [3] Том Дентон, Автомобильные электрические и электронные системы, Третье издание. Эльзевир Баттерворт-Хайнеманн, 2004 г., стр. 129.
    [4] https://industrial.panasonic.com/
    [5] http://www.a123systems.com/
    [6] http://www.molicel.com/
    [7] http: // www.a123systems.com/
    [8] http://www.toshiba.com/
    [9] http://www.kokam.com/

    Потребление пара элементами установки

    Трассирующие линии

    Трубопроводы, транспортирующие вязкие жидкости, часто поддерживаются при повышенной температуре с помощью пароиндикаторов. Обычно они состоят из одной или нескольких паропроводов малого диаметра, проходящих вдоль производственной линии, и все они покрыты изоляцией.

    Теоретически точный расчет расхода пара затруднен, так как он зависит от:

    • Степень контакта между двумя линиями и то, используются ли теплопроводящие пасты.
    • Температура продукта.
    • Длина, температура и падение давления вдоль трассирующих линий.
    • Температура окружающей среды.
    • Скорость ветра.
    • Коэффициент излучения оболочки.

    На практике обычно можно с уверенностью предположить, что трассирующая линия просто заменяет радиационные потери от самой продуктовой линейки.Исходя из этого, потребление пара
    линии индикатора можно принять как рабочую нагрузку, равную потерям на излучение от линий продукта.

    В таблице 2.14.1 приведены потери тепла в изолированных трубах с изоляцией 50 или 100 мм.

    Пример 2.14.5

    Труба длиной 50 м и длиной 200 мм содержит жидкий продукт при температуре 120 ° C. Температура окружающей среды составляет 20 ° C, труба имеет изоляцию 50 мм, пар подается на индикатор (ы) под давлением 7 бар.

    Определить расход пара:

    Для трубопроводов с рубашкой теплопотери могут быть такими же, как и в паропроводе, диаметр которого равен диаметру рубашки; также принимая во внимание изоляцию.

    При подборе конденсатоотводчиков следует использовать коэффициент, в 2 раза превышающий рабочую нагрузку, чтобы покрыть условия запуска, но любой клапан регулирования температуры может быть рассчитан только на расчетную нагрузку.

    Калибровка трассирующей линии

    Пример 2.14.5 рассчитывает нагрузку пароиндикатора на основе потерь тепла из трубы.

    На практике размер трассирующей линии не будет точно соответствовать этим тепловым потерям. В Таблице 2.14.2 показана полезная тепловая мощность линий трассирования стали и меди толщиной 15 мм и 20 мм, работающих при разных давлениях, наряду с линиями продуктов при разных температурах. В таблице учтены потери тепла от трасс трассеров в окружающий воздух через изоляцию.

    В примере 2.14.5, потеря тепла из трубы составила 97 Вт / м. Трасса трассера должна обеспечивать, по крайней мере, такую ​​скорость теплопередачи.

    Таблица 2.14.2 показывает, что путем интерполяции полезная тепловая мощность от стальной трассы диаметром 15 мм составляет 33 Вт / м при температуре продукта 120 ° C и давлении пара 5 бар изб.

    Таким образом, количество индикаторов, необходимое для поддержания температуры продукта на уровне 120 ° C, составляет:

    Следовательно, для этого приложения потребуются три стальных трассирующих линии диаметром 15 мм, как показано на Рисунке 2.14.9.

    Калькулятор энергии и времени работы батареи

    • Калькуляторы для электрических, радиочастотных и электронных устройств • Онлайн-преобразователи единиц

    Прежде чем объяснять, как использовать этот калькулятор, сначала мы дадим несколько определений. Это необходимо из-за противоречивой терминологии в области электрических батарей.

    Терминология

    Сухой элемент или одноэлементный или одноэлементный аккумулятор — это наименьшая форма электрического устройства, способного генерировать электрическую энергию в результате химических реакций, состоящих из двух электродов, химической смеси и корпуса.Это тип батареи, используемый для обеспечения электропитания портативных устройств, таких как фонарики. Элемент обычно имеет номинальное напряжение от 1 до 3 вольт в зависимости от его химического состава. Примеры: элементы AAA, AA, C, D (батарейки).

    Батарея представляет собой устройство, состоящее из одного (одноэлементный аккумулятор) или нескольких (многоэлементный аккумулятор) электрохимических элементов, установленных в одном корпусе и соединенных вместе последовательно и параллельно, предназначенное для питания различных электрических устройств. Примеры: автомобильный аккумулятор 12 В 45 Ач, состоящий из шести перезаряжаемых элементов 2 В 45 Ач.

    Батарейный блок или батарейный блок состоит из нескольких батарей (или батарейных модулей), соединенных параллельно или последовательно, или обоих, последовательно и параллельно, которые обеспечивают резервное или аварийное питание и не имеют общего корпуса. Примером батарейного блока являются две параллельно подключенные аккумуляторные батареи 12 В 8 Ач, используемые в ИБП, которые не имеют общего корпуса. В конце статьи мы более подробно обсудим параллельное и последовательное подключение аккумуляторов в банки.

    Формулы и определения

    Одиночная батарея

    Следующая формула показывает взаимосвязь между током , потребляемым от батареи, ее емкостью и коэффициентом C :

    или

    , где

    I bat — ток в амперах, потребляемый от аккумулятора,

    C bat — номинальная емкость аккумулятора в ампер-часах (означает, что ампер на часы), которая обычно указывается на аккумуляторе, и

    C rate — это C-rate батареи, который определяется как разрядный ток, деленный на теоретический потребляемый ток, при котором батарея будет обеспечивать свою номинальную емкость за один час.

    Время работы t и C-rate обратно пропорциональны:

    или

    Обратите внимание, что это теоретическое время работы . Из-за различных внешних факторов реальное время работы будет примерно на 30% меньше, чем рассчитано по этой формуле. Также следует отметить, что допустимая глубина разряда (DOD) аккумулятора еще больше ограничивает время его работы.

    Номинальная энергия в ватт-часах , хранимая в батарее, рассчитывается по следующей формуле:

    , где

    E bat — номинальная энергия, сохраненная в батарее в ватт-часах,

    В bat — номинальное напряжение аккумулятора в вольтах, а

    C bat — номинальная емкость аккумулятора в Ач.

    Энергия в джоулях , которые являются ваттами-секундами, рассчитывается следующим образом:

    Мы знаем, что один ампер, протекающий по проводу в течение одной секунды, потребляет 1 кулон заряда. Следовательно, заряд в батарее определяется из Q = I · t из известной емкости в Ач, которая представляет собой ток, который батарея может обеспечить в течение 3600 секунд:

    , где

    Q bat — это заряд батареи в кулонах (C), а

    C bat — номинальная емкость батареи в ампер-часах.

    Аккумуляторный блок

    Номинальное напряжение в вольтах аккумуляторного блока определяется как

    , где

    В bat — номинальное напряжение аккумулятора в вольтах,

    В банк — номинальное напряжение батарейного блока, а

    N s — количество батарей в одном или нескольких последовательных наборах.

    Емкость в ампер-часах банка батарей, C банк определяется как

    Номинальная энергия в ватт-часах хранится в банке E банк определяется как

    , где

    E bat — номинальная энергия, хранимая в одной батарее,

    N с — количество батарей в последовательном наборе, а

    N p — количество батарей, соединенных последовательно в параллельном наборе.

    Энергия в джоулях рассчитывается следующим образом:

    , где E банк, Втч — номинальная энергия в Втч, хранимая в банке.

    Заряд в кулонах в банке, Q банк определяется сумма зарядов всех аккумуляторов в банке:

    Ток разряда банка, I банк рассчитывается как

    Время работы банка t банк определяется как

    щелочные батареи AAA и AA

    Характеристики батареи

    При выборе батареи можно учитывать следующие характеристики :

    • Тип батареи или элемента
    • Батарея или химический состав элемента
    • Напряжение
    • Емкость
    • C-rate
    • Глубина разряда
    • Влияние скорости зарядки и разрядки (C-rate)
    • Удельная энергия (на единицу) веса)
    • Плотность энергии (на единицу объема)
    • Удельная мощность
    • Рабочая температура
    • 911 83 Глубина разгрузки
    • Размер и вес
    • Цена

    Некоторые из этих характеристик обсуждаются ниже.

    Тип батареи

    Батареи подразделяются на первичные (одноразовые) и вторичные (перезаряжаемые).

    Первичные

    Первичные батареи — это одноразовые батареи, которые нельзя надежно перезарядить. Обычными типами первичных батарей являются щелочные и угольно-цинковые батареи.

    Зарядка литий-ионных батарей в интеллектуальном зарядном устройстве

    Вторичный

    Вторичные батареи — это перезаряжаемые батареи, которые можно надежно заряжать много (до 1000) раз.Самый распространенный и самый старый тип аккумуляторных батарей — это свинцово-кислотные батареи. Другими распространенными типами аккумуляторных батарей являются никель-кадмиевые (NiCd), никель-металлогидридные (NiMH), литий-ионные (Li-ion) и литий-полимерные (LiPo) батареи.

    Удельная энергия и плотность энергии

    Удельная энергия батареи измеряется в единицах энергии на единицу массы. Единицей измерения удельной энергии в системе СИ является джоуль на килограмм. Для батарей обычно используются ватт-часы на килограмм.Удельная энергия описывает энергию, переносимую в единице массы. Плотность энергии — это количество энергии на единицу объема. Для батарей плотность энергии измеряется в ватт-часах на литр.

    К сожалению, удельная энергия батарей относительно мала по сравнению с удельной энергией бензина. В то же время новые литий-ионные аккумуляторы имеют в четыре раза большую плотность энергии по сравнению со старыми свинцово-кислотными аккумуляторами, и новые электромобили, работающие от этих аккумуляторов, достаточно практичны для повседневного использования.Литий-полимерные батареи имеют самую высокую удельную энергию и в настоящее время широко используются в дистанционно управляемых самолетах (дронах).

    Химический состав батарей

    Щелочные батареи

    Щелочные батареи, хотя и используют почти вековую технологию, являются наиболее распространенными первичными (неперезаряжаемыми) батареями. Номинальное напряжение их элементов составляет 1,5, а емкость щелочного элемента AA составляет 1800–2600 мАч. Если объединить несколько элементов в один корпус, вы получите батареи на 4,5 В (3 элемента), 6 В (4 элемента) и 9 В (6 элементов).Маленькие батарейки на 9 В, которые были разработаны для первых транзисторных радиоприемников и теперь используются в рациях, детекторах дыма и передатчиках дистанционного управления, имеют очень небольшую емкость — всего около 500 мАч. Удельная энергия щелочных батарей составляет 110–160 Втч / кг.

    Цинк-угольные батареи

    Цинк-углеродные первичные батареи были изобретены в 1886 году и широко используются до сих пор. Номинальное напряжение их элементов составляет 1,5, а емкость угольно-цинковых элементов АА — до 400–1700 мАч. Они бывают того же размера и категории напряжения, что и щелочные батареи.Их удельная энергия составляет 33–42 Втч / кг, что примерно в три раза ниже удельной энергии щелочных батарей. Из-за своей малой емкости угольно-цинковые батареи используются только в устройствах с низким энергопотреблением или в устройствах с прерывистым режимом работы, например, в передатчиках дистанционного управления или часах.

    Никель-кадмиевые батареи, подобные этой, были установлены на канадских геостационарных спутниках связи Anik A, запущенных в 1972–1975 годах и выведенных из эксплуатации десятью годами позже.

    Свинцово-кислотные батареи

    Свинцово-кислотные аккумуляторные (вторичные) батареи не дороги, легко доступны и широко используются в легковых и грузовых автомобилях, механизмах, ИБП и другом оборудовании.Напряжение их элементов составляет 2 В, а наиболее распространенные напряжения аккумуляторов — 6, 12 и 24 В. Они удобны, если их вес не является важным фактором. Их удельная энергия составляет 33–42 Втч / кг.

    Никель-кадмиевые батареи

    Никель-кадмиевые (NiCd) аккумуляторные (вторичные) батареи были изобретены более ста лет назад и в 1990-х годах быстро потеряли свою долю рынка в пользу никель-металлогидридных и литий-ионных аккумуляторов. Напряжение NiCd элементов составляет 1,2 В, а их удельная энергия составляет 40–60 Втч / кг.

    1,2 В 10 Ач никель-кадмиевые батареи, подобные этой, были установлены в советской ракете «Энергия», использовавшейся для запуска советского корабля-шаттла «Буран» в 1988 году.

    Никель-металлогидридные батареи

    Никель-металлогидридные (NiMH) аккумуляторные (вторичные) батареи были изобретены относительно недавно, в 1967 году. Их плотность энергии (объемная) намного выше, чем у никель-кадмиевых батарей, и приближается к плотности энергии литий-ионных батарей. Их номинальное напряжение ячеек равно 1.2 В и удельная энергия 60–120 Втч / кг. Удельная мощность NiMH аккумуляторов (250–1000 Вт / кг) также намного выше, чем у NiCd аккумуляторов (150 Вт / кг).

    Литий-полимерные батареи

    Литий-полимерные или литий-ионные полимерные перезаряжаемые (вторичные) батареи (LiPo, LIP) используют полимерный электролит в виде геля. Благодаря высокой удельной энергии 100–265 Втч / кг они используются там, где вес является важным фактором. К ним относятся сотовые телефоны, самолеты с дистанционным управлением (дроны) и планшетные компьютеры.Из-за высокой плотности энергии аккумуляторы LiPo, которые перегреты и перезаряжены, могут страдать от теплового разгона , что может привести к утечке, взрыву и возгоранию. Эти батареи также могут расширяться во время хранения, когда они полностью заряжены, что может привести к трещинам в корпусе устройства, в котором они установлены.

    Интеллектуальные литий-ионные полимерные батареи для дронов Zerotech Dobby (слева) и DJY Mavic Pro (справа); литий-ионные полимерные батареи могут расширяться во время хранения, когда они полностью заряжены, и из-за этой проблемы рекомендуется разрядить их до 40–65%, если они не будут использоваться в течение 10 дней или более

    Литий-железо-фосфатные батареи

    Литий-железо-фосфатный Аккумуляторные (вторичные) батареи (LiFePO₄) представляют собой литий-ионные батареи, в которых в качестве катодного материала используется фосфат лития и железа (LiFePO₄), а в качестве анода — графитовый электрод с металлической коллекторной сеткой.Это относительно новая технология, разработанная в начале 2000-х годов, которая имеет много общих преимуществ и недостатков с литий-ионными батареями с другим химическим составом. Напряжение их элементов составляет 3,2 В, и, поскольку оно настолько велико по сравнению с другими химическими реактивами, для номинального напряжения 12,8 В. Эти батареи имеют очень постоянное напряжение во время разряда, что позволяет обеспечивать почти полную мощность до тех пор, пока элемент не разрядится. полностью разряжена. Удельная энергия LiFePO₄ аккумуляторов составляет 90–110 Втч / кг.Литий-железо-фосфатные батареи используются в велосипедах, электромобилях, солнечных лампах, электронных сигаретах и ​​фонариках. Литий-железо-фосфатная батарея 14500 имеет размер AA. Однако его напряжение другое — 3,2 В.

    Напряжение батареи

    Напряжение батареи определяется химическим составом, используемым внутри ее ячеек, а также количеством ячеек, соединенных последовательно. В таблице ниже показаны напряжения различных вторичных и первичных ячеек.

    NiCd, NiMH аккумулятор 1.2V
    Щелочная первичная 1,5 В
    Цинк-углеродная первичная 1,5 В
    Свинцово-кислотная 2 В
    Литий первичная 3, в зависимости от химического состава
    Литий-ионный перезаряжаемый, в зависимости от химического состава 3–3,6 В

    Если первичная батарея состоит из нескольких элементов, соединенных последовательно, ее напряжение может составлять 4,5 В, 12 В, 24 В, 48 V и др.

    Емкость аккумулятора

    Емкость аккумулятора — это количество электрического заряда, которое аккумулятор может доставить при номинальном напряжении. Обратите внимание, что емкость и емкость — разные электрические величины. Емкость можно измерить в единицах электрического заряда — кулонах (Кл), а емкость — в единицах электрической емкости — фарадах (1 Ф = 1 Кл / В). Однако обычно его измеряют в более удобных ампер-часах (Ач или А · ч) или миллиампер-часах (мА · ч или мА · ч, 1 мА · ч = 1000 А · ч), потому что батареи одного химического состава имеют фиксированное напряжение.Емкость в Ач или мАч обычно указывается на корпусе аккумулятора. Номинальная емкость батареи часто выражается как произведение 20 часов, умноженное на ток, который свежая батарея может обеспечивать в течение 20 часов при комнатной температуре. Реальная (неноминальная) емкость любого аккумулятора зависит от нагрузки, то есть от тока, который она подает на нагрузку, или скорости ее разряда. Чем выше скорость разряда, тем меньше емкость аккумулятора.

    Емкость аккумулятора также можно измерить в единицах энергии — ватт-часах (Втч или Вт · ч) — почти в тех же единицах, которые измеряет ваш домашний электросчетчик, который измеряет электрическую энергию, используемую дома, в киловаттах. часов (кВтч).1 кВтч = 1000 Втч. Чтобы получить Wh, нужно умножить Ah на номинальное напряжение батареи. Например, аккумулятор 12 В 8 Ач, который часто используется в небольших ИБП, имеет мощность 12 · 8 = 96 Втч.

    В следующей таблице показана номинальная емкость батарей 1,2 В и 1,5 В типоразмера AA:

    NiMH аккумуляторные 600–3600 мАч
    NiCd аккумуляторные 600–1000 мАч
    щелочные первичные
    Щелочные первичные 1800–2600 мАч
    Цинк-углеродный первичный 400–1700 мАч
    Литиевый первичный, в зависимости от химического состава 1500–3000 мАч
    Аккумулятор C-Rate

    C-rate ( скорость или C-рейтинг) определяется как разрядный ток, деленный на теоретический потребляемый ток, при котором батарея будет обеспечивать свою номинальную емкость за один час; это безразмерная величина.Например, для батареи с номинальной емкостью C bat = 8 Ah, разряд 2C обеспечит номинальную емкость батареи за 0,5 часа с током I bat = 16 A. Разряд 1C батареи Такой же аккумулятор обеспечит номинальную емкость при токе 8 А за один час. Обратите внимание, что C-rate является безразмерным значением, несмотря на то, что C bat выражается в ампер-часах, а I bat выражается в амперах. Также обратите внимание, что аккумулятор будет обеспечивать меньше энергии, если он разряжается с более высокой скоростью заряда.

    Глубина разряда

    Часто полная энергия, накопленная в батарее, не может быть использована без повреждения батареи. Допустимая глубина разряда (DOD) конкретной батареи, которая иногда указывается в ее технических характеристиках, определяет долю энергии, которая может быть отобрана из батареи. Например, свинцово-кислотные батареи, предназначенные для запуска автомобильных двигателей, не рассчитаны на глубокую разрядку, которая может легко повредить их. В них установлены тонкие пластины для достижения максимальной площади поверхности, и, следовательно, максимальный выходной ток может быть легко поврежден глубоким разрядом и особенно повторным глубоким разрядом с высоким пусковым током.Некоторые батареи могут разряжаться всего на 30%, то есть только 30% их емкости можно использовать для питания нагрузки.

    Элементы, батареи и блоки: 1 — батарейный блок 3 В из двух последовательно соединенных щелочных элементов AA на 1,5 В, 2 — элемент размера 1,5 ААА, 3 — батарея 9 В, состоящая из шести последовательно соединенных элементов 1,5 В

    В то же время существуют свинцово-кислотные батареи с более толстыми пластинами, предназначенными для регулярной разрядки и зарядки. Эти батареи используются в фотоэлектрических системах и электромобилях.

    Серия

    и параллельное соединение элементов и батарей в батарейные блоки

    Батарейные блоки используются, когда необходимо объединить несколько батарей для одного приложения. Подключив батареи в блок, можно увеличить напряжение, ток или и то, и другое. Для соединения нескольких батарей в блоке используются три метода:

    • Параллельное соединение
    • Последовательное соединение
    • Последовательное и параллельное соединение

    При подключении батарей в блоке батарей следует помнить о некоторых очень важных моментах.Старайтесь использовать для своего банка не только аккумуляторы одного типа, но и аккумуляторы одного производителя и из одной партии. Конечно, никогда не подключайте в один банк аккумуляторы разного химического состава. Если вы подключите разные батареи, даже если ваша конструкция вначале кажется работающей, вы резко сократите срок службы ваших батарей. Если вы не соответствуете емкостям, одна батарея будет разряжаться быстрее, чем другая, что опять же сократит срок их службы.

    Последовательное соединение

    Когда подключает батареи последовательно , общее напряжение является суммой отдельных напряжений батарей, а их емкость в Ач остается неизменной.Например, вы можете подключить два аккумулятора 12 В 10 Ач последовательно, и ваш аккумулятор будет выдавать 24 В и при этом будет иметь емкость 10 Ач. При последовательном подключении используйте толстые перемычки, чтобы соединить отрицательную клемму первой батареи с положительной клеммой второй батареи, затем отрицательную клемму второй батареи с положительной клеммой третьей батареи и так далее. Затем подключите концевые клеммы (одну положительную и одну отрицательную) к нагрузке.

    Параллельное соединение

    Когда вы подключаете батареи параллельно , их напряжение остается прежним, а их емкость и номинальный ток увеличиваются.Чтобы подключить батареи параллельно, используйте толстые перемычки для соединения всех положительных и отрицательных клемм. Положительный на положительный и отрицательный на отрицательный. Чтобы выровнять нагрузку, подключите положительную клемму нагрузки к одному концу аккумуляторной батареи, а отрицательную клемму нагрузки — к другому концу аккумуляторной батареи. Например, вы можете подключить два аккумулятора 12 В 10 Ач параллельно, и ваша батарея будет выдавать 12 В и иметь емкость 20 Ач.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *