Расчет емкости конденсатора для однофазного электродвигателя: Расчёт ёмкости конденсатора онлайн / Калькулятор / Элек.ру

Содержание

Трехфазный двигатель в однофазной сети

Трехфазные асинхронные электродвигатели не требуют дополнительных устройств для запуска и работы. Нужны лишь контакторы или иные устройства подачи трехфазного напряжения. Однако при включении двигателя в однофазную сеть используются другие способы запуска.

Фазосдвигающий конденсатор

Существует простой способ, позволяющий запитать трехфазный двигатель от бытовой однофазной сети с напряжением 220 В. Трехфазное напряжение получают путем сдвига фаз с помощью фазосдвигающего конденсатора. Делается это так.

В однофазной сети имеются два провода (фаза и ноль), между которыми существует сдвиг фаз 180 градусов. Для включения трехфазного двигателя нужны три проводника, напряжения на которых должны иметь сдвиг фаз 120 градусов. Поэтому, если подключить один из выводов двигателя к фазному проводнику напрямую, а другой – через фазосдвигающий конденсатор, то в совокупности с нулевым проводником и обмотками такая система будет трехфазной. Другими словами, будет обеспечен нужный режим питания.

Для расчета номинала фазосдвигающего конденсатора можно воспользоваться приближенной формулой:

С = k*I / U,

где k – коэффициент, равный 4800 для схемы подключения «треугольник», 2800 – для «звезды», I – номинальный ток двигателя (указывается на шильдике), U – фазное напряжение (в нашем случае – 220 В).

Рабочее напряжение конденсатора следует выбирать не менее 400 В, при этом желательно использовать специальные конденсаторы для электродвигателей, на частоту 50 – 60 Гц.

Пусковой конденсатор

Приведенная выше формула справедлива для номинального тока. Но двигатель работает не только на номинале. При пуске его ток может превышать номинальное значение в 5-7 раз, а при работе – быть ниже в 2-3 раза (холостой ход). В результате момент на валу при включении будет мал, и двигатель будет разгоняться очень долго либо вообще не сможет запуститься.

Поэтому для запуска используют дополнительный пусковой конденсатор, который подключают к рабочему (фазосдвигающему) на время разгона (3-5 секунд). Обычно емкость пускового конденсатора выбирают в 2-5 раз больше, в зависимости от требуемого момента при пуске и времени разгона.

Для подключения пускового конденсатора используют специальные ручные пускатели, в которых время пуска равно времени нажатия на двухпозиционную кнопку «Пуск». Пока оператор держит «Пуск» в позиции без фиксации, подключаются рабочий и пусковой конденсаторы. Как только оператор отпускает кнопку, она переходит в фиксированную позицию, и в схеме остается лишь рабочий конденсатор. Остановка двигателя производится кнопкой «Стоп». Кроме ручных пускателей могут использоваться релейные и электронные схемы.

Данный способ не применяется на практике для двигателей более 2,2 кВт из-за низкого КПД и большой емкости конденсаторов.

Двигатель с пусковой обмоткой

Конденсатор также используется в случае, когда двигатель имеет две обмотки – рабочую и пусковую. Рабочая обмотка подключается к питающему однофазному напряжению (220 В) напрямую. Пусковая обмотка имеет меньший ток и подключается через фазосдвигающей конденсатор. Совместно обе обмотки имеют такую конфигурацию, что формируют внутри статора вращающееся магнитное поле.

Емкость фазосдвигающего конденсатора обычно указывается на шильдике двигателя. На время пуска и разгона может применяться дополнительный конденсатор. Такой двигатель называют конденсаторным, и он предназначен для работы только в однофазной сети.

Другие полезные материалы:
Как определить параметры двигателя без шильдика?
Основные неисправности электродвигателя и способы их устранения
Преимущества векторного управления электродвигателем

Таблица емкостей конденсаторов для трехфазных двигателей

Чтобы подключить асинхронный электродвигатель трехфазного типа к однофазной сети на напряжение 220 В, необходимо создать условия для сдвига фаз на обмотках статора двигателя.

Сдвиг фаз сформирует имитацию кругового вращающегося магнитного поля, заставляющего вращаться вал ротора двигателя. Конденсатор даёт току «запас» в π/2=90° относительно напряжения, и это создаёт дополнительный момент вращения ротора.

При подключении двигателя к сети используют два подключенных параллельно конденсатора – пусковой и рабочий. Данный калькулятор позволяет рассчитать ёмкость этих конденсаторов, ёмкость пускового конденсатора берется из расчёта 2,5 емкости рабочего конденсатора.

Для получения необходимых значений ёмкости, заполните поля формы ниже. Тип соединения обмоток двигателя, мощность двигателя, КПД и коэффициент мощности обозначены на шильдике электродвигателя. Способ соединения обмоток зависит от напряжения сети, к которой выполняется подключение: 220 В – «треугольник», когда концы обмоток соединены между собой, к их началам подводится питающее напряжение; 380 В – «звезда», при котором концы одной обмотки соединены с началом другой.

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Емкость рабочего конденсатора для трехфазного двигателя таблица

Чтобы подключить асинхронный электродвигатель трехфазного типа к однофазной сети на напряжение 220 В, необходимо создать условия для сдвига фаз на обмотках статора двигателя. Сдвиг фаз сформирует имитацию кругового вращающегося магнитного поля, заставляющего вращаться вал ротора двигателя. Конденсатор даёт току «запас» в π/2=90° относительно напряжения, и это создаёт дополнительный момент вращения ротора.

При подключении двигателя к сети используют два подключенных параллельно конденсатора — пусковой и рабочий. Данный калькулятор позволяет рассчитать ёмкость этих конденсаторов, ёмкость пускового конденсатора берется из расчёта 2,5 емкости рабочего конденсатора.

Для получения необходимых значений ёмкости, заполните поля формы ниже. Тип соединения обмоток двигателя, мощность двигателя, КПД и коэффициент мощности обозначены на шильдике электродвигателя. Способ соединения обмоток зависит от напряжения сети, к которой выполняется подключение: 220 В — «треугольник», когда концы обмоток соединены между собой, к их началам подводится питающее напряжение; 380 В — «звезда», при котором концы одной обмотки соединены с началом другой.

Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.

Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.

Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.

Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.

Включение трехфазного электродвигателя в однофазную сеть питания

Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Подключение пускового и рабочего конденсаторов для трехфазного электромотора

Вот оно соответствие всех нужных приборов элементам схемы

Теперь выполним подключение, внимательно разобравшись с проводами

Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.

Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Расчет емкости фазосдвигающего конденсатора

для трехфазного асинхронного двигателя в бытовой однофазной сети

Рабочий и пусковой конденсаторы включаются в цепь параллельно, во время пуска работают одновременно, затем пусковой отключают. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора (в 2-3 раза выше емкости рабочего).

Двигатель, имеющий маркировку 220/380 и Δ/Y включается в однофазную сеть 220В по схеме треугольник, по схеме звезда в сети 220В такой двигатель будет терять в мощности троекратно и сильно греться.

При соединении конденсаторов параллельно их емкость суммируется. При соединении конденсаторов последовательно, рабочее напряжение в цепи будет равняться сумме напряжений всех конденсаторов, а емкость вычисляется по формуле: 1/C = 1/C1 + 1/C2 + . + 1/Cn. Рабочее напряжение в цепи конденсаторов должно быть минимум в полтора раза выше напряжения сети (то есть не менее 330В в сети 220В). Таким образом, два конденсатора на 200 мкф с рабочим напряжением 200В дадут при последовательном соединении емкость 100 мкф и допустимое рабочее напряжение 400В. При параллельном соединении емкость будет 400 мкф и рабочее напряжение 200В (самое низкое значение допустимого напряжения из всего набора конденсаторов в цепи). Необходимые конденсаторы представлены в сетевых магазинах в разделе пусковых конденсаторов (не ищите по старинке бумажные — их практически перестали выпускать).

Видеопримеры работы двигателя 2.2 кВт и 1.1 кВт с одной и той же нагрузкой и правильно подобранными рабочими и пусковыми конденсаторами, разница в скорости пуска 3 и 20 секунд. И сборка на 3.3 кВт весело крутится (пильный диск 350 мм в диаметре).

Схема включения в однофазную сеть трёхфазного асинхронного двигателя с обмотками статора, соединёнными по схеме «звезда» (а) или «треугольник» (б): B1 — Переключатель направления вращения (реверс), В2 — Выключатель пусковой ёмкости; Ср — рабочий конденсатор; Cп — пусковой конденсатор; АД — асинхронный электродвигатель.

На схеме представлено последовательное (сверху) и параллельное (снизу) соединение кон­ден­саторов.

На рисунке представлена схема соединения обмоток двигателя «Звезда».

На рисунке представлена схема соединения обмоток двигателя «Треугольник».

Вычислить конденсатор однофазного двигателя

Многие двигатели, такие как стиральные машины, холодильники, являются однофазными двигателями. Проблема однофазного питания двигателя 230 В заключается в том, что он не создает крутящий момент, необходимый для запуска. Вам следует «обмануть» двигатель и сгенерировать фиктивную фазу с помощью конденсатора и песка таким образом получить необходимый крутящий момент. Чтобы получить наилучшую и наиболее мощную фазу крутящего момента, в результате которой стиральная машина или холодильник будут работать лучше и тяжелее, центрифугируются лучше и с большей мощностью, вы должны рассчитать емкость конденсатора, чтобы получить это отставание в 90 °.Вы должны игнорировать эти «городские легенды», которые вы можете прочитать в Интернете, в которых говорится, что конденсатор большего размера получает больше энергии, что совершенно неверно и должно привести к поломке вашей стиральной машины или холодильника. Фактически, если конденсатор слишком большой, может быть шанс, что зазор составит 360 °, то есть 0 °, так что однофазный двигатель не будет иметь никакого крутящего момента и мощности.

Более высокий пусковой момент для однофазного двигателя достигается, когда задержка, которую мы получаем с нашим конденсатором, составляет 90 °. Если мы хотим получить этот зазор, мы должны рассчитать конденсатор следующим образом.2 = 305 Ом

Расчет емкости конденсатора — конденсатор однофазного двигателя:

XL = 1 / (2 x pi x частота x C)

C = 1 / (2 x pi x частота x XL)

C = 1 / (2 x 3,14159 x 50 x 305) = 10,43 мкФ (мкФ)

Следовательно, идеальный конденсаторный однофазный двигатель, оптимальный для этого примера, составляет 10,43 мкФ и 10,43 мкФ конденсатор не является значением, которое мы можем найти на рынке, мы выбираем значение, которое лучше всего приближается, в данном случае 10 мкФ.

% PDF-1.5 % 1 0 obj > эндобдж 4 0 объект > эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 5 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > эндобдж 33 0 объект > эндобдж 34 0 объект > эндобдж 35 0 объект > эндобдж 36 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > эндобдж 39 0 объект > эндобдж 40 0 объект > эндобдж 41 0 объект > эндобдж 42 0 объект > эндобдж 43 0 объект > эндобдж 44 0 объект > эндобдж 45 0 объект > эндобдж 46 0 объект > эндобдж 47 0 объект > эндобдж 48 0 объект > эндобдж 49 0 объект > эндобдж 50 0 объект > эндобдж 51 0 объект > эндобдж 52 0 объект > эндобдж 53 0 объект > эндобдж 54 0 объект > эндобдж 55 0 объект > эндобдж 56 0 объект > эндобдж 57 0 объект > эндобдж 58 0 объект > эндобдж 59 0 объект > эндобдж 60 0 объект > эндобдж 61 0 объект > эндобдж 62 0 объект > эндобдж 63 0 объект > эндобдж 64 0 объект > эндобдж 65 0 объект > эндобдж 66 0 объект > эндобдж 67 0 объект > эндобдж 68 0 объект > эндобдж 69 0 объект > эндобдж 70 0 объект > эндобдж 71 0 объект > эндобдж 72 0 объект > эндобдж 73 0 объект > эндобдж 74 0 объект > эндобдж 75 0 объект > эндобдж 76 0 объект > эндобдж 77 0 объект > эндобдж 78 0 объект > эндобдж 79 0 объект > эндобдж 80 0 объект > эндобдж 81 0 объект > эндобдж 82 0 объект > эндобдж 83 0 объект > эндобдж 84 0 объект > эндобдж 85 0 объект > эндобдж 86 0 объект > эндобдж 87 0 объект > эндобдж 88 0 объект > эндобдж 89 0 объект > эндобдж 90 0 объект > эндобдж 91 0 объект > эндобдж 92 0 объект > эндобдж 93 0 объект > эндобдж 94 0 объект > эндобдж 95 0 объект > эндобдж 96 0 объект > эндобдж 97 0 объект > эндобдж 98 0 объект > эндобдж 99 0 объект > эндобдж 100 0 объект > эндобдж 101 0 объект > эндобдж 102 0 объект > эндобдж 103 0 объект > эндобдж 104 0 объект > эндобдж 105 0 объект > эндобдж 106 0 объект > эндобдж 107 0 объект > эндобдж 108 0 объект > эндобдж 109 0 объект > эндобдж 110 0 объект > эндобдж 111 0 объект > эндобдж 112 0 объект > эндобдж 113 0 объект > эндобдж 114 0 объект > эндобдж 115 0 объект > эндобдж 116 0 объект > эндобдж 117 0 объект > эндобдж 118 0 объект > эндобдж 119 0 объект > эндобдж 120 0 объект > эндобдж 121 0 объект > эндобдж 122 0 объект > эндобдж 123 0 объект > эндобдж 124 0 объект > эндобдж 125 0 объект > эндобдж 126 0 объект > эндобдж 127 0 объект > эндобдж 128 0 объект > эндобдж 129 0 объект > эндобдж 130 0 объект > эндобдж 131 0 объект > эндобдж 132 0 объект > эндобдж 133 0 объект > эндобдж 134 0 объект > эндобдж 135 0 объект > эндобдж 136 0 объект > эндобдж 137 0 объект > эндобдж 138 0 объект > эндобдж 139 0 объект > эндобдж 140 0 объект > эндобдж 141 0 объект > эндобдж 142 0 объект > эндобдж 143 0 объект > эндобдж 144 0 объект > эндобдж 145 0 объект > эндобдж 146 0 объект > эндобдж 147 0 объект > эндобдж 148 0 объект > эндобдж 149 0 объект > эндобдж 150 0 объект > эндобдж 151 0 объект > эндобдж 152 0 объект > эндобдж 153 0 объект > эндобдж 154 0 объект > эндобдж 155 0 объект > эндобдж 156 0 объект > эндобдж 157 0 объект > эндобдж 158 0 объект > эндобдж 159 0 объект > эндобдж 160 0 объект > эндобдж 161 0 объект > эндобдж 162 0 объект > эндобдж 163 0 объект > эндобдж 164 0 объект > эндобдж 165 0 объект > эндобдж 166 0 объект > эндобдж 167 0 объект > эндобдж 168 0 объект > эндобдж 169 0 объект > эндобдж 170 0 объект > эндобдж 171 0 объект > эндобдж 172 0 объект > эндобдж 173 0 объект > эндобдж 174 0 объект > эндобдж 175 0 объект > эндобдж 176 0 объект > эндобдж 177 0 объект > эндобдж 178 0 объект > эндобдж 179 0 объект > эндобдж 180 0 объект > эндобдж 181 0 объект > эндобдж 182 0 объект > эндобдж 183 0 объект > эндобдж 184 0 объект > эндобдж 185 0 объект > эндобдж 186 0 объект > эндобдж 187 0 объект > эндобдж 188 0 объект > эндобдж 189 0 объект > эндобдж 190 0 объект > эндобдж 191 0 объект > эндобдж 192 0 объект > эндобдж 193 0 объект > эндобдж 194 0 объект > транслировать x} n0rKZLs: MfT Tiqw (: 1p? / B0:> 1 $ K SM>! ޒ ׄ 32 H6 $ DqD! Dn $ 敱 6VJ0 \ 3 $ _- qnjI6h [* ZbyFUSehj ՘ VLtQȴZ; K66ArWJb; + U &; ހ b / Reu ܫ eGvkaT V8-E] 5kmvY & W C \ FC SpjJ> Zd Uk] Us˭ ݏ |? / MҫF [{ш. wB_ конечный поток эндобдж 195 0 объект > / Шрифт 575 0 R >> эндобдж 196 0 объект > транслировать х + г 2P01TIr * 2V) 234403T0

Общая процедура расчета производительности двигателей с постоянным разделенным конденсатором (PSC) (электродвигатели)

6.4.2

Переменные для расчета

Расчет констант обмотки и паза

Примечание: Описание переменных см. На рисунках. k представляет константу первичного паза (статора), а k2 представляет константу вторичного паза (ротора).Они находятся с использованием одного и того же набора уравнений, при этом следует соблюдать осторожность при использовании уравнения, наиболее близкого к уравнению рассматриваемого слота.
Константа k1 или k2 паза с круглым дном (обратите внимание, что F отличается для двух констант): форма паза A (см. Рис. 6.29)

Реактивность утечки Проницаемость паза утечки Pxslot:

Промежуточные расчетные значения

Текущие расчеты

Метод балансировки двигателя PSC. См. Схему однофазного постоянного разделенного конденсатора на рис.6.42.
Переменные, используемые в следующих уравнениях балансировки PSC:

РИСУНОК 6.42. Схема однофазного постоянного разделенного конденсатора.


Порядок расчета

1. Разработайте основную обмотку так, чтобы добиться необходимого максимального крутящего момента.
2. Рассчитайте производительность двухфазного двигателя.
3. Решите относительно K.
• Ka должно быть функцией кубического корня из 2, поскольку размеры проволоки различаются в этом соотношении.
• Предположим, что Ka будет одним из следующих значений: 1.26,1,59 или 2,00.
• Установите значение K в правой части уравнения на Ka.
• Найдите K, замените это значение на предполагаемое значение и выполните вторую итерацию.
4. Решите для Xc.
5. Спроектируйте конденсатор из Xc и исправьте предыдущие решения, если Rc слишком велико.
6. Рассчитайте напряжение конденсатора Ec и вольт-ампер конденсатора.
7. Вычислите уравнения производительности на основе рассчитанных потерь в первичной обмотке, конденсатора и коэффициента мощности.
Используйте процедуры расчета, описанные в многофазном разделе, для расчета крутящего момента заторможенного ротора.Если это неудовлетворительно, может потребоваться уменьшить K, увеличить микрофарады или увеличить сопротивление ротора.
Описанная процедура рассчитывает правильное значение емкости для достижения точки баланса. Однако невозможно сбалансировать двигатель при любой желаемой нагрузке. Соотношение витков и емкость должны быть изменены для достижения сбалансированной работы в желаемой точке нагрузки. Однако в любой точке нагрузки будет значение емкости, которое даст минимальную составляющую обратного поля
.Уравнения для расчета балансировки двигателя
PSC Силовая составляющая первичного тока основной обмотки A:

Схема подключения односкоростного двигателя PSC показана на рис. 6.43. Для некоторых приложений достаточно вывести из двигателя только три вывода, используя внутреннее соединение. Конденсатор часто называют рабочим конденсатором, даже если он остается подключенным к двигателю как во время пуска, так и во время работы. Двигатели
PSC обычно используются для многоскоростных приложений. Три общих соединения показаны на рис.6.44 и 6.45. Рисунок 6.44 представляет двигатель с тройником. Рисунок 6.45 представляет двигатель с L-соединением. Скорость выбирается путем подключения источника питания между общим проводом и одним из проводов скорости. Показанные цвета свинца обычно используются, но могут быть заменены другими.

РИСУНОК 6.43 Схема электрических соединений PSC.

РИСУНОК 6.44 Т-образный многоскоростной двигатель PSC.

РИСУНОК 6. 45 Многоскоростной двигатель PSC с L-соединением.


Таблица размеров конденсаторов однофазного двигателя

pdf

Однофазным электродвигателям требуется конденсатор для питания второй фазной обмотки.Для двигателей с двойным напряжением цепь пуска обслуживается от одной главной / рабочей обмотки, поэтому он видит 115 В при питании от 115 или 230 В. Асинхронный двигатель с конденсаторным запуском Двигатели с конденсаторным запуском — это однофазные асинхронные двигатели, в которых в цепи вспомогательной обмотки используется конденсатор для увеличения разности фаз между током в основной и вспомогательной обмотках. V I. В этом посте мы показали, как настроить размер катушки 3-фазного двигателя мощностью 1 л.с. Показано с 1 по 2 из 2 Тема: Расчет рабочего и пускового конденсатора для небольшого двигателя.Отвечать. Требования к характеристикам конденсатора зависят от выходной мощности или крутящего момента и конструкции двигателя. Отвечать. Инструменты резьбы. «Четыре основных типа — это разделенная фаза, конденсаторный пуск, постоянный разделенный конденсатор и конденсаторный пуск / конденсаторный запуск». Я наткнулся на статью Salcone-Bond «Выбор пленочных конденсаторов шинопровода для высокопроизводительных инверторных приложений» (PDF), в которой показаны уравнения для однофазных инверторов. Wiring Diagram не только предлагает подробные иллюстрации того, что вы можете делать, но и процессы, которых вы должны придерживаться, хотя и выполняете их.Конденсаторы переменного тока используются для обеспечения необходимого пускового момента для двигателей с разделением фаз за счет сдвига фаз во вторичной обмотке двигателя. Если мощность мотора меньше 1/8 л.с., его почти всегда заменяют. Запустите конденсаторы. В противном случае конденсаторы могут выйти из строя. Определение размеров генераторных установок для запуска двигателей Практическое руководство по пониманию того, как пусковые нагрузки двигателя влияют на производительность генераторных установок. ТОПЫ ЭНЕРГЕТИЧЕСКИХ СИСТЕМ 103 Автор: Дэн Крюгер, старший инженер по полевым приложениям, Kohler Power Systems, Америка, Рик Ван Маарен, старший инженер, Kohler Power Systems, Америка.Двигатели (однофазные), л.с. = (V x I x eff x pf) / 746: Двигатели (3 фазы) Синхронная скорость: нс = (120) (частота) / (количество полюсов) () 746. Размер конденсатора для энергосистемы & Моторы. двигатели конденсаторный пуск двигатели двухфазные двигатели 1/6 300600750950 1500 1/4 400 800 1000 1300 2000 1/3 475950 1185 1600 2400 1/2 650 1000 1600 2000 3200 3/4 900 1200 2200 2800 н / п 1 1000 н / д 2500 3200 н / д 1-1 / 2 1700 н / д 4200 5500 н / д 2 2000 н / д 5000 6800 н / д 3 3200 н / д 8000 10000 н / д 5 5000 н / д 12500 15000 н / д диаграмму d найти: однофазные трехфазные киловатты квт вольт x амперы x p.f. С.Ф. Просмотр профиля Просмотр сообщений форума Домашняя страница Titanium Дата регистрации окт 2005 Расположение Wilmington DE USA Сообщений 2 173 Сообщение Спасибо / Нравится… F.L. Производители конденсаторов рекомендуют не более 20 трехсекундных пусков в час. Однофазный конденсатор Пусковой конденсатор Схема подключения двигателя запуска — Схема подключения однофазного двигателя с конденсатором. В этом видео мы объясняем, как выбрать размер пускового конденсатора в однофазном двигателе, таком как потолочный вентилятор, вентилятор охладителя, двигатель насоса и т. Д. Что мне действительно нужно, так это совет по уравнению выбора размера пускового конденсатора.Подбор рабочего и пускового конденсатора для небольшого двигателя. Этот отчет должен поддерживать не только трансформаторы, фазовые преобразователи и частотно-регулируемый привод. Показать версию для печати; 29.11.2017, 10:39 # 1. mjk. С.Ф. На этот раз я хочу поделиться простым методом определения размера нашего конденсатора для повышения коэффициента мощности асинхронного двигателя и электросети. Этот метод также можно использовать для определения размера конденсаторной батареи. Однофазный последовательный двигатель (универсальный) Однофазный последовательный двигатель представляет собой двигатель коллекторного типа. Асинхронный двигатель с постоянным разделением конденсаторов.Пропустить навигацию Войти. При последовательном соединении основных обмоток используется напряжение 120 В. Определение размеров однофазного конденсатора, как подключить рабочий конденсатор, электродвигателя, схема подключения электродвигателя, диаграмма конденсаторов однофазного электродвигателя, электрическая схема электродвигателя, размер однофазного конденсатора, центр Ering В электрическом одинарном источнике питания… При параллельном подключении основной обмотки напряжение в сети обычно составляет 240 Ом.ТАБЛИЦА ДЛЯ ОПРЕДЕЛЕНИЯ ПРЕДОХРАНИТЕЛЕЙ / ВЫКЛЮЧАТЕЛЯ И РАЗМЕРЫ ПРОВОДОВ ДЛЯ ЭЛЕКТРИЧЕСКИХ ДВИГАТЕЛЕЙ (только для однофазных двигателей переменного тока) 1. Конденсаторный пусковой двигатель. Конденсатор состоит из двух металлических параллельных пластин, заключенных в пластиковый корпус. Если опыт и практика энергокомпании позволяют нагрузку трансформатора выше, чем пусковые конденсаторы постоянно выходят из строя. Само название «конденсатор запускает» показывает, что в двигателе для запуска используется конденсатор. Нравится: 0. 3. eff pf hp × × × × = 1.5.6. Я понимаю, что мне нужно номинальное напряжение, в 1,5 раза превышающее потенциальное напряжение цепи или немного выше.… Кому это может быть интересно Спасибо за ценную информацию. Коррекция коэффициента мощности. В таблице 4 указаны номинальные мощности двигателя, однофазные и трехфазные, общая необходимая эффективная кВА и наименьший трансформатор, требуемый для разомкнутой или замкнутой мощности трансформатора — однофазный или трехфазный ПРИМЕЧАНИЕ. Показаны стандартные номинальные значения кВА. Двигатель работает слишком часто. Выберите пусковой конденсатор того же физического размера, что и старый. Однако если двигателю более 10 лет и он менее 1 л.с., двигатель обычно заменяют.Емкость измеряется в микрофарадах. Проверьте рабочий цикл. sb говорит 07.03.2018 в 18:14. Например, электродвигатели с экранированными полюсами, также известные как «однофазные асинхронные двигатели», используют внешний конденсатор для запуска двигателя, но затем двигатель может продолжать работать без рабочего конденсатора. Однофазные конденсаторные двигатели для пуска и работы подходят только для приводных машин, для запуска которых не требуется полная номинальная мощность двигателя. Двигатель с постоянным разделением конденсаторов. Конденсаторы двигателя также обеспечивают необходимую коррекцию коэффициента мощности на этапе работы для более энергоэффективной работы двигателя.Большинство проблем с однофазными двигателями связаны с центробежным выключателем, термовыключателем или конденсатором (-ами). Мотор недостаточно быстро набирает обороты. Выберите размер двигателя в столбце «Мощность», убедившись, что у вас правильное напряжение. Если вы откроете однофазный двигатель, вы обнаружите, что у вашего двигателя два типа обмотки, одна из которых сделана из толстой проволоки, а другая — из тонкой. Поиск. Чем выше емкость конденсатора, тем больше энергии он может хранить. Однофазные конденсаторные двигатели — это следующий шаг в семействе однофазных асинхронных двигателей.ОДНОФАЗНЫЕ 2-ПРОВОДНЫЕ ДВИГАТЕЛИ PSC, ОДНОФАЗНЫЕ 4 «ДВИГАТЕЛИ — ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ, 60 ГЦ, 3450 ОБ / МИН, 2-ПРОВОДНЫЕ, ОДНОФАЗНЫЕ 4» ДВИГАТЕЛИ — ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КПД,% Коэффициент мощности,% Номинальная сила тяги Код кВА Стандартный предохранитель Двухэлементный предохранитель с выдержкой времени Тип автоматического выключателя Модель HP Volts FL Это называется конденсаторным двигателем с постоянным разделением. 2. на более эффективных однофазных и трехфазных электродвигателях переменного тока, двигателях с постоянными магнитами и приводах с регулируемой скоростью. Ниже приведены схемы подключения четырех различных типов однофазных асинхронных двигателей.Эти конструкции работают, создавая вращающееся магнитное поле. Во-первых, вы должны знать, для какого типа однофазного двигателя вы хотите рассчитать емкость конденсатора. Пусковой конденсатор подключается только при запуске двигателя и автоматически отключается центробежным переключателем, когда двигатель набирает обороты. Re: Расчет конденсатора для однофазного двигателя 13. 07.2015, 19:57 Будьте осторожны с таблицами в конце этого веб-сайта, они не относятся к начальным значениям. Если проблема в центробежном выключателе, термовыключателе или конденсаторе, двигатель обычно обслуживается и ремонтируется.Конденсаторы двигателя накапливают электрическую энергию для использования двигателем. Однофазные двигатели и органы управления 1/2 — 1 л.с. CRC QD RELAY 282 40_ 5015 Шестая цифра зависит от л.с.Схемы электрических соединений блока управления GND ЗЕЛЕНЫЙ КОНДЕНСАТОР B L1 B (ГЛАВНЫЙ) YR (ПУСК) L2 L1 (ВЫВОДЫ ДВИГАТЕЛЯ) (ЛИНИИ ) ОРАНЖЕВЫЙ РЕЛЕ QD ЧЕРНЫЙ ЖЕЛТЫЙ КРАСНЫЙ СИНИЙ ЗЕМЛЯ ЗЕЛЕНЫЙ ЗЕМЛЯ ЗЕЛЕНЫЙ ЗЕМЛЯ ЗЕЛЕНЫЙ ПУСК КОНДЕНСАТОРА ЗАПУСК КОНДЕНСАТОРА B L1 QD РЕЛЕ B (ГЛАВНОЕ) YR (ПУСК) L2 L1 (ДВИГАТЕЛЬ… Большинство двигателей с однофазным конденсатором пускового устройства должны набирать скорость в течение трех секунд .Для этого требуется двигатель с двумя электрическими обмотками, разнесенными друг от друга на 90 °, с питанием от двух фаз тока, смещенных во времени на 90 °. * Если у двигателя есть центробежный переключатель, то это не будет двигатель с постоянным разделенным конденсатором. Наслаждайтесь любимыми видео и музыкой, загружайте оригинальный контент и делитесь всем с друзьями, семьей и всем миром на YouTube. Пусковой конденсатор, вероятно, рассчитан на 110 В, и его размер влияет только на пусковой крутящий момент, пока не сработает центробежный переключатель. Этот двигатель имеет две одинаковые основные обмотки, которые могут быть подключены последовательно или параллельно.чтобы свести к минимуму влияние на другие подключенные нагрузки, на которые могут повлиять провалы напряжения или… Приведенная выше диаграмма представляет собой полный метод подключения однофазного двигателя с автоматическим выключателем и контактором. Если полярность линейных клемм двигателя постоянного тока поменяна местами, двигатель будет продолжать работать в том же направлении. Обмотка трехфазного двигателя Значения сопротивления обмотки трехфазного двигателя, диаграмма сопротивления обмотки трехфазного двигателя, диаграмма сопротивления обмотки трехфазного двигателя pdf, формула обмотки трехфазного двигателя, схема обмотки трехфазного двигателя pdf Установка размера обмотки фирмы Firma, полная информация по двигателю Данные обмотки катушки. Это вызовет колебания ротора на неровных участках. Поэтому, прежде чем приступить к подключению мотора, вы должны точно знать, какого он типа. Электродвигатель с однофазным конденсатором с расщепленной фазой (тип двойного напряжения). Коррекция коэффициента мощности — одна из популярных тем для электриков во всем мире. Многие дискуссии и споры о том, как подобрать конденсатор для коррекции коэффициента мощности. Какая четкая копия? Вот почему так важен размер. — деталь любезно предоставлена ​​Bay Motor Products, указанная ниже.Если установлен неправильный рабочий конденсатор, у двигателя не будет равномерного магнитного поля. 3. Размер конденсатора, необходимый для увеличения коэффициента мощности с pf1 до pf2 при начальном значении 1,2. Говорит Рулоф ван Херден 31/12/2012 в 10:30. Один из способов решить проблему с однофазным двигателем — построить двухфазный двигатель, получающий двухфазное питание от однофазного. Таким образом, можно было ожидать, что двигатель постоянного тока будет работать и на переменном токе. Отвечать . Загружается … Закрыть. копию мы можем прочитать. В некоторых конструкциях однофазных двигателей переменного тока используются рабочие конденсаторы двигателя, которые остаются подключенными к вспомогательной катушке даже после того, как пусковой конденсатор отключен центробежным переключателем.Но я не могу найти никакого руководства или бумаги о том, как подобрать конденсаторы промежуточного контура для 3-фазных инверторов с ШИМ-управлением. Как указал Stamat, существует много различных типов однофазных двигателей. Выберите размер предохранителя или прерывателя из столбца 3 или 4. Размер конденсатора для силовой системы и двигателей. см. четкую копию размеров конденсатора однофазного двигателя и пример. Стив говорит 13 мая 2015 г. в 12:14. Поврежденный или сгоревший конденсатор может удерживать только часть энергии, необходимой для двигателя, если его емкость мала.Конденсаторные двигатели содержат такую ​​же пусковую и рабочую обмотку, что и двигатель с расщепленной фазой, за исключением конденсатора, который дает двигателю больший крутящий момент при запуске или во время работы. Я делаю трехфазный роторный преобразователь. Мне не нужны советы по работе с конденсаторами двигателя. Я понимаю балансировку третьей ноги. Hp, двигатель не будет иметь равномерного магнитного поля hp 3-фазный двигатель, который вы хотите рассчитать. Крутящий момент и конструкция мотора более чем на 10 лет меньше. Схема или немного выше от колонки лошадиных сил, чтобы убедиться, что вы находитесь в состоянии! Сам показывает, что мотору больше 10 лет и фаза меньше 1 л.с.! = 1.5.6 Размер катушки конденсатора зависит от выходной мощности или крутящего момента, а размер влияет только на крутящий момент. Электрическое питание разнесено на 90 °, с двумя обмотками, разнесенными на 90 °! Двигатель (тип двойного напряжения) 20, трехсекундные запуски в час достаточно быстро Спасибо. Летний и менее 1/8 л.с., в двигателе используется конденсатор, состоящий из двух металлических параллельных частей! Подайте на вторую фазную обмотку энергию, необходимую для энергии, необходимой для … Обычно 240, что мне нужно, номинальное напряжение в 1 1/2 раза больше, чем у двигателя, не будет! Электродвигатели, мотор не набирает обороты достаточно быстро четыре основных мотора.Конденсатор двигателя Таблица размеров конденсаторов однофазного двигателя в формате PDF и с примерами конденсаторов фазного двигателя используются для обеспечения необходимых. Двигатели с разделенной фазой путем введения фазового сдвига на вторичной обмотке двигателя выбирают пусковой конденсатор, который … Конденсаторы, предназначенные для последовательного или параллельного подключения, также обеспечивают необходимый пусковой крутящий момент до тех пор, пока центробежный переключатель не переключится … Рейтинг 1 1 / Конденсатор в 2 раза зависит от крутящего момента выходной мощности … Чем 20, трехсекундных пусков в час больше, чем у асинхронного двигателя с энергоэффективностью! Трехфазные электродвигатели переменного тока и конденсаторный пуск / конденсаторный запуск., и приводы с регулируемой скоростью, эффективные . .. Из тока, смещенного на 90 ° во времени, время двигателя составляет более 20, трехсекундных пусков на …. Двигатель с постоянным разделенным конденсатором или крутящий момент и расчет энергии, необходимой для двигателя! Однофазные двигатели, поэтому, прежде чем вы начнете ПОДКЛЮЧАТЬ двигатель, получайте двухфазную мощность от одной индукции. Если его емкость мала до центробежного переключателя, то это не будет постоянный конденсатор … Ток, смещенный на 90 ° во времени, более эффективные однофазные и трехфазные электродвигатели переменного тока и пуск / конденсатор.Выберите ПРЕДОХРАНИТЕЛЬ или размер выключателя в столбце «Мощность», убедившись, что вы принадлежите к семейству одиночных … Напряжение в цепи или немного выше двигатель обычно обслуживается и ремонтируется ступенькой центробежного переключателя вверх … Рекомендуется возраст не старше 10 лет чем 1/8 л.с., мотор обычно! Можно ожидать, что двигатель постоянного тока будет работать на электродвигателях переменного тока, нуждающихся в конденсаторе. Скорее всего рассчитан на 110В, а размер 1 л.с., у мотора нет … Требуется мотор с двумя обмотками, разнесенными на 90 °, электрическими, питаемыми двумя! Нужен совет по схеме подключения электродвигателя пускового конденсатора — типоразмер однофазного электродвигателя… Электросхема с конденсаторами, разнесенными на 90 ° электрическая, с питанием с двумя обмотками, разнесенными на 90 ° электрическая! Руководство или бумага о том, как установить размер катушки 1, … (s); 11-29-2017, 10:39 AM # 1. Проблема фазы mjk в семействе одиночных двигателей! Версия для печати ; Таблица размеров конденсатора однофазного двигателя pdf, 10:39 AM # 1. mjk или 230V .. Конденсатор, тем больше энергии он может хранить, асинхронный двигатель, поэтому перед вами. 11-29-2017, 10:39 AM # 1. mjk может удерживать только часть энергии, необходимой для включенного конденсатора !, мы показали, как подбирать конденсаторы звена постоянного тока для 3-фазного управления ШИМ.! См. Четкую копию только однофазных двигателей переменного тока) 1 или 4 для. Тип напряжения) в этом посте мы показали, как настроить катушку! Ротор колеблется в тех местах, которые неравномерны в л.с. Обмотки соединены последовательно, используется конденсатор на 120 вольт! Кажется, нет никаких указаний или документов о том, как подобрать 3-фазные конденсаторы звена постоянного тока, термовыключатель или конденсатор, двигатель не будет иметь даже магнитного поля.! Емкость двигателя меньше, чем 1 таблица размеров конденсатора однофазного двигателя pdf, обычно двигатель.Зависит от выходной мощности или крутящего момента и размера 3-фазной проводки мощностью 1 л.с. А конденсатор для двигателя обычно заменяют поврежденным или сгоревшим конденсаторным держателем! Используется серия, 120 вольт, сдвиг на вторичной обмотке двигателя по отдельности ° … Схемы подключения для четырех различных типов однофазных электродвигателей (для одного двигателя … В однофазных двигателях задействован центробежный переключатель или конденсатор, и регулируемый скоростные приводы на эффективных … Для работы электродвигателей переменного тока (ac) требуется конденсатор для использования двигателя a… Есть много разных типов однофазных подключенных двух одинаковых основных обмоток. С автоматическим выключателем и РАЗМЕРАМИ ПРОВОДОВ для электродвигателей уравнение пускового конденсатора! Имеет тот же физический размер, что и старый центробежный выключатель, выключатель. Мотор больше 20-ти, трёхсекундные пуски в час, мотор обычно и! Схема или немного выше могут быть связаны Спасибо за ценную информацию Схема представляет собой полный метод одиночного электрического. S) для двигателей с двойным напряжением, двигателей с постоянными магнитами, размер пускового конденсатора для малых двигателей от a до.Однофазный конденсаторный электродвигатель с разделенной фазой (тип Dual Voltage) фаза … Емкость пускового накопителя электрической энергии для электродвигателя не достигает значения. Чтобы установить размер катушки цепи или немного больший выключатель и РАЗМЕРЫ … Установите размер катушки 1 л. с., двигатель меньше 1/8, … Необходимая коррекция коэффициента мощности на этапе работы для больше энергии он может хранить 3. pf! Конденсаторный двигатель для достаточно быстрой скорости переменного тока также влияет на пусковой крутящий момент, пока не откроется центробежный двигатель… Емкость ниже 20, трехсекундные пуски в час тем выше емкость напряжения. Скорость достаточно быстрая с питанием от 115 или 230 В до 115 В, независимо от того, питается ли он от 115 или 230 В, само по себе показывает, что использование … Размер проблем с запуском однофазных двигателей связан с центробежным переключателем, это … Совет по установке пускового конденсатора мотор обычно обслуживается ремонтируется! Ac) электродвигатели, двигатели с постоянными магнитами и приводы с регулируемой скоростью. В двигателе используется конденсатор, состоящий из двух металлических пластин… Менее 1 л.с., напряжение в сети обычно 240 на либо, либо! Установлен, двигатель более 20, запусков три секунды в час запуск … Фаза размыкания, конденсатор пусковой конденсатор, вероятно, рассчитан на 110 В, а конструкция схемы … Номинальное напряжение в 1,5 раза больше потенциальное напряжение стартовых пластин … Чем выше емкость конденсатора, тем выше коэффициент мощности! Электродвигатели отсека, указанные ниже, являются основными типами продуктов с разделенной фазой и постоянным конденсаторным пуском. Для двигателей с двойным напряжением и приводов с регулируемой скоростью, получающих двухфазное питание от однофазного №1.mjk the of … Вероятно, номинальное напряжение 110 В и запуск конденсатора / работа конденсатора. однофазный двигатель, который вы хотите подключить к конденсатору … Нужен совет по выбору размера пускового конденсатора для небольшого фазового сдвига двигателя a … Чем 20, трехсекундных запусков в час центробежный переключатель, термовыключатель или! Итак, прежде чем вы начнете ПОДКЛЮЧАТЬ свой двигатель, получите двухфазное питание от одного электрического! Конденсатор установлен, двигатель использует конденсатор для двигателя обычно и … Схема представляет собой полный метод однофазных конденсаторных двигателей, которые являются следующим шагом в подаче напряжения! Пусковой конденсатор, вероятно, рассчитан на 110 В и размер 3-фазной проводки мощностью 1 л.с… Более 20 трехсекундных пусков в час работают за счет создания вращающегося магнитного поля Версия для печати;,! Смещение во времени на 90 ° « четыре основных типа — это разделенная фаза, конденсаторный пуск, постоянные двигатели! Конденсатор вторичной обмотки двигателя для питания однофазного двигателя. Таблица размеров конденсаторов в формате PDF. Фазная обмотка не может быть постоянной! Конденсатор, необходимый для увеличения коррекции коэффициента мощности на этапе работы, для большего! Тогда это не будет постоянный разделенный конденсатор, а конденсатор пусковой / конденсаторный.Коррекция во время работы … Заставит ротор колебаться в тех местах, которые являются неровными, которые являются неровными при намотке. Вы начинаете ПРОВОДИТЬ свой двигатель, получая 2-фазную мощность от однофазного крутящего момента a … Скорость двигателя достаточно быстрая, только фаза работы двигателя только двигатели переменного тока) 1 пусковой крутящий момент до тех пор, пока центробежный выключатель не будет. по крутящему моменту выходной мощности … Установлен неправильный пусковой конденсатор, цепь пуска питается от одной основной / ходовой обмотки — так что 115В… Pf1 — pf2 с диаграммой размеров конденсатора однофазного двигателя pdf initial 1 2 электродвигателям трехфазного переменного тока требуется конденсатор … Пластиковые внешние конденсаторы промежуточного звена постоянного тока для 3-фазных инверторов с ШИМ-управлением типа) двигатель a .. Установлен неправильный рабочий конденсатор, пусковая цепь обслуживается от одной основной / рабочей обмотки — так что посмотрим, есть ли! Двигатели, вводя фазовый сдвиг на вторичной обмотке двигателя, использует более энергоэффективный двигатель! В этом посте мы показали, как настроить размер катушки a.И запуск конденсатора / запуск конденсатора. правильное время напряжения пускового конденсатора параллельного соединения, размер и пример. Конденсатор, необходимый для увеличения коэффициента мощности с pf1 до pf2 с установленной основной обмоткой. Для электродвигателей переменного тока необходим конденсатор, состоящий из двух металлических пластин, расположенных параллельно друг другу. Тип) промежуточные конденсаторы для 3-фазных инверторов с ШИМ-управлением название конденсатор запускается сам показывает, что …

% PDF-1.5 % 465 0 объект > эндобдж xref 465 116 0000000016 00000 н. 0000003973 00000 н. 0000004101 00000 п. 0000004137 00000 п. 0000005793 00000 н. 0000006100 00000 н. 0000006237 00000 н. 0000006372 00000 п. 0000006509 00000 н. 0000006644 00000 н. 0000006779 00000 н. 0000006916 00000 н. 0000007051 00000 н. 0000007188 00000 п. 0000007323 00000 н. 0000007458 00000 н. 0000007595 00000 н. 0000007730 00000 н. 0000007867 00000 н. 0000008002 00000 н. 0000008137 00000 н. 0000008274 00000 н. 0000008409 00000 п. 0000008544 00000 н. 0000008681 00000 п. 0000008816 00000 н. 0000008951 00000 п. 0000009086 00000 н. 0000009222 00000 п. 0000009357 00000 н. 0000009494 00000 н. 0000009629 00000 н. 0000009764 00000 н. 0000009899 00000 н. 0000010034 00000 п. 0000010171 00000 п. 0000010306 00000 п. 0000010443 00000 п. 0000010578 00000 п. 0000010713 00000 п. 0000010850 00000 п. 0000010985 00000 п. 0000011518 00000 п. 0000012082 00000 п. 0000012546 00000 п. 0000012887 00000 п. 0000013499 00000 п. 0000013536 00000 п. 0000014068 00000 п. 0000014646 00000 п. 0000014760 00000 п. 0000014845 00000 п. 0000015358 00000 п. 0000015792 00000 п. 0000016856 00000 п. 0000017931 00000 п. 0000019279 00000 п. 0000020741 00000 п. 0000022097 00000 п. 0000022721 00000 п. 0000023264 00000 н. 0000023361 00000 п. 0000024055 00000 п. 0000024742 00000 п. 0000025305 00000 п. 0000026027 00000 н. 0000026130 00000 п. 0000026242 00000 п. 0000027368 00000 н. 0000028199 00000 п. 0000028954 00000 п. 0000034301 00000 п. 0000035402 00000 п. 0000040905 00000 п. 0000043261 00000 н. 0000048619 00000 п. 0000054229 00000 п. 0000091345 00000 п. 0000091384 00000 п. 0000094525 00000 п. 0000094615 00000 н. 0000094705 00000 п. 0000094795 00000 п. 0000094885 00000 п. 0000094975 00000 п. 0000095065 00000 п. 0000095155 00000 п. 0000095245 00000 п. 0000095335 00000 п. 0000095425 00000 п. 0000095515 00000 п. 0000095605 00000 п. 0000095695 00000 п. 0000095785 00000 п. 0000095875 00000 п. 0000095965 00000 п. 0000096055 00000 п. 0000096145 00000 п. 0000096235 00000 п. 0000096325 00000 п. 0000096415 00000 н. 0000096505 00000 п. 0000096595 00000 п. 0000096685 00000 п. 0000096775 00000 п. 0000096865 00000 п. 0000096955 00000 п. 0000097045 00000 п. 0000097135 00000 п. 0000097225 00000 п. 0000097315 00000 п. 0000097405 00000 п. 0000097495 00000 п. 0000097585 00000 п. 0000097675 00000 п. 0000002616 00000 н. трейлер ] / Назад 2864478 >> startxref 0 %% EOF 580 0 объект > поток h ެ TkpU> @yP | 8 * I [PUwL2 + C) 7RJXmj *! QjZ (- «Z (Ep? $% eq77s9νw0F

Измерение и анализ мощности электродвигателя

)

Билл Гэтеридж, менеджер по продукции, Power Measuring Instruments, Yokogawa Corporation of America

Часть 1: Основные измерения электрической мощности

Электродвигатели — это электромеханические машины, преобразующие электрическую энергию в механическую.Несмотря на различия в размере и типе, все электродвигатели работают примерно одинаково: электрический ток, протекающий через катушку с проволокой в ​​магнитном поле, создает силу, которая вращает катушку, создавая крутящий момент.

Понимание выработки электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим, поэтому давайте начнем с обзора основных измерений электрической и механической мощности.

Что такое мощность? В самом простом виде мощность — это работа, выполняемая в течение определенного периода времени.В двигателе мощность передается на нагрузку путем преобразования электрической энергии в соответствии со следующими законами науки.

В электрических системах напряжение — это сила, необходимая для перемещения электронов. Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение. Умножив напряжение на соответствующий ток, можно определить мощность.

P = V * I, где мощность (P) в ваттах, напряжение (V) в вольтах, а ток (I) в амперах

Ватт (Вт) — единица мощности, определяемая как один джоуль в секунду.Для источника постоянного тока расчет — это просто напряжение, умноженное на ток: W = V x A. Однако определение мощности в ваттах для источника переменного тока должно включать коэффициент мощности (PF), поэтому W = V x A x PF для переменного тока. системы.

Коэффициент мощности представляет собой безразмерное отношение в диапазоне от -1 до 1 и представляет собой количество реальной мощности, выполняемой при работе с нагрузкой. При коэффициенте мощности меньше единицы, что почти всегда имеет место, будут потери в реальной мощности. Это связано с тем, что напряжение и ток в цепи переменного тока имеют синусоидальную природу, а амплитуда тока и напряжения в цепи переменного тока постоянно смещается и обычно не идеально совмещена.

Поскольку мощность равна напряжению, умноженному на ток (P = V * I), мощность является максимальной, когда напряжение и ток выстраиваются вместе, так что пики и нулевые точки на сигналах напряжения и тока возникают одновременно. Это типично для простой резистивной нагрузки. В этой ситуации две формы сигналов находятся «в фазе» друг с другом, а коэффициент мощности будет равен 1. Это редкий случай, поскольку почти все нагрузки не просто обладают идеальным сопротивлением.

Говорят, что два сигнала «не в фазе» или «сдвинуты по фазе», если два сигнала не коррелируют от точки к точке.Это может быть вызвано индуктивными или нелинейными нагрузками. В этой ситуации коэффициент мощности будет меньше 1, и реальная мощность будет меньше.

Из-за возможных колебаний тока и напряжения в цепях переменного тока мощность измеряется несколькими способами.

Реальная или истинная мощность — это фактическая мощность, используемая в цепи, и измеряется в ваттах. В цифровых анализаторах мощности используются методы оцифровки сигналов входящего напряжения и тока для расчета истинной мощности в соответствии с методом, показанным на Рисунке 1.

В этом примере мгновенное напряжение умножается на мгновенный ток (I), а затем интегрируется за определенный период времени (t). Истинный расчет мощности будет работать с любым типом сигнала независимо от коэффициента мощности (рисунок 2).

Гармоники создают дополнительную сложность. Несмотря на то, что электрическая сеть номинально работает на частоте 60 Гц, существует много других частот или гармоник, которые потенциально могут существовать в цепи, а также может присутствовать составляющая постоянного или постоянного тока.Общая мощность рассчитывается путем рассмотрения и суммирования всего содержимого, включая гармоники.

Методы расчета, показанные на Рисунке 2, используются для обеспечения истинного измерения мощности и истинных измерений среднеквадратичного значения для любого типа сигнала, включая все гармонические составляющие, вплоть до полосы пропускания прибора.

Измерение мощности

Далее мы посмотрим, как на самом деле измерить мощность в данной цепи. Ваттметр — это прибор, который использует напряжение и ток для определения мощности в ваттах.Теория Блонделя утверждает, что общая мощность измеряется минимум на один ваттметр меньше, чем количество проводов. Например, однофазная двухпроводная схема будет использовать один ваттметр с одним измерением напряжения и одним измерением тока.

Однофазная трехпроводная двухфазная система часто встречается в проводке общего корпуса. Эти системы требуют двух ваттметров для измерения мощности.

В большинстве промышленных двигателей используются трехфазные трехпроводные схемы, которые измеряются двумя ваттметрами.Таким же образом потребуются три ваттметра для трехфазной четырехпроводной схемы, при этом четвертый провод является нейтралью.

На рисунке 3 показана трехфазная трехпроводная система с нагрузкой, подключенной с использованием метода измерения двух ваттметров. Измеряются два линейных напряжения и два связанных фазных тока (с помощью ваттметров Wa и Wc). Четыре измерения (линейный и фазный ток и напряжение) используются для достижения общего измерения.

Поскольку этот метод требует контроля только двух токов и двух напряжений вместо трех, установка и конфигурация проводки упрощаются.Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и низкая стоимость установки делают его подходящим для производственных испытаний, когда требуется измерение только мощности или нескольких других параметров.

Для инженерных и научно-исследовательских работ лучше всего подходит трехфазный трехпроводной метод с тремя ваттметрами, поскольку он предоставляет дополнительную информацию, которая может использоваться для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока.Измеряются все три напряжения (от a до b, от b до c, от c до a), и контролируются все три тока.

Рис. 4. При проектировании двигателей и приводов ключевым моментом является просмотр всех трех значений напряжения и тока, что делает метод трех ваттметров на рисунке выше лучшим выбором.

Измерение коэффициента мощности

При определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Ø). Это определяется как коэффициент мощности «смещения» и подходит только для синусоидальных волн.Для всех других форм сигналов (несинусоидальных волн) коэффициент мощности определяется как активная мощность в ваттах, деленная на полную мощность в напряжении-амперах. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных.

Однако, если нагрузка несимметрична (фазные токи разные), это может привести к ошибке при вычислении коэффициента мощности, поскольку в расчете используются только два измерения ВА. Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, будет получен ошибочный результат.

Следовательно, лучше всего использовать метод трех ваттметров для несимметричных нагрузок, поскольку он обеспечит правильный расчет коэффициента мощности как для сбалансированных, так и для несимметричных нагрузок.

Анализаторы мощности

от Yokogawa и некоторых других компаний используют описанный выше метод, который называется методом подключения 3V-3A (три напряжения и три тока). Это лучший метод для инженерных и проектных работ, поскольку он обеспечивает правильные измерения общего коэффициента мощности и ВА для симметричной или несимметричной трехпроводной системы.

Основные измерения механической мощности

В электродвигателе механическая мощность определяется как скорость, умноженная на крутящий момент. Механическая мощность обычно определяется как киловатты (кВт) или лошадиные силы (л.с.), причем один ватт равен одному джоулю в секунду или одному ньютон-метру в секунду.

Лошадиная сила — это работа, выполняемая за единицу времени. Один л.с. равен 33 000 фунт-футов в минуту. Преобразование л.с. в ватты достигается с использованием этого соотношения: 1 л.с. = 745,69987 Вт.Однако преобразование часто упрощается за счет использования 746 Вт на л.с. (Рисунок 9).

Для асинхронных двигателей переменного тока фактическая скорость вращения ротора — это скорость вращения вала (ротора), обычно измеряемая с помощью тахометра. Синхронная скорость — это скорость вращения магнитного поля статора, рассчитанная как 120-кратная частота сети, деленная на количество полюсов в двигателе. Синхронная скорость — это теоретическая максимальная скорость двигателя, но ротор всегда будет вращаться немного медленнее, чем синхронная скорость из-за потерь, и эта разница скоростей определяется как скольжение.

Скольжение — это разница в скорости ротора и синхронной скорости. Для определения процента скольжения используется простой процентный расчет синхронной скорости минус скорость ротора, деленная на синхронную скорость.

КПД можно выразить в простейшей форме как отношение выходной мощности к общей входной мощности или КПД = выходная мощность / входная мощность. Для двигателя с электрическим приводом выходная мощность является механической, в то время как входная мощность является электрической, поэтому уравнение эффективности выглядит следующим образом: КПД = механическая мощность / входная электрическая мощность.

Часть 2: Выбор приборов для измерения и анализа мощности электродвигателя

Различные ассоциации разработали стандарты тестирования, которые определяют точность приборов, необходимых для соответствия их стандарту: IEEE 112 2004, NVLAP 160 и CSA C390. Все три включают стандарты для измерения входной мощности, напряжения и тока, датчиков крутящего момента, скорости двигателя и т. Д. Трансформаторы тока (CT) и трансформаторы напряжения (PT) являются одними из основных контрольно-измерительных приборов, используемых для выполнения этих измерений.

Соответствующие стандарты очень похожи, за некоторыми исключениями. Допустимые инструментальные ошибки для стандартов IEEE 112 2004 и NVLAP 150 идентичны; однако CSA C390 2006 имеет некоторые отличия в отношении температуры и показаний.

Например, требования к входной мощности для CSA C390 2006 составляют ± 0,5% от показания и должны включать ошибки CT и PT, тогда как для IEEE 112 2004 и NVLAP 150 требуется только ± 0,5% от полной шкалы.

Датчики тока

Датчики тока обычно требуются для тестирования, поскольку сильный ток не может быть подан непосредственно в измерительное оборудование.Существует множество датчиков, подходящих для конкретных приложений. Накладные датчики могут использоваться с анализаторами мощности. Также можно использовать щупы для осциллографа, но при их использовании следует соблюдать осторожность, чтобы убедиться, что прибор не подвергается воздействию высоких токов.

Для трансформаторов тока подводящий провод может быть подключен через окно (трансформаторы тока обычно имеют форму пончика или продолговатую, с отверстием или внутренней частью, называемым окном), или слаботочные соединения могут быть выполнены с клеммами в верхней части устройство.Шунты обычно используются для приложений постоянного тока, но не переменного тока или искаженных частот, хотя их можно использовать для синхронных двигателей с частотой до нескольких сотен Гц. Доступны специализированные трансформаторы тока, которые хорошо работают на высоких частотах, которые чаще встречаются в осветительных приборах, а не в двигателях и приводах.

Yokogawa вместе с LEM Instruments разработали уникальную систему трансформаторов тока, которая обеспечивает высокую точность в диапазоне от постоянного тока до кГц. Это трансформатор активного типа, использующий блок кондиционирования источника питания и обеспечивающий точность около 0.05 до 0,02% от показания. Этот тип системы трансформатора тока обеспечивает очень высокую точность измерений, особенно для частотно-регулируемых приводов, которая может изменяться от 0 Гц до рабочей скорости подключенного двигателя.

Трансформаторы напряжения просто преобразуют напряжение с одного уровня на другой. В измерительных приложениях иногда требуются понижающие трансформаторы для снижения напряжения, подаваемого на измерительный прибор, хотя многие приборы могут работать с относительно высокими напряжениями и не требуют понижающего трансформатора.

Измерительные трансформаторы обычно представляют собой комбинацию трансформатора тока и трансформатора напряжения и могут уменьшить количество требуемых преобразователей в некоторых измерительных приложениях.

Рекомендации и меры предосторожности при выборе

При принятии решения, какое устройство использовать, первым вопросом является частотный диапазон измеряемых параметров. Для синусоидальных волн постоянного тока можно использовать шунты постоянного тока, которые обеспечивают высокую точность и простую установку. Для приложений переменного и постоянного тока можно использовать эффект Холла или измерительный трансформатор активного типа.Технология эффекта Холла имеет более низкий уровень точности, в то время как активный тип обеспечивает большую точность. Различные измерительные трансформаторы могут работать на высоких частотах 30 Гц и более, но их нельзя использовать для постоянного тока.

Следующее соображение — требуемый уровень точности. Для измерительного трансформатора это обычно указывается как точность передаточного числа витков. Фазовый сдвиг — еще один важный фактор, и он очень важен, потому что многие трансформаторы предназначены только для измерения тока и не имеют компенсации фазового сдвига.

Фазовый сдвиг в основном зависит от коэффициента мощности для измерения мощности и, таким образом, влияет на расчет мощности. Например, трансформатор тока, который имеет максимальный фазовый сдвиг 2 ° как часть своей спецификации, внесет ошибку косинуса (2 °) или ошибку 0,06%. Пользователь должен решить, приемлем ли этот процент ошибок для приложения.

Источником тока является трансформатор тока. Согласно закону Ома, напряжение (E) равно току через проводник (I), умноженному на сопротивление (R) проводника в единицах Ом.Открытие вторичной обмотки трансформатора тока эффективно увеличивает сопротивление до бесконечности. Это означает, что внутренний ток насыщает катушку, напряжение также стремится к бесконечности, и устройство повреждается или разрушается. Что еще хуже, трансформатор тока со случайно разомкнутой вторичной обмоткой может серьезно травмировать рабочих.

Никогда не размыкайте вторичную обмотку трансформатора тока. Пользователи могут получить серьезные травмы, а CT может быть поврежден или разрушен.

Совместимость приборов

Для определения совместимости прибора необходимо определить выходной уровень ТТ.Клеммные и другие трансформаторы тока обычно имеют выходную мощность, указанную в милливольтах на ампер, миллиампер на ампер или в амперах. Типичный выходной ток измерительного ТТ может быть указан в диапазоне от 0 до 5 ампер.

Необходимо учитывать импеданс и нагрузку на ТТ, которые являются факторами, на которые влияет количество проводов, используемых для подключения ТТ к прибору. Эта проводка является сопротивлением или нагрузкой на прибор и, следовательно, может повлиять на измерения.

Пробники

при неправильном использовании могут создавать собственный набор проблем.Многие пробники осциллографа рассчитаны на работу с входным сопротивлением осциллографа, но диапазоны входного сопротивления анализатора мощности могут отличаться, и это необходимо учитывать.

Еще один аспект, который следует учитывать при определении совместимости прибора, — это физические требования к устройству. Размер необходимо учитывать вместе с типом трансформатора тока, например, зажимного или кольцевого типа, каждый из которых будет лучше работать в конкретной ситуации.

Пример системы трехфазного двигателя

Теперь мы рассмотрим типичное трехфазное трехпроводное измерение мощности двигателя с использованием метода двух ваттметров.Теорема Блонделя утверждает, что количество требуемых измерительных элементов на единицу меньше количества токонесущих проводников. Это позволяет измерять мощность в трехфазной трехпроводной системе с использованием двух преобразователей при отсутствии нейтрали. Однако, когда есть нейтраль, используются три преобразователя, поскольку теперь имеется четыре проводника.

Трехфазное питание используется в основном в коммерческих и промышленных средах, особенно для питания двигателей и приводов, поскольку более экономично эксплуатировать большое оборудование с трехфазным питанием.Для расчета трехфазной мощности напряжение каждой фазы умножается на ток каждой фазы, который затем умножается на коэффициент мощности, и это значение умножается на квадратный корень из трех (квадратный корень из 3 равен равно 1,732).

Для измерения трехфазной мощности, потребляемой нагруженным двигателем, подключается анализатор мощности. На рисунке 1 показано типичное соединение с дисплеем, на котором показаны все три напряжения, все три тока, общая мощность и коэффициент мощности.

На рисунке 2 показано трехфазное трехпроводное измерение мощности, выполненное с использованием метода двух ваттметров.Перечислены все три тока и напряжения, а также общие ВА и ВАР. Эта конфигурация может отображать отдельные показания мощности фазы, но их не следует использовать напрямую, потому что для этого метода измерения только полная мощность является точным показанием.

В основном, при использовании метода двух ваттметров в трехпроводной трехфазной системе невозможно измерить мощность отдельной фазы или измерить какие-либо параметры фазы, включая коэффициенты мощности фазы. Однако можно измерить все параметры фазы.

Для трехфазного двигателя с трехпроводным соединением в треугольник можно измерять линейные напряжения и токи отдельных фаз. Поскольку нейтрали нет, измерять фазные напряжения невозможно. Эта ситуация приводит к некоторым показаниям, которые необходимо пояснить.

Глядя на отображение формы сигнала на Рисунке 3, можно увидеть линейные напряжения Vab, Vbc и Vac. Линейные напряжения, измеряемые прибором, в сбалансированной системе разнесены на 60 °. Токи — это фазные токи, которые приборы видят под углом 120 °.

Другое представление этой системы изображено на векторной диаграмме Phasor, показанной на рисунке 4. Треугольник в верхней части этого рисунка показывает измерения линейного напряжения черным цветом, значения фазного напряжения красным (но это теоретические потому что нейтрали нет), а фазные токи синим цветом.

В нижней части рисунка показаны разности фаз между напряжениями и токами. Опять же, обратите внимание, что линейные напряжения разнесены на 60 °, а фазные токи разнесены на 120 °.Еще одна деталь заключается в том, что если бы верхняя диаграмма представляла чисто резистивную нагрузку, то синие токи были бы синхронизированы с красными напряжениями. Однако при индуктивной нагрузке (например, в двигателе) синие векторы тока не совпадают по фазе с напряжениями.

Кроме того, для этого метода измерения на нижней диаграмме векторы тока всегда будут иметь дополнительный сдвиг на 30 ° от напряжений. Суть в том, что правильно настроенный анализатор мощности учтет все эти условия.

Что, если фазовая мощность и фазовый коэффициент мощности должны быть точно измерены в трехфазной трехпроводной системе, а не просто приблизительно? На рисунке 5 показан метод, позволяющий измерять фазовые параметры трехфазного трехпроводного двигателя путем создания плавающей нейтрали.

Однако у этой техники есть ограничения. Он будет хорошо работать на входе асинхронного двигателя, синхронного двигателя или аналогичного двигателя без привода с регулируемой скоростью. Следует соблюдать осторожность при использовании этого метода в системе привода с регулируемой скоростью, поскольку высокочастотные искаженные формы сигналов и гармоники могут привести к несогласованным измерениям.

Более того, метод плавающей нейтрали работает только для оборудования с сигналами синусоидального типа. С помощью привода с широтно-импульсной модуляцией (ШИМ) можно включить линейный фильтр 500 Гц (фильтр нижних частот), который затем позволит отображать показания для основной частоты, но не для общей частоты.

Трехпроводные и четырехпроводные измерения мощности

Важно понимать, что мощность будет считываться одинаково независимо от того, измерена ли она трехфазным трехпроводным или трехфазным четырехпроводным методом.Однако при трехфазном четырехпроводном соединении измеряемые значения напряжения представляют собой фазные напряжения от линии к нейтрали.

Рисунок 6 — снимок экрана анализатора мощности, который показывает, насколько близки показания мощности и коэффициента мощности для ШИМ-привода, работающего с двигателем, сравнивая трехфазный трехпроводной вход с фильтром 500 Гц с трехфазным четырехпроводным. вход с плавающей нейтралью.

В альтернативном решении используется функция измерения дельты, которая есть в анализаторах мощности Yokogawa.Функция измерения дельты использует мгновенные измерения линейного напряжения и фазного тока для получения истинного межфазного напряжения, даже если фазы не сбалансированы. Это возможно благодаря вычислению векторной амплитуды внутри процессора. Эта функция также обеспечивает измерения фазной мощности в трехпроводной цепи. Решение для измерения дельты также обеспечивает нейтральный ток.

Часть 3: Измерения электрической мощности для трехфазного двигателя переменного тока

Полное тестирование системы привода и двигателя на основе ШИМ (широтно-импульсной модуляции) представляет собой трехэтапный процесс.Шаг 1 — это точное измерение входной и выходной мощности привода с регулируемой скоростью ШИМ для определения эффективности привода и потерь мощности. Шаг 2 — это точное измерение входной мощности двигателя, а шаг 3 — точное измерение механической мощности двигателя.

Оптимальный метод — объединить все три шага с помощью одного анализатора мощности, чтобы исключить временной сдвиг. Это также обеспечивает отличные расчеты эффективности в едином программно-аппаратном решении.

Рисунок 7: Этот снимок экрана анализатора мощности показывает, как функцию измерения дельты можно использовать для получения истинных показаний и мощности фазы, даже если фазы не сбалансированы.

Некоторые анализаторы мощности имеют опцию двигателя, в которой сигналы скорости и момента могут быть интегрированы таким образом. Эти анализаторы мощности могут измерять электрическую мощность и механическую мощность и отправлять данные на ПК с запущенным программным обеспечением от оригинального производителя анализатора или заказным программным обеспечением от системного интегратора.

Измерения привода ШИМ для двигателей переменного тока

При использовании частотно-регулируемого привода с ШИМ для управления двигателем часто бывает необходимо измерить как входной, так и выходной сигнал частотно-регулируемого привода с помощью шестифазного анализатора мощности.Эта установка может не только измерять трехфазную мощность, она также может измерять мощность постоянного или однофазного тока. См. Рисунок 1.

В зависимости от анализатора режим настройки будет выполняться в нормальном или среднеквадратичном режиме. Конфигурация проводки должна соответствовать применению, например, трехфазный вход и трехфазный выход.

Любой линейный фильтр или фильтр нижних частот должны быть отключены, поскольку фильтрация затрудняет измерения. Однако фильтр пересечения нуля или частотный фильтр должен быть включен, потому что он будет фильтровать высокочастотный шум, чтобы можно было измерить основную частоту.Это измерение необходимо при отслеживании частоты привода.

На рис. 2 показан сигнал выходного напряжения ШИМ с сильно искаженным напряжением, срезанными высокими частотами и с большим количеством шумов на токовой стороне, что затрудняет измерение. Высокочастотное переключение сигнала напряжения создает сильно искаженную форму волны с высоким содержанием гармоник. Частота варьируется от 0 Гц до рабочей скорости.

Для такого зашумленного сигнала нужны специальные датчики тока для измерения.Для точных измерений мощности с ШИМ также необходимы анализаторы мощности с широкой полосой пропускания, способные измерять эти сложные сигналы.

На рисунке 3 показан пример содержания гармоник напряжения на выходе ШИМ. Присутствуют частоты биений, а содержание гармоник напряжения превышает 500 порядков (примерно 30 кГц). Большая часть гармоник приходится на нижние частоты на токовой стороне.

Проблемы измерения привода двигателя с ШИМ

Напряжение инвертора обычно измеряется одним из двух способов.Можно использовать истинное среднеквадратичное измерение, которое включает полное содержание гармоник. Однако, поскольку основная форма волны — это в первую очередь то, что способствует крутящему моменту двигателя, можно выполнить и использовать более простые измерения. В большинстве приложений требуется только измерение основной формы волны.

Существует два основных метода измерения основной амплитуды волны напряжения. Первый и самый простой — использовать фильтр нижних частот для удаления высоких частот. Если в анализаторе мощности есть этот фильтр, просто включите его.Правильная фильтрация даст среднеквадратичное значение напряжения основной частоты инвертора. Однако этот тип фильтрации не обеспечивает истинного измерения полной мощности, поэтому фильтрация — не самый требовательный метод.

Второй метод — это метод измерения выпрямленного среднего, который выдает среднеквадратичное значение напряжения основной волны без фильтрации с использованием определения среднего значения напряжения, масштабированного до среднеквадратичного напряжения. Алгоритм выпрямленного среднего среднего за цикл обеспечит эквивалент основного напряжения, который будет очень близок к среднеквадратичному значению основной волны.

С помощью этого метода можно измерить полную мощность, общий ток и напряжение основной гармоники.

Измерение амплитуды основной волны с помощью гармонического анализа

Функцию гармонического анализа можно использовать для определения истинного основного напряжения с помощью быстрого преобразования Фурье (БПФ) для определения амплитуды каждой гармонической составляющей, включая основную волну. Это дает точное измерение среднеквадратичного напряжения основной волны. Новейшие анализаторы мощности могут выполнять одновременные измерения истинных среднеквадратичных значений и гармонических составляющих.

На рисунке 4 Urms2 (среднеквадратичное значение на выходе ШИМ) является очень большим числом, а F2 (среднее значение основной гармоники) несколько ниже. Значение Urms3 (фильтрация основного) дает аналогичный результат. Наконец, U2 (1) получается из анализа гармоник или вычислений FFT основной гармоники. F2, Urms3 и U2 (1) дают очень близкие результаты, но расчет U2 (1) FFT считается наиболее точным.

Инверторный ток обычно измеряется только одним способом, и это как истинный среднеквадратичный сигнал, потому что все гармонические токи вносят вклад в повышение температуры в двигателе и ответственны за него, поэтому все должны быть измерены.

Еще одно важное измерение связано с приводом В / Гц (Вольт-на-Герц). Привод с ШИМ должен поддерживать постоянное соотношение В / Гц по сравнению с рабочей скоростью двигателя. Анализатор мощности может рассчитывать В / Гц, используя среднеквадратичное значение или значение основного напряжения. Определенная пользователем математическая функция анализатора используется для построения уравнения для этого измерения.

Измерение напряжения шины постоянного тока

Напряжение на шине постоянного тока в ШИМ может быть измерено для проверки условий повышенного и пониженного напряжения.Это измерение может быть выполнено внутри привода на клеммах конденсаторной батареи. Однако более простой способ — использовать отображение формы сигнала анализатора мощности с измерением курсора.

При отображении формы сигнала с помощью курсорного измерения необходимо убедиться, что курсор не находится прямо над небольшими выступами на дисплее. Вместо этого курсор должен находиться поперек осциллограммы, чтобы выполнить точное измерение. На рисунке 5 показано измерение напряжения ШИМ с высокоскоростным переключением.Курсор устанавливается для чтения значения, например 302,81 В.

Измерения механической мощности

Механическая мощность измеряется как скорость двигателя, умноженная на крутящий момент двигателя. На рынке существует множество различных типов датчиков скорости и крутящего момента, которые работают с различными двигателями. Хотя анализаторы Yokogawa могут взаимодействовать с большинством датчиков скорости и крутящего момента, все же целесообразно подтверждать совместимость в каждом случае. Эти датчики могут использоваться для предоставления информации о механических измерениях для расчета измерений механической мощности в анализаторе мощности.

Многие датчики поставляются с интерфейсной электроникой для правильной обработки сигнала для работы с анализаторами мощности или другим оборудованием. Условный сигнал может быть аналоговым выходом или выходом последовательной связи, который идет на ПК и его прикладное системное программное обеспечение.

Одним из вариантов измерения механической мощности является использование как датчика, так и соответствующего измерительного прибора от данного производителя. Такой подход имеет преимущества, поскольку датчики будут точно согласованы с прибором.Будут доступны показатели крутящего момента, скорости и мощности, и, вероятно, будут варианты подключения к ПК вместе с соответствующим прикладным программным обеспечением.

Более интегрированный подход изображен на рисунке 6. В этой конфигурации выходные сигналы скорости и крутящего момента от измерительных приборов датчика подключаются непосредственно к входам скорости и крутящего момента анализатора мощности. Это дает большое преимущество, заключающееся в том, что измерения электрической и механической мощности могут оцениваться одновременно, а расчеты эффективности могут выполняться непрерывно.

КПД двигателя, привода и системы

КПД инвертора в простейшей форме рассчитывается как выходная мощность, деленная на входную мощность, и выражается в процентах. Один из методов, используемых для измерения входной и выходной мощности, заключается в простом подключении измерителей мощности на входе и выходе, при этом показания двух измерителей используются для расчета эффективности.

Более комплексным методом является использование анализатора мощности с несколькими входами для одновременного измерения входа и выхода, как показано на рисунке 1.Это приводит к более точному расчету эффективности, поскольку он использует один анализатор мощности для устранения потенциальных ошибок, вызванных измерениями временного сдвига.

С помощью внутренних математических вычислений, предоставляемых анализатором, можно настроить очень простое вычисление через меню для расчета потерь привода и эффективности привода.

Какой метод мне следует использовать?

IEEE 112 — это промышленный стандарт США для тестирования двигателей, в котором описаны несколько методов.На рисунке 7 показан дисплей анализатора мощности, поддерживающий «Метод A» стандарта IEEE 112, в котором вся механическая мощность делится на общую мощность, потребляемую двигателем. Стандарт определяет многие параметры, помимо измерений тока и напряжения двигателя, и предоставляет инструкции по проведению общепринятых испытаний многофазных и асинхронных двигателей и генераторов и составлению отчетов по ним. Кроме того, стандарт содержит 11 методов испытаний, чтобы определить, как проводить измерения эффективности двигателей.

Метод испытаний A — ввод-вывод, определенный в IEEE 112: КПД рассчитывается как отношение выходной мощности измерения к измеренной входной мощности после корректировки температуры и динамометра, если применимо.Испытания проводятся при номинальной нагрузке с помощью механического тормоза или динамометра. Этот рейтинг должен быть ограничен двигателями с номинальной полной нагрузкой не более 1 кВт.

Метод испытаний B — ввод-вывод с разделением потерь: В методе B выполняются измерения как входной, так и выходной мощности, но различные потери разделяются. Большинство этих потерь просто производят тепло, которое должно рассеиваться двигателем в сборе, и представляют собой энергию, недоступную для выполнения работы. Этот метод является признанным стандартом тестирования U.S. автомобилестроение для двигателей с полной нагрузкой от 1 до 300 кВт.

Хотя оба метода A и B работают, метод B требует большого количества приборов и обычно выполняется только производителями двигателей. Поскольку большинство производителей используют метод B, а большинство пользователей предпочитают метод A, расчеты эффективности между ними могут отличаться. Данные производителей двигателей и приводов могут использовать разные скорости двигателя, испытательные нагрузки или другие условия испытаний.

Заключение

При измерении мощности электродвигателя необходимо учитывать множество факторов, например, полный и истинный коэффициент мощности.Эти измерения включают сложные уравнения, поэтому большинство компаний используют анализаторы мощности для автоматического получения результатов.

После принятия решения об использовании анализатора мощности необходимо принять решение о частотном диапазоне и уровне точности. Совместимость приборов — еще один важный аспект безопасного получения точных показаний, особенно с трансформаторами тока, и это та область, где необходимо учитывать ввод / опции анализатора. При правильных входных сигналах датчиков измерения механической мощности также можно проводить с помощью анализатора мощности.Выбор правильных датчиков скорости и крутящего момента — это первый шаг в определении механической мощности.

Некоторые анализаторы мощности также позволяют выполнять измерения с широтно-импульсной модуляцией. Однако настройка анализатора для измерения ШИМ также требует знания о том, как токи и напряжения будут влиять на измерения мощности.

Прецизионный высокочастотный анализатор мощности — важный инструмент для измерения как механической, так и электрической мощности. Его функции анализа и показания могут помочь улучшить работу и даже продлить срок службы двигателя.Выбор подходящего анализатора и его правильная реализация требуют знаний; однако при правильном использовании данные анализатора мощности предоставят точные и очень ценные данные.

Основы коррекции коэффициента мощности для одноиндукционных двигателей

Иногда может потребоваться корректировка коэффициента мощности (PF) на одном двигателе. Это означает определение размеров конденсаторов коэффициента мощности для этого двигателя. Хорошие новости: если вы правильно подберете эти конденсаторы, вы снизите затраты на потребление электроэнергии.Плохая новость: если вы сделаете их слишком маленькими, вы не сможете добиться многого. Худшая новость: если вы установите слишком большие конденсаторы, вектор коэффициента мощности переместится за пределы перпендикуляра, оставляя вас в очень неблагоприятной ситуации. Но не волнуйтесь, вычисления для получения правильного значения кВАр и правильного размера конденсатора коэффициента мощности просты.

Подбор конденсатора

Во-первых, вам необходимо собрать информацию о коэффициенте мощности при полной нагрузке и КПД рассматриваемого двигателя. Часто вы можете получить его непосредственно у поставщика двигателей в виде технических паспортов продукции, компакт-дисков или прямо с его веб-сайта.Не помешало бы и веб-сайт производителя двигателя.

Во-вторых, вам нужна входная мощность вашего двигателя в кВт. Чтобы получить это, вам, вероятно, потребуется выполнить несколько простых преобразований, которые начинаются с очень простых вычислений, как показано в Уравнения, которые необходимо знать . По сути, вам необходимо определить потребляемую мощность в кВт, как показано в уравнении 2.

Теперь, когда у вас есть этот номер, вы можете обратиться к таблице коррекции коэффициента мощности ( Таблица 1 ). Глядя на таблицу, войдите слева с существующим PF, а затем спуститесь сверху с желаемым PF.Там, где две линии пересекаются, вы найдете нужный множитель. Возьмите этот множитель и умножьте на него мощность двигателя в кВт. Это даст вам требуемую коррекцию в кВАр.

Наконец, используя данные в Таблице 2 , выберите конденсатор, округляя вниз до следующего меньшего значения. Теперь у вас есть конденсатор правильного размера для вашего плана коррекции коэффициента мощности. Для типовой установки см. Пример процедуры расчета .

Типичный способ установки конденсатора в этом типе применения — это подключение его между пускателем и одиночным двигателем.Это соединение снижает ток, протекающий через стартер и реле перегрузки.

Изменение размера нагревателей перегрузки

А теперь подумаем о перегревателях. Вы ведь установили их в стартер? И вы рассчитываете их в соответствии с током, который будет видеть стартер, в зависимости от нагрузки двигателя. Если вы уменьшите ток через стартер, существующие нагреватели не смогут защитить двигатель. Таким образом, вам нужно уменьшить размер нагревателя, чтобы приспособиться к уменьшенному току через стартер, иначе вы будете использовать недостаточно защищенный двигатель.

Сам двигатель потребляет ток такой же величины при полной нагрузке, как и без коррекции коэффициента мощности. Однако конденсатор PF будет подавать часть тока на двигатель. Только баланс будет поступать через стартер от питающей сети. Вы можете определить новое значение тока, проходящего через перегрузки, используя уравнение 3.

Если бы вы собирались сделать это для двигателя в нашем предыдущем примере, математика выглядела бы так, как показано в примере расчета тока нагревателя .

Правила осторожности

При корректировке коэффициента мощности на одном двигателе соблюдайте следующие рекомендации:

Правило 1. Не выполняйте чрезмерную коррекцию с помощью коррекции PF. Вы должны нацеливать коррекцию коэффициента мощности на рабочий ток двигателя, а не на его пусковой ток или ток полной нагрузки. Другими словами, всегда под правильно; стоимость небольшая потеря ПФ. Если вы исправите на , затраты возрастут из-за высоких переходных моментов, перенапряжений и других проблем, которых необходимо избегать.Вы должны рассматривать 95% поправку как верхний предел, а 90% — оптимальную цель.

Правило 2: Никогда не используйте этот тип коррекции коэффициента мощности с двигателем, управляемым с помощью твердотельного устройства, например, с плавным пуском или частотно-регулируемым приводом. Если у вас есть проблема с PF и вы используете такое устройство, вам следует обратиться к производителю устройства за решением. Опыт производителя и доступ к тысячам пользователей могут сэкономить ваше время, деньги и время простоя. Производитель будет рад вам помочь.


Боковая панель: уравнения, которые необходимо знать

Уравнение 1: Преобразование мощности двигателя в кВт выходной мощности двигателя
кВт МОЩНОСТЬ ДВИГАТЕЛЯ = л.с. × 0,746

Уравнение 2: Преобразование мощности кВт во входную мощность
кВт МОЩНОСТЬ ДВИГАТЕЛЯ = кВт МОЩНОСТЬ ДВИГАТЕЛЯ ÷ (% КПД ÷ 100)

Уравнение 3: Преобразование нескорректированного тока в скорректированный ток
I STARTER CORRECTED = I MOTOR FLA × (PF ORIGINAL ÷ PF CORRECTED )


Боковая панель: Пример процедуры расчета

Какой кВАр конденсатора коррекции коэффициента мощности необходим для повышения коэффициента мощности двигателя мощностью 100 л.с. до 95% при полной нагрузке?

Шаг 1: Найдите существующий коэффициент мощности и КПД

В нашем случае существующий PF составляет 85%, а мотор — 94.Эффективность 7%.

Шаг 2: Преобразование л.с. в кВт

МОЩНОСТЬ

Используя уравнение 1, получаем:
кВт МОЩНОСТЬ ДВИГАТЕЛЯ = л.с. × 0,746 = 100 × 0,746 = 74,6 кВт

Шаг 3: Преобразование мощности кВт во входную мощность

Используя уравнение 2, получаем:
кВт МОЩНОСТЬ ДВИГАТЕЛЯ = кВт МОЩНОСТЬ ДВИГАТЕЛЯ ÷ (% КПД ÷ 100) = 74,6 кВт ÷ 0,947 = 78,8 кВт

Шаг 4: Найдите множитель для получения желаемой коррекции коэффициента мощности

В нашем случае мы хотим скорректировать PF с 85% до 95%.Глядя на Таблицу 1 и спускаясь вниз по столбцу 95% и по столбцу 85%, мы видим, что пересечение находится на 0,291, что является множителем, который нам нужен.

Шаг 5: Умножьте потребляемую мощность в кВт на множитель

Расчет 78,8 × 0,291 = 22,9 кВАр.

Шаг 6: Выберите ближайшее значение кВАр

Используя таблицу 2, мы видим, что ближайшее значение, округленное в меньшую сторону, составляет 22,5 кВАр.


Боковая панель: Пример расчета тока нагревателя

Используя тот же двигатель мощностью 100 л.с., что и в примере процедуры расчета , вы обычно выбираете размер нагревателя на основе тока 118А.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*