Расчет мощности радиатора отопления: как рассчитать мощность батарей и их количество

Содержание

Расчет мощности радиаторов: как рассчитать радиаторы отопления

Радиаторы отопления настолько привычные и настолько же важные элементы системы отопления, что без них невозможно представить современное жилье. Делая замену старых радиаторов на новые, либо устанавливая радиаторы другого типа мы сталкиваемся с рядом вопросов – как правильно рассчитать мощность, количество секций и выполнить монтаж радиаторов отопления? Безусловно лучше специалиста это не сделает никто, но хотя бы быть немножко информированным в этом вопросе, понимать и уметь выполнить расчет самому никогда не будет лишним, тем более ничего сложного в этом нет.

Главная задача любых радиаторов – это компенсация своей теплопередачей теплопотерь отапливаемого помещения.

Итак, произведем расчет мощности радиаторов двумя простыми способами.

Расчет мощности радиаторов (упрощенный способ)

(в расчет заложена средняя высота помещения 3 метра)

Компенсацию теплопотерь можно выразить так – каждые 10 м² обогреваемой площади помещения соответствует 1 кВт мощности радиатора  (или 1 м

2 =100 Вт). Данный показатель необходимо умножить на коэффициент 1,45 (в него заложены возможные утечки тепла через окна, не утепленные стены и т. д.) – для быстрого просчета данная формула вполне подходит.

Произведем расчет мощности радиаторов на примере комнаты и размером (5м * 4 м).

(5м * 4 м)=20 м2

20м2 *100 Вт = 2000 Вт.

2000Вт *1,45 = 2900 Вт.

Расчет мощности радиаторов (продвинутый способ)

(более точный учитывается фактическая высота помещения)

Произведем расчет мощности радиаторов на предыдущем примере.

1. Вычисляем объем помещения (V), перемножая длину, ширину и высоту (в метрах).

5м*4м*3м = 60м3 – получаем V помещения в м3.

2. Для нагрева одного кубометра в доме стандартной планировки (с деревянными окнами с не утепленными стенами и т. д.) в климатической зоне европейской части России, Украины и Беларуси, требуется 41Вт на 1м3 тепловой мощности.

Вычислим, какая мощность потребуется, для этого перемножим объем V и цифру 41:

V * 41=60м3 *41Вт = 2460 Вт.

3. Вычисленную мощность необходимо умножить на коэффициент теплопотерь, который составляет 1,2.

2460 Вт*1,2= 2952 Вт

Вычисленная цифра – это мощность теплоотдачи, которая должна быть у радиаторов, чтобы обогреть комнату.

Определяем количество радиаторов

Количество радиаторов должно соответствовать количеству окон в помещении.

В нашем примере, если вкомнате два окна, то нужны два радиатора мощностью

2952Вт х 2 = 1476 Вт

У каждого производителя радиаторов мощность теплопередачи разная, поэтому нужно исходить из конкретных цифр.
Если устанавливаются чугунные радиаторы (мощность каждой секции для радиатора МС- 140 составляет 160 Вт), то необходимо

1476/160=9.225 секций

два радиатора по 9 секций

Точно также можно рассчитать количество секций для алюминиевых и биметаллических радиаторов.

Если устанавливаются стальные панельные радиаторы 22-го типа, то данной мощности соответствует радиатор размером 500*800 мм. – т.е. нужны два радиатора таких размеров. Если в помещении одно окно, нужен один панельный радиатор 22-го типа размером 500*1600 мм.

Следует также учитывать важный момент – устанавливая более мощные радиаторы, мы снижаем нагрузку на котел отопления, поэтому лучше поставить радиатор с количеством секций на одну больше, а у панельных на один размер больше (обычно у стальных панельных радиаторов размеры идут с шагом 100 мм.).

Расчет мощности радиаторов, как рассчитать радиаторы отопления на inbud.ru

как рассчитать тепловой потенциал батарей

На стартовом этапе проектирования нового здания или проведения с нуля ремонта в помещении обязательно требуется рассчитать

необходимую мощность батарей.

В соответствии с полученным результатом определяется точное число радиаторов для полноценного обеспечения теплом дома или квартиры даже при максимальных зимних колебаниях температуры.

Существует несколько методов расчета.

Прямая взаимосвязь типа радиатора отопления и метода расчёта

При монтаже стандартных источников обогрева секционного типа не возникает сложностей, так как их мощность заранее указана среди остальных технических параметров.

При положении, когда фирма-изготовитель прописывает в характеристиках значение расхода теплоносителя, принято считать, что трата 1 литра этой жидкости в минуту равна 1 кВт мощности.

Важно! При рассмотрении различных вариантов батарей стоит помнить, что при одинаковых габаритах они имеют несовпадающие показатели мощности, так как исходный материал, варьируется от биметаллического до чугунного.

Для расчёта каждого типа радиаторов существует свой средний показатель мощности. Секция источника обогрева с расстоянием оси в 0,5 м выделяет тепло:

  • Чугун —145 Вт.
  • Биметалл —185 Вт.
  • Алюминий — 190 Вт.

Зачастую этот показатель отличается от вышеуказанных в силу того, что по высоте батареи отопления встречаются от 0,2 м до 0,6 м.

При нестандартных параметрах радиаторов отопления в методы расчёта теплового излучения вносятся корректировки.

Фото 1. Стальной радиатор для отопления модели Tesi 2 , дина секции 45 мм, производитель — «Irsap», Италия.

Чем ниже значение высоты источника обогрева (и, соответственно, его площадь), тем меньше показатель излучения тепла.

Внести корректировку в результат можно с помощью установленного коэффициента, полученного из пропорции существующей высоты радиатора к стандартному значению.

Как рассчитать тепловую мощность батарей

В зависимости от количества учтённых показателей они подразделяются на 2 типа.

Упрощённый метод

Он является обобщённым и широко применяется для самостоятельных непрофессиональных подсчётов.

Главный критерий, принимаемый во внимание при упрощенном способе расчета — это площадь. Устанавливается, что 100 Вт излучаемой энергии хватает на 1 кв. м.

Для полноценного обогрева всего помещения требуется произвести подсчёт по формуле: Q=S*100, где Q — искомая тепловая мощность, S — площадь комнаты (м2).

Подробная формула

Это обобщённый метод расчёта отопления для помещения, но уже с учётом всех возможных факторов, оказывающих влияние на окончательный результат. Вид итоговой формулы такой:

Q=(S*100)*a*b*c*d*e*f*g*h*i*j, где дополнительные составляющие элементы — это коэффициенты, определяемые в соответствии с точной степенью отдельного фактора:

  • a — число внешних стен в интересующем помещении.
  • b — ориентация комнаты относительно сторон света.
  • c —условия климата.
  • d —уровень утепления внешних стен.

  • e —высота потолков в помещении.
  • f —конструкционные особенности потолка и пола.
  • h —качество рам.
  • i —размер окон.
  • j —степень закрытости источника обогрева.
  • k —схема подключения батарей.

Факторы, влияющие на расчёт

На расчет мощности радиаторов отопления влияют следующие факторы.

Ориентация комнат по сторонам света

Принято считать, что если окна помещения выходят на юг или запад, то оно в достаточном количестве имеет солнечный свет, поэтому в эти двух случаях коэффициент «b» будет равен 1,0.

Добавление к нему в 10% требуется, если окна комнаты ориентированы на восток или север, так как солнце здесь практически не успевает обогреть помещение.

Справка! Для северных районов такой показатель берётся в размере 1,15.

Если комната выходит на наветренную сторону, то коэффициент для расчета увеличивается до b=1,20, при параллельном расположении относительно потоков ветра — 1,10.

Вам также будет интересно:

Влияние внешних стен

Их число напрямую определяется показателем «а». Так, если помещение имеет одну внешнюю стену, то он принимается равным 1,0, две — 1,2. Добавление каждой следующей стены ведёт к увеличению коэффициента тепловой отдачи на 10%.

Зависимость радиаторов от теплоизоляции

Сократить расходы на обогрев квартиры или дома позволит проведение грамотного утепления стен. Значение коэффициента «d» способствует увеличению или снижению тепловой мощности батарей отопления.

В зависимости от степени утепления внешней стены показатель бывает следующий:

  • Стандартное, d=1,0. Они нормальной или малой толщины и либо оштукатурены снаружи, либо имеют небольшой слой теплоизоляции.
  • При особом способе утепления d=0,85.
  • При недостаточной устойчивости к холодам —1,27.

При позволяющем пространстве допускается фиксировать слой теплоизоляции к внешней стене изнутри.

Климатические зоны

Этот фактор определяется низкими уровнями температур для различных регионов. Так c=1,0 при погоде до —20 °C.

Для областей с холодным климатом показатель будет следующим:

  • с=1,1 при температурном режиме до —25 °C.
  • с=1,3: до —35 °C.
  • с=1,5: ниже 35 °C.

Своя градация показателей и для тёплых регионов:

  • с=0,7: температура до —10 °C.
  • с=0,9: лёгкий мороз до —15 °C.

Высота помещения

Чем выше в строении уровень перекрытия, тем больше этой комнате требуется тепла.

В зависимости от показателя расстояния от потолка до пола определяется поправочный коэффициент:

  • е=1,0 при высоте до 2,7 м.
  • е=1,05 от 2,7 м до 3 м.
  • е=1,1 от 3 м до 3,5 м.
  • е=1,15 от 3,5 м до 4 м.
  • е=1,2 свыше 4 м.

Роль потолка и пола

Сохранению тепла в помещении также способствует его соприкосновение с потолочным перекрытием:

  • Коэффициент f=1,0 если есть чердак без утепления и отопления.
  • f=0,9 для чердака без обогрева, но с теплоизоляционным слоем.
  • f=0,8, если комната выше отапливаемая.

Пол без утепления определяет показатель f=1,4, с утеплением f=1,2.

Качество рам

Для расчёта мощности отопительных приборов важно учесть и этот фактор. Для оконной рамы с однокамерным стеклопакетом h=1,0, соответственно для двух— и трёхкамерного — h=0,85. Для старой рамы из дерева в расчёт принято брать h=1,27.

Размер окон

Показатель определяется соотношением площади оконных проёмов с квадратными метрами помещения. Обычно он равен от 0,2 до 0,3. Так коэффициент i= 1,0.

При полученном результате от 0,1 до 0,2 i=0,9 до 0,1 i=0,8.

Если размер окон выше стандарта (соотношение от 0,3 до 0,4), то i=1,1, а от 0,4 до 0,5 i=1,2.

Если окна панорамные, то целесообразно при каждом увеличении соотношения на 0,1 повышать i на 10%.

Для комнаты, в которой зимой регулярно используется балконная дверь, автоматически повышает i ещё на 30%.

Закрытость батареи

Минимальное ограждение радиатора отопления способствует более быстрому прогреву комнаты.

В стандартном случае, когда батарея отопления расположена под подоконником, коэффициент j=1,0.

В других случаях:

  • Полностью открытый прибор обогрева, j=0,9.
  • Источник отопления прикрыт настенным выступом горизонтального типа, j=1,07.
  • Батарея отопления закрыта кожухом, j=1,12.
  • Полностью закрытый радиатор отопления, j=1,2.

Способ подключения

Способов подключения радиаторов отопления несколько и каждый из них определяется показателем k:

  • Метод подключения радиаторов «по диагонали». Является стандартным, и k=1,0.
  • Подключение «с боковой стороны». Способ популярен из-за небольшой длины подводки, k=1,03.
  • Использование пластиковых труб по методу «снизу с двух сторон», k=1,13.
  • Решение «снизу, с одной стороны» является готовым, происходит подключение к 1 точке подающей трубы и обратки, k=1,28.

Важно! Иногда для повышения точности результатов применяют дополнительные поправочные коэффициенты.

Полезное видео

Ознакомьтесь с видео, в котором рассказывается, как рассчитать мощность радиатора отопления.

Важность учёта всех факторов

Сокращённая формула расчёта отопительной мощности проста в применении, но не учитывает определённые особенности помещения. Для получения точного результата при расчете мощности радиаторов отопления важно принимать во внимание все имеющиеся факторы.

Расчет реальной мощности радиатора отопления для дома

Информация о материале

372

    Каждый прибор отопления (радиатор, конвектор) обладает теплоотдачей – основным свойством, которое определяет возможность его использования для обогрева помещения (комнаты) в доме или квартире. Характеристика теплоотдачи зависит от конструкции и габаритов прибора, а указывается в технической документации (паспорте устройства) в Ваттах (Вт).

     Например, для стального панельного радиатора Kermi FTV 22/500/1400 (тип 22, высотой 500мм, длиной 1400мм) указана паспортная теплоотдача 2702 Вт. Можно ли этот показатель использовать для подбора радиатора для обогрева помещения, у которого теплопотери 2700 Вт? По паспортным показателям – вроде бы подходит, бери и ставь. Так часто поступают продавцы техники для отопления, подбирающие покупателю радиаторы отопления по средним теплопотерям, бытовое значение которых принимается 100 Вт/м.кв. Т.е., для комнаты площадью 27 м.кв., покупателю порекомендуют радиатор отопления мощностью 2700 Вт, например, тот же рассмотренный Kermi FTV 22/500/1400. Насколько корректен такой подход с точки зрения современных методик расчета отопления? Ответу на этот вопрос и посвящена данная статья.
     Прежде всего, нужно знать, что теплоотдача прибора отопления (кроме конструкции и габаритов) зависит от 3-х температур – подачи, обратки (для современных двухтрубных систем отопления) и температуре воздуха в помещении. Для расчета теплоотдачи радиатора отопления существуют специальные формулы, которые использовать в «прямом» виде уже нет необходимости, поскольку они уже учтены в
современных автоматизированных программах тепловых расчетов
. Поэтому, для упрощения рассмотрения, будем использовать данные одной из таких программ — Oventrop OZC, которой пользуются наши специалисты при выполнении проектов отопления для частных домов.

     Паспортная теплоотдача большинства радиаторов и конвекторов отопления указывается для следующих параметров системы отопления:
     — температура теплоносителя подающей линии (подача) +90 град.С;
     — температура теплоносителя обратной линии (обратка) +70 град.С;
     — температура в помещении +20 град.С.

     Кратко эти параметры обозначаются 90/70/20. Т.е., для рассматриваемого радиатора Kermi FTV 22/500/1400, теплоотдача 2702 Вт указана для параметров 90/70/20 (не путать с 90/60/90 :).

     Если в системе отопления, в которой будет работать этот радиатор, параметры такие, как указано, то его можно использовать в «чистом» виде, без термовентиля (об этом – ниже).

     Для частных домов такие параметры теплоносителя не могут быть установлены, поскольку современные теплогенераторы (котлы отопления) – все низкотемпературные, с температурой подачи максимум +80 град.С (обратка +60 град.С). Расчетная температура в помещении обычно принимается более комфортная для человека — от +22 град.С до +24 град.С (по опыту запросов наших клиентов).

     Т.е., теплоотдача радиатора отопления для комнаты в частном доме должна быть определена на параметры 80/60/22. Кроме того, на радиаторы обычно устанавливаются терморегуляторы (термоголовки) для поддержания постоянной температуры в помещении. Терморегуляторы ставятся на термовентиль, который может быть установлен отдельно или встроен в радиатор (обычно встраиваются в радиаторы с нижним подключением). Все эти условия, очевидно, повлияют на характеристики теплоотдачи радиатора, рассмотрим характеристики этого влияния на примере теплотехнического расчета в программе Oventrop OZC.

     Параметры теплоносителя устанавливаются в общих данных рассчитываемой системы отопления:

    На этой же вкладке программы устанавливается величина увеличения мощности отопительного прибора с терморегулирующим вентилем (в процентах), по умолчанию – это 15%. Т.е., при использовании комнатного регулятора отопления, мощность прибора отопления должна подбираться на 15% выше полученного номинального значения (далее программа делает это автоматически).
     Расчетная температура воздуха в помещении указывается в соответствующей вкладке для каждого помещения отдельно:

     После расчета теплопотерь для помещения (по введенным параметрам ограждающих конструкций – стен/полов/кровли/окон/дверей) программой подбираются приборы отопления (с заданными ограничениями по габаритам, чтобы помещались в габариты окон или других мест установки):

     Как видно из примера, для помещения с теплопотерями 1650 Вт, подобран прибор отопления – стальной панельный радиатор Kermi FTV 22/500/1400, расчетная теплоотдача (по простому – мощность) которого указана 1662 Вт.
     Таким образом, от паспортной теплоотдачи радиатора 2702 Вт осталось всего 1662 Вт – для помещения условно стандартного частного дома с параметрами теплоносителя 80/60, расчетной температуре в помещении +22 град.С и с «термоголовкой» на радиаторе. Разница между паспортной и реальной теплоотдачей составила 38%, что весьма существенная величина.


     Приведенная расчетная теплоотдача радиатора получена при размещении его на наружной стене, под окном, открыто (без экрана, которым иногда декорируют радиаторы). При проведении расчетов, программа также позволяет учесть степень конвекции при размещении радиатора за экраном, под глубоким подоконником, как показано на вкладке.

     При размещении радиатора в нише, уже понадобится Kermi FTV 22/500/1800 с той же теплоотдачей, а по паспорту у этого радиатора — 3474 Вт. Разница – больше половины – 52%.

     

     Методика расчета учитывает размещение радиатора в других местах – на внутренней стене или под перекрытием. Так, при размещении на внутренней стене, понадобится радиатор Kermi FTV 22/500/1600 (при размещении его открыто), теплоотдача которого по паспорту 3088 Вт, т.е., больше расчетной на 44%.

     1. Паспортной теплоотдачей

для целей подбора радиатора отопления можно пользоваться для многоквартирного жилья, с параметрами теплоносителя 90/70 и планируемой температуре в помещении +20 град.С, а если планируется установка комнатного регулятора, то мощность радиатора должна подбираться на 15% выше требуемой.
     2. Для частного дома паспортные параметры радиаторов отопления неприменимы в принципе, поскольку параметры теплоносителя 90/70 недостижимы. Наилучшим способом подбора радиаторов для помещений частного дома является выполнение проектных расчетов (т.е., выполнение проекта отопления). Если подбирать «на глаз», то нужно выбирать радиаторы с теплоотдачей, выше требуемой, минимум, на треть. Т.е., если для помещения нужен радиатор 2500 Вт, то подбирать нужно с паспортной теплоотдачей от 3325 Вт.
     3. При размещении радиатора отопления открыто на стене, реальная теплоотдача радиатора для стандартного частного дома – на 38% ниже паспортной, при размещении на внутренней стене – на 44% ниже паспортной, если закрыть радиатор «экраном» — его теплоотдача будет вдвое ниже паспортной.     

Расчет радиаторов отопления

Наиболее простой способ обеспечить теплом жилые помещения квартиры или дома предполагает установку дополнительных радиаторов отопления или батарей. Идея неплохая, но бесконтрольное наращивание секций обогрева может превратить жилье в сауну, а любые попытки сэкономить на радиаторах приведут к переохлаждению и отсыреванию помещения. Чтобы угадать золотую середину, нужно просто выполнить оценочный расчет радиаторов отопления, определить теплопроизводительность одной секции и потребное количество для квартиры.

Варианты конструкций радиаторов отопления

Перед тем как рассчитать количество секций радиатора, необходимо получить теплотехнические характеристики отопительной поверхности. В первую очередь они зависят от размеров и материала корпуса. В современных системах отопления частных домов и квартир используется несколько типов радиаторов:

  • Чугунные батареи, набранные из литых секций. Обладают высокой тепловой инерцией и хорошей стойкостью к окислению воздухом и теплоносителем. Средняя теплоотдача составляет около 160 Вт на секцию;
  • Стальные радиаторы обеспечивают наихудшую теплоотдачу, всего около 80-85 Вт на условную секцию, но проще, дешевле и надежнее чугунных систем;
  • Алюминиевые секции обеспечивают самую высокую теплоотдачу, более 200 Вт на одну ячейку или секцию. Алюминиевые сплавы подвержены сильной электрохимической и газовой коррозии, поэтому используются ограниченно;
  • В биметаллических или сталь-алюминиевых радиаторах высокий уровень теплоотдачи, составляющий до 200 Вт на секцию, сочетается с прочностью и долговечностью батареи, даже при повышенной температуре теплоносителя.

Из-за небольших размеров, высокой теплоотдачи и приятного внешнего вида более всего используются для построения систем отопления биметаллические радиаторы. Поэтому большинство рекомендаций и методик подбора отопительных приборов направлены на то, чтобы рассчитать биметаллические радиаторы отопления. Но, по сути, методика и способ расчета секций биметаллических радиаторов отопления при необходимости может быть перенесен на алюминиевые и даже чугунные батареи, с поправкой на линейные размеры и коэффициент теплопередачи от разогретой металлической поверхности в более холодный воздух.

Общая методика расчета радиаторов отопления

Чтобы не перегружать методику расчета ненужными подробностями и деталями, специалистами был предложен простейший расчет радиатора отопления по площади помещения. Для обеспечения нормального теплового баланса в зимнее время расчет по площади подразумевает обеспечение тепловой мощности из нормы в 100 Вт на квадратный метр помещения.

Зная общую площадь конкретного помещения, потребность в определенном количестве секций рассчитываем следующим образом:

  • Умножаем площадь комнаты на потребную мощность для одного квадратного метра. Расчет дает общую тепловую мощность для системы обогрева одной комнаты. Например, для помещения в 15 м2 потребуется 15∙0,1=1,5 кВт тепловой энергии;
  • Выбираем из паспортных данных на изделие значение теплоотдачи или отдаваемую мощность для 1 секции биметаллического радиатора, например, 190 Вт на секцию;
  • Выполняем расчет радиатора отопления по площади 1500:190=7,89, с округлением получаем, что по расчету для отопления комнаты требуется 8 секций.

Важно! На самом деле методика расчета по площадям дает достоверный результат только для стандартных потолков в 270 см.

При подсчете потребной мощности для более высоких помещений используется расчет мощности нагревателя и определение потребного количества секций, исходя из объемной тепловой нагрузки. Например, для кирпичных и пенобетонных построек радиаторы отопления должны отдавать в воздух не менее 34 Вт/м3, для жилья из бетонных панелей используется норматив в 41 Вт/м3.

Таким образом, комната в 15 м2 с высотой потолков 2,7 м имеет объем 40,5-41 м3. Для расчета отопления кирпичной постройки будет достаточно 1360 Вт/ч или 7 секций радиатора. Но данный расчет радиаторов отопления является предварительным или теоретическим, не учитывающим множество практических факторов, влияющих на качество отопления.

Определение поправок к расчету радиатора

Чтобы получить максимально приближенный к реальности результат расчета потребной мощности радиаторов отопления и количества секций, потребуется учесть целый ряд поправочных коэффициентов.

Наиболее важные из поправок:

  • Наличие внешних факторов, таких как расположение комнаты в здании, количество в помещении внешних стен, качество утепления;
  • Внутренние факторы – высота потолков, площадь остекления, схема подключения радиаторов;
  • Тепловая эффективность для жидкостных систем отопления.

Все перечисленные факторы, в зависимости от положительного или отрицательного влияния, учитываются в виде значений больше, равному или меньше единицы.

Тепловая мощность нагревателя будет рассчитываться по формуле:

P=Pтеор∙Кэф∙Красп∙ Ку∙Кклим∙Кокон∙Кокон2∙Крад∙Крад_эк

где Pтеор – теоретическая мощность согласно расчета по действующим нормам, Кэф — коэффициент эффективности радиатора, Красп, Ку, Кклим – поправки на расположение помещения в здании и климатический пояс, Кокон, Кокон2 – поправки на параметры остекления комнаты, Крад1, Крад_эк – коэффициенты, учитывающие особенности расположения радиаторов.

Прежде всего, необходимо уточнить тепловую эффективность системы радиаторов. Эта поправка из таблицы учета теплового напора радиатора. Расчет теплового напора выполняется по формуле:

Р=(Твхвых)/2-Тпом

где Р— численное значение напора, Твх, Твых, – температура горячей воды на входе и выходе из радиатора, Тпом – температура воздуха в комнате. Выполнив расчет напора из таблицы, можно выбрать поправочный коэффициент Кэф.

Таким способом в расчете радиатора пытаются самым примитивным образом, без сложнейших формул теплопередачи учесть два важных фактора – энергоемкость теплоносителя и эффективность отдачи тепла в воздух.

Определение поправок для учета внешних факторов

Наибольшее влияние на теплопотери оказывает расположение комнаты в здании. Для учета в расчете используем поправку Красп. Для одной комнаты с одной наружной стеной Красп=1, для двух, трех или всех четырех стен для расчета мощности радиатора принимают значения 1,2-1,4 соответственно.

Поправкой Ку учитывается качество утепления наружных стен, Ку=1 для кирпичной кладки в 50 см, Ку=0.85 для утепленной стены и Ку =1,27 при отсутствии утепления.

Буквой Кклим обозначают поправочный коэффициент для учета в расчете различных климатических поясов. В качестве определяющей температуры выбирают наиболее низкую температуру воздуха на местности. Для Т=-30оС поправка Кклим равна 1,5, для мороза от 20 до 30 градусов Кклим=1,3, для остальных случаев в расчете радиаторов отопления принимают Кклим=1,0-1,2.

Учет конструктивных особенностей комнаты

Известно, что чем больше площадь остекления, тем больше тепловые потери на отопление. Для учета данного фактора применяется два критерия: Кокон – тип оконных рам и Н — площадь остекления. Для старого варианта остекления двойным стеклом в деревянной раме Кокон=1,27, для однокамерного и двухкамерного стеклопакета принимают Кокон =1 и Кокон=0,85, соответственно.

Площадь остекления учитывается в расчете по так называемому приведенному коэффициенту, равному соотношению площади пола к площади окон. Для десятипроцентного остекления Кокон2=0,8, для сорокапроцентного остекления Кокон2=1,2.

Огромное влияние на качество отопления оказывает правильное расположение радиаторов. Существует шесть наиболее распространенных схем подключения батареи из 7-10 биметаллических секций.

В первом случае подвод и отвод горячей воды выполняется с разных сторон отопителя, горячая вода подается с верхней доли, остывшая вода с нижней части батареи. Расчет отопления и практические измерения показывают, что эффективность использования подвода тепла в данном случае максимальна, поэтому Крад=1. Если подвод и обратку установить с одной стороны, эффективность передачи тепла немного снижается, но еще достаточно высока, Крад=1,03.

Значительно ухудшается теплопередача при организации подвода горячей воды снизу для следующих четырех схем:

  • Наиболее неэффективная схема — подвод и отвод теплоносителя с одной стороны при подаче горячей воды с нижней доли радиатора. Неважно, будет ли остывшая вода отводиться сверху или снизу, в этом случае для расчета отопления принимают Крад=1,28;
  • Подвод кипятка в радиатор с нижней части одной стороны, отвод остывшей воды с верхней доли противоположной стороны, для расчета мощности радиатора Крад=1,25;
  • Трубы с горячей и остывшей водой находятся в нижней части радиатора на одной линии с противоположных сторон, Крад=1,13.

Как видно из приведенных данных, неудачный расчет и проектирование расположения подводов к батарее может уменьшить эффективность работы батареи на 25-28%.

Кроме правильного расположения подводов, большое значение имеет степень экранирования теплоотдачи. Например, для полностью открытого обогревателя Крад_эк=0,9, что говорит о полном использовании возможности теплообмена. Для остальных случаев – перекрытия подоконником, нахождения в стеновой нише и установлении фронтальных декоративных экранов для расчета отопления Крад_эк принимают значения 1-1,2.

Заключение

Остается выбрать необходимые значения поправок и перемножить по вышеприведенной формуле. Если ручной способ показался вам сложным и трудоемким, подсчитать мощность отопителя можно по одному из онлайн калькуляторов или специализированных программ, которые могут учитывать огромное количество дополнительных факторов, таких как место расположения батарей, толщину краски и даже характеристики системы вентиляции комнаты.

Как самостоятельно рассчитать количество радиаторов отопления?

Допустим у Вас помещение   площадью 18 кв.метров (длина – 6 метров, ширина — 3метра, высота 2.6 метра /стандартная комната в пятиэтажном доме построенном в советские времена/)

Первое. Рассчитываем объем комнаты ( 6м.х3м.х2,6м=46,8м.куб.)
Второе. Для обогрева одного куб.м. в климатических условиях средней полосы России  необходима тепловая мощность 41 ватт. Умножаем объем V на 41 ( 46.8х41=1918,8 вт.). Округляем полученный результат до 1900 вт.

Как определить необходимое количество?

Очень просто. У любого радиатора отопления непосредственно на упаковке или в документации имеется техническая информация о тепловой мощности радиатора. Например, на нашем сайте в каждом типе радиаторов имеется таблица с указанием тепловой мощности определенного радиатора, его геометрических размеров и цены.

Что такое тепловая мощность радиатора

отопления? Это то количество тепловой энергии, которую способен он отдать со своей поверхности во внешнюю среду в определенных температурных интервалах, которые указываются в его технических характеристиках. Производители радиаторов обычно завышают на свои изделия тепловую мощность. Поэтому, для надежности лучше прибавить к расчетной мощности радиатора 20%. Получаем конечную тепловую мощность для квартиры указанных размеров с одним окном 1900 Вт.+20%.=2280 Вт или 2,3 Киловатта.
Внимание! Как быть, если ваша квартира очень «холодная». Например, она находится на северной стороне дома, у нее несколько окон или не застекленный балкон, стены недостаточно утеплены и она находится на последнем этаже и т.д.

В этом случае вместо 41Вт на 1куб.м необходимо сделать поправку на повышенный коэффициент 47 Квт. Получаем следующие расчеты. Умножаем объем (вместо 41Вт применяем 47Вт),  46.8 м.куб х47 Вт= 2200вт.)

Поэтому Вам необходим радиатор отопления с более большой теплоотдачей, которая равна 2,2 Киловатта. Рекомендуем опять же для надежности прибавить 20% к полученному результату 2,2Квт +20%=2.64Квт. В этом случае  Вы уже точно не замерзнете. Поверьте, лучше купить радиаторы с запасом мощности, чтобы в дальнейшем не жалеть не о чем — это факт проверенный временем. Погода  в последнее время становится абсолютно непредсказуемой.


Еще один, упрощенный способ расчета тепловой мощности. Тепло, которое отдают радиаторы отопления  помещению, в среднем равны 1Квт. мощности на 10кв. метров помещения. К этому показателю необходимо прибавить еще 15%.Этот метод предполагает  более завышенный  метод расчета по тепловым показателям, зато в этом случае можно уменьшить тепловой режим радиаторов  различными методами. В наших климатических условиях расчет с запасом  просто необходим. Лучше перестраховаться лишний раз. Как говориться, легче убавить, чем прибавить. Переделывать и добавлять всегда дороже.

Для первоначальной оценки этих методов вполне достаточно. Каким образом можно регулировать теплоотдачу  радиаторов отопления? Регулировка может быть автоматической и ручной. Для автоматической — устанавливаются специальные приборы,  контролирующие установленный диапазон желаемой температуры. При ручной регулировке применяются термостатические вентили, устанавливаемые непосредственно на сам радиатор. Они регулируют поток теплоносителя (вода, антифриз)  в заданной температуре с тем расчетом, чтобы  был достигнут наилучший показатель теплообмена на всех участках радиатора.

 

Существуют другие, более точные методы расчета, которыми пользуются специалисты, где учитывается следующее:

1. Температурные показатели региона

2. Общие тепловые потери поверхностей отапливаемого помещения

3. Схема подключения радиаторов отопления.

4. Количество окон в помещении, их размер и количество камер.

5. Кратность воздухообмена  отапливаемого помещения с улицей и другими смежными помещениями в доме.

6. Расчётную температуру подачи  теплоносителя и  ее обратные показатели.

7. Скорость циркуляции теплоносителя.

8. Тепловая мощность  радиатора и его температурный режим  указанные производителем.

9. Давление в системе отопления.

10. Другие показатели, которые необходимо учесть при индивидуальном  или многоэтажном строительстве.

Что необходимо учесть перед покупкой радиаторов отопления?

Отдача тепла в помещение зависит от того, в каком месте расположены радиаторы и способ их подключения к системе теплоснабжения. В первую очередь радиаторы отопления необходимо установить под окнами, именно в этом месте  будут самые большие тепловые потери, которые необходимо учитывать. Нагретый  воздух, поднимаясь вверх, создает вертикальную тепловую завесу и препятствует распространению холода от окна внутрь помещения.  Смешиваясь с холодным воздухом, конвекция становится гораздо сильнее, что способствует очень быстрому прогреванию всего помещения.


Учтите, что  расстояние от пола до радиатора и от радиатора до подоконника  должно быть  в пределах 100мм. Самый лучший вариант, когда  радиатор будет на всю ширину проема, меньше можно, но  не менее 50% от ширины. Подоконник  лучше делать не широким, для того чтобы теплый воздух поднимался  ближе к стеклу.

В комнатах, которые находятся в углу дома, вдоль наружных «глухих» стен желательно разместить дополнительные радиаторы, как можно ближе к углу. Стояки  отопления необходимо размещать по углам помещения, где наиболее холодные места. Этим самым, внутренние стороны углов  не будут промерзать и отсыревать.

Надеемся, что эта информация  поможет Вам самостоятельно подсчитать необходимое количество радиаторов (секций) для вашего дома. Удачи.

Расчет мощности стальных радиаторов отопления

При разработке системы водяного отопления производится подбор радиаторов отопления по тепловой мощности. Как рассчитать мощность батареи отопления для комнаты? В материале статьи приводятся методики расчета радиаторов обогрева.

Расчет теплоотдачи батарей отопления производят 3 способами:

1.       По данным теплового расчета;

2.       По площади отапливаемого помещения;

3.       По объему отапливаемого помещения.


Наиболее точным является подбор мощности отопительных приборов по данным теплового расчета. Методика теплового расчета имеет довольно сложный алгоритм, содержит массу формул и поправочных коэффициентов. При расчетах учитываются все конструктивные характеристики здания, показатели теплопроводности материалов строительных конструкций, ориентация по сторонам света и другие критерии. Из-за сложности этот способ используют только профессиональные проектировщики.

Для проведения упрощенных расчетов обычно применяют 2 других способа определения – по площади или по объему отапливаемого помещения. Расчет по площади производится для помещений со средними показателями тепловой изоляции и высотой потолков не более 2700 мм. При этом используется удельный показатель тепловой мощности на квадратный метр – он равен 100 Вт.

То есть при площади комнаты 18 кв.метров требуемая тепловая мощность составит 18 х 100 = 1800 Вт. В случае если потолок выше, чем 2,7 метра – используют расчет по объему. Удельный показатель тепловой мощности в этом случае принимают около 35 – 40 Вт.


Например, для той же комнаты (18 м2) с высотой потолка 3000 мм требуемая тепловая мощность составит 18 х 3 х 40 = 2160 Вт.

Полученные этими методами значения теплоотдачи делят на единичную мощность секции батареи и определяют количество секций в радиаторе.

Но как рассчитать мощность радиатора отопления на комнату, если радиатор стальной? По своей конструкции батареи из стали делятся на 2 вида:

1.       Трубчатые;

2.       Панельные.

Секции трубчатых радиаторов свариваются между собой – их количество не изменяется. Аналогичная ситуация и с панельным радиатором – устройства имеют единичную тепловую мощность.

Ситуация решается довольно просто. Производится расчет суммарной тепловой мощности для помещения одним из указанных методов – по площади, по объему или по тепловому балансу. Полученное значение будет равно мощности радиатора, который нужно установить в помещении.

Выбор радиатора производится по таблицам каталога продукции – в них указаны размеры и величина теплоотдачи стальных батарей. Здесь нужно определиться – сколько будет установлено приборов отопления. Если в комнате 2 окна – то полученную суммарную производительность делят на 2 устройства.

При выборе батарей необходимо учитывать их габаритные размеры – для этого следует предварительно произвести замеры места установки радиатора. В случае использования стальных радиаторов можно подобрать изделия любых габаритов – номенклатурный ряд размеров отопительных приборов из стали очень широк. У трубчатых конструкций имеются очень низкие и высокие вертикальные радиаторы различной глубины и ширины.

Таблица расчета мощности стальных радиаторов отопления

Чтобы увеличить эффективность отопительной системы, нужно правильно рассчитать площадь и приобрести качественные отопительные элементы.

Формула с учетом площади

 Формула расчета мощности стального устройства отопления с учетом площади:

Р = V x 40 + теплопотеря из-за окон + теплопотеря из-за наружной двери

  • Р – мощность;
  • V – объем помещения;
  • 40 Вт – тепловая мощность для обогрева 1м3;
  • потери тепла из-за окон – рассчитывать из значения 100 Вт (0,1 кВт) на 1 окно;
  • потери тепла из-за наружной двери – рассчитывать из значения 150-200 Вт.

Пример:

Комната 3х5 метра, высотой 2,7 метров, с одним окном и одной дверью.

Р = (3 х 5 х 2,7) х40 +100 +150 = 1870 Вт

Так можно узнать, какая будет теплоотдача устройства отопления на обеспечение достаточного обогрева заданной площади.

Если комната расположена в углу или торце здания, к расчетам мощности батареи нужно добавить еще 20% запаса. Столько же нужно добавлять в случае частых понижений температуры теплоносителя.

Стальные радиаторы отопления в среднем значении выдают 0,1-0,14 кВт/секции теплоэнергии.

Т 11 (1 ребро)

Глубина емкости: 63 мм. Р = 1,1 кВт

Т 22 (2 секции)

Глубина:100 мм. Р = 1,9 кВт

Т 33 (3 ребра)

Глубина: 155 мм. Р = 2,7 кВт

Мощность Р приведена для батарей высотой 500 мм, длиной 1 м при dT = 60 град (90/70/20) – типовая конструкция радиаторов, подходит для моделей стальных изделий от разных производителей.

Таблица: теплоотдача радиаторов отопления

Расчет на 1 (11 тип), 2 (22 тип), 3 (33 тип) ребра   

Теплоотдача отопительного устройства должна быть не менее 10% от площади помещения, если высота потолка менее 3 м. Если потолок выше, то прибавляется еще 30%.

В комнате батареи устанавливаются под окнами у наружной стены, вследствие чего, тепло распространяется самым оптимальным образом. Холодный воздух из окон блокируется тепловым потоком из радиаторов, идущим вверх, тем самым исключает образование сквозняков.

Если жилое помещение расположено в районе с суровыми морозами и холодными зимами, нужно полученные цифры умножать на 1,2 – коэффициент теплопотери.

Еще один пример расчета

За пример взято помещение площадью 15 м2 и с высотой потолка 3 м. Рассчитывается объем комнаты: 15 х 3=45 м3. Известно, что для обогрева помещения в местности со средним климатом нужно 41 Вт/1 м3.

45 х 41 = 1845 Вт.

Принцип тот же, что и в предыдущем примере, но не учитываются потери теплоотдачи из-за окон и двери, что создает определенный процент погрешности. Для правильного расчета нужно знать, сколько выдаёт тепла каждая из секций. Рёбра могут быть в разном количестве у стальных панельных батарей: от 1 до 3. Сколько рёбер у батареи, на столько и усилится теплоотдача.

Чем больше теплоотдача от системы отопления, тем лучше.

Расчет необходимой мощности для комнаты

Энергия 29 июн 2020

Было бы полезно знать волшебную формулу, которая даст нам количество тепла, необходимое для обогрева отдельной комнаты или всего дома. К счастью, есть несколько формул, позволяющих приблизиться к фактическому результату, но они допускают погрешность. Почему предел погрешности? Это связано с тем, что не все дома одинаковы.

Чтобы рассчитать необходимое отопление, мы должны учитывать размер и объем дома, ориентацию, размер и количество окон, тип изоляции стен и крыши и т. Д.

ДВЕ ПОЛЕЗНЫЕ ФОРМУЛЫ

Обычно мощность, необходимая для электрического обогрева, рассчитывается в ваттах.

Мощность: умножьте площадь в футах на 10. Для комнаты 20 футов на 20 футов мы получим 400 квадратных футов, умноженных на 10, чтобы получить 4000 ватт. Количество ватт = площадь x 10.

Этот результат действителен для домов, в которых есть комнаты с высотой потолков 8 футов. В случае современных домов с потолками выше 8 футов, практическое правило расчета — 1.25 Вт на кубический фут. Принимая во внимание предыдущий пример, высота потолка 9 футов составит 400 квадратных футов x 9 x 1,25 = 4500 Вт. Количество ватт = площадь x высота x 1,25.

Если вы подозреваете, что стены или потолок имеют дефекты теплоизоляции, вы можете добавить несколько процентных пунктов к расчету. То же самое можно сказать и о стенах с большими окнами. После выполнения расчетов для существующего дома нам может потребоваться добавить дополнительные обогреватели, такие как конвекторы или приточно-вытяжные устройства.

И наоборот, если комната имеет окна и хорошо ориентирована на солнце, мы можем придерживаться обычного расчета.

Наилучшая оценка потребностей дома в отоплении будет сделана сложением результатов для каждой комнаты.

В Северной Америке до сих пор можно встретить использование БТЕ / час в качестве меры мощности при обогреве. Формула для преобразования БТЕ в кВт следующая: P (кВт) = P (БТЕ / ч) / 3412,14.

Если в качестве источника тепла мы полагаемся исключительно на электрические плинтусы, их обычно устанавливают у основания окон, чтобы обеспечить наилучшее распределение тепла.В этом случае не стесняйтесь разделить общую требуемую мощность на количество окон в каждой комнате.

Для получения дополнительной информации о типе отопительного оборудования для конкретной комнаты или всего дома посетите следующую страницу.

Тепловыделение от радиаторов и нагревательных панелей

Тепловыделение от радиатора или нагревательной панели зависит в первую очередь от разницы температур между горячей поверхностью и окружающим воздухом.Тепловыделение можно рассчитать

P = P 50 [(t i — t r ) / ln ((t i — t a ) / (t r — t a )) 1 / 49,32] n (1)

где

P = тепловыделение от радиатора (Вт, Дж / с)

P 50 = тепловыделение радиатора при разнице температур 50 o C (Вт)

t i = температура воды на входе ( o C)

t r = температура воды на выходе ( o C)

t a = температура окружающего воздуха ( o C)

n = постоянная, описывающая тип радиатора (1.33 для стандартных панельных радиаторов, 1,3 — 1,6 для конвекторов)

Обратите внимание, что радиаторы обычно рассчитаны на температуру средней панели 70 o C — и температуру окружающего воздуха 20 o C (разница 50 o C )

Пример — Тепловыделение от радиатора

Теплоотдача от радиатора с номиналом *) Теплоотдача 1000 Вт при температуре воды на входе t i = 70 o C и температура на выходе t r = 50 o C можно рассчитать

P = (1000 Вт) [((70 o C) — (50 o C)) / ln (( (70 o C) — (20 o C)) / ((50 o C) — (20 o C))) 1/49.32] 1,33

= 736 Вт

*) номинал при температуре воды на входе т i = 80 o C , температура воды на выходе т r = 60 o C и температура окружающего воздуха t a = 20 o C

Калькулятор тепловыделения радиатора

Тепловыделение и расход воды

Калькулятор ниже можно использовать для расчета тепловыделения и расхода воды от радиатора, работающего вне стандартных условий — например, повышение или понижение температуры воды на входе или выходе или повышение или понижение температуры окружающего воздуха в помещении.

Температура воды в обратной линии и расход

Калькулятор ниже может использоваться для расчета температуры обратной воды и объемного расхода воды через радиаторы на основе фактического тепловыделения и температуры воды на входе.

Негабаритные радиаторы — довольно распространенное явление, поскольку практически невозможно адаптировать стандартный радиатор точно к требуемым тепловым потерям из комнаты. С помощью калькулятора, расположенного ниже, можно изучить последствия нестандартного тепловыделения, когда радиатор слишком большой.

При проверке теплоотдачи радиаторов учтите, что стандарты тестирования различаются. Примеры стандартов:

  • BS 3528 «Спецификация для обогревателей конвекционного типа, работающих с паром или горячей водой» (отозвана, заменена на BS EN442) — температура подачи 90 o C, температура возврата 70 o C , температура воздуха 20 o C
  • BS EN442 «Технические условия на радиаторы и конвекторы.»- температура подачи 75 o C , температура обратной линии 65 o C, температура воздуха 20 o C

Испытание того же радиатора с BS EN442 по сравнению с BS 3528 снижает тепловую мощность с приблизительно 11% .

Простое руководство по расчету отопления, кВт или БТЕ на комнату и снижению выбросов CO2.

Простое руководство по расчету отопления, кВт на комнату.


Пошаговый метод IntelliHeat, как купить правильный размер и мощность Электроэнергия Радиаторы в каждой комнате.

Выбор новой или замененной системы отопления — это достаточно напряженный процесс, не беспокоясь о том, как выбрать правильный размер

электрического радиатора для каждой комнаты. Возможно, вы выбрали радиатор мощностью 1,5 кВт и теперь задаетесь вопросом, достаточно ли его для обогрева каждой комнаты вашего размера? Если это правильные размеры, или, возможно, у вас есть комнаты размером в среднем 12 квадратных метров, и вам нужно знать правильную мощность, необходимую для обогрева каждой комнаты.

Онлайн-калькулятор кВт для отопления

Быстрый поиск в Интернете покажет вам множество онлайн-калькуляторов, которые можно использовать, но знаете что? Они ВСЕ РАЗНЫЕ.Все они задают разные вопросы, запрашивают разные измерения и просят вас подтвердить разные основные параметры. Итак, какой из них даст вам правильный ответ? Все ли они дадут одинаковый ответ? Как вы можете решить, какой из них доверить с комфортом всей вашей семье в течение следующих десяти лет?

Алгоритм калькулятора электрического отопления

Каждый онлайн-калькулятор размера радиатора — это просто алгоритм, который даст вам средний расчет парка, если вы живете в обычном доме.Но есть ли в среднем доме изоляция стен с полыми стенками? Двойное остекление? Утепление пола? Изоляция чердака? двухквартирный дом? А вы УВЕРЕНЫ, что живете в обычном доме? Есть ли спецификация того, что они считают средним?

Предположим, вы живете в квартире с квартирой ниже или выше. Ответ будет таким же? Может ли алгоритм знать, сколько форм потерь тепла присутствует в каждой из ваших комнат? Если размеры вашей комнаты одинаковы, будут ли потребности в мощности каждого радиатора одинаковыми — без знания того, сколько дверей и окон в каждой отдельной комнате?

Размер комнаты за вычетом причин потери тепла

Существует множество причин потери тепла, которые ДОЛЖНЫ учитываться для КАЖДОЙ КОМНАТЫ, и онлайн-калькулятор ДОЛЖЕН спросить обо всех из них, чтобы иметь возможность дать вам точный электрический радиатор в кВт. размер.

Вот список причин потери тепла, которые следует учитывать:
  • Размер обогреваемой площади (в метрах), включая длину, ширину и высоту: одинарное, двойное или тройное остекление, а также тип дерево, металл или ПУВХ.
  • Метод изоляции полых стен, чердаков и пола.
  • Количество межкомнатных и внешних дверей, количество окон с открывающимся светом.
  • Строительство стен
  • Возраст собственности, когда она была построена
  • Высота потолков.
  • Общая площадь окон в квадратных метрах.
  • Номера наружных стен.
  • Собственный этаж (этаж).
  • Это одноэтажное здание? Почтовый индекс.
  • Какой утеплитель и в каком количестве присутствует.
  • Устройство перекрытий и подпольное покрытие.
  • Средняя внешняя температура и термальная зона вашего города (которая сильно отличается для Шотландии, прибрежных городов, внутренних городов и сельских деревень).
  • Какие комнаты имеют внешнюю стену, выходящую на север?
  • Ваши индивидуальные требования к отоплению.
  • Планирование зональной системы отопления должно начинаться заранее, потому что система зависит от эффективности оболочки здания и плана этажа.

Расчет тепловой нагрузки для хорошо изолированного дома, построенного после 1976 года, основан на требовании 35/45 Вт на м2. Эти тепловые нагрузки учитывают конкретные значения U, указанные для каждого упражнения, и были произведены как консервативная оценка из-за переменного географического расположения объектов.

Любой онлайн-калькулятор, который НЕ включает все эти параметры, дает только приблизительное руководство, а НЕ дает точный и надежный ответ. Или вы предпочитаете совет опытного специалиста по электрическому отоплению?

Перегрев вашего дома незаконен

Проблема с «приблизительным» расчетом тепла, выполняемым онлайн, заключается в риске чрезмерного нагрева, необходимого для каждой комнаты. Всего один дополнительный радиатор на комнату может добавить сотни к стоимости, что плохо для вас, но хорошо для интернет-магазина, который затем продаст БОЛЬШЕ радиаторов.

Точный расчет тепла, необходимого для вашего дома, регулируется законодательством SAP 2012 (Стандартная процедура оценки энергетического рейтинга жилых помещений SAP ), что делает незаконным установку БОЛЬШЕ кВт тепла, чем вам нужно. Экономия ваших денег, сбережения потраченной впустую энергии и спасения планеты. Это все равно, что покупать танк Tiger Tank для стрижки газона! Среднестатистическим современным домам потребуется около 10 кВт отопления, так зачем вам устанавливать котел на 35 кВт? Всегда обращайтесь к опытной отопительной компании, прежде чем покупать в Интернете больше, чем вам нужно.В противном случае, когда вы продаете свою собственность, вы не получите хороший сертификат энергоэффективности.

Это законодательство означает, что снижение углеродного фактора в SAP приведет к изменению конструкции отопления. SAP используется для оценки использования энергии и выбросов углерода для документа L, утвержденного строительными нормами, в жилых зданиях, в то время как SBEM является эквивалентным инструментом для небытовых зданий. Сокращенные данные SAP (RdSAP) используется для производства сертификатов энергоэффективности. Полная информация по этой ссылке: https: //www.cibsejournal.com / general / sap-in-building-rules /

IntelliHeat предоставляет БЕСПЛАТНУЮ консультацию специалиста

Использование расчетов отопления IntelliHeat — это лишь половина того, что мы делаем каждый день для наших клиентов. Расчеты дадут вам общий ориентир размера, который затем можно превратить в ТОЧНЫЙ СОВЕТ после быстрого и легкого телефонного звонка нашему эксперту по расчетам отопления. Реальный человек, который доступен в рабочее время, чтобы поговорить с вами о ваших потребностях в отоплении, дать рекомендации по различным моделям радиаторов, вашим конкретным вопросам собственности и индивидуальным потребностям членов вашей семьи.

Остерегайтесь дешевых нагревателей для чипов, продаваемых в Интернете, без адреса в Великобритании, без признанной компании или номера телефона в этой стране. Решить проблему с китайским импортером будет очень сложно в следующем месяце или следующей зимой.

Когда вы звоните нам в IntelliHeat; Вам не нужно рассчитывать «градусо-дни» или киловатт-часы, поскольку мы все это делаем за вас, а затем можем направить вас к одному из наших местных квалифицированных, обученных и авторизованных установщиков IntelliHeat, которые могут установить выбранные вами радиаторы без каких-либо ограничений. суетиться или беспокоиться.

intelli-heat- electric-heating-Zoning

Заключение
  1. Никогда не полагайтесь на приблизительный онлайн-расчет для комфорта вашей семьи. Скорее всего, вам придется платить за большее количество радиаторов, чем вам действительно нужно.
  2. Поговорите с производителем или опытным консультантом по отоплению, чтобы рассчитать точную потребность в британских тепловых единицах (BTU) или киловатт-часах (киловатт-час) для соблюдения строительных норм, экономии энергии и сокращения счетов за отопление.
  3. Всегда обращайтесь к компании (желательно к производителю), с которой вы можете ГОВОРИТЬ по телефону, потому что любой может продать что-нибудь в Интернете, и если это не приходит, не работает или обнаруживает неисправность в течение 2 месяцев, вы всегда сможем решить любую проблему.

    Чтобы мы могли помочь вам с вашим запросом как можно более эффективно, пожалуйста, позвоните нам по телефону 0203 916 0000 . Мы не будем отправлять торговых представителей или беспокоить вас нежелательными телефонными звонками.

Важность дельты Т при расчете тепловой мощности

Если вы не знаете, как работает ваша система центрального отопления, Delta T особенно важна для того, чтобы помочь вам рассчитать, сколько энергии вам нужно будет произвести для обогрева дома.Delta T или Δt помогут вам с первого раза выбрать правильные радиаторы для вашего дома. Мы расскажем вам, что означает Delta T и его важность при расчете потребности в отоплении комнаты или вашего дома.

Что такое Δt (Delta T)?

Delta T или Δt относится к разнице температуры воды, циркулирующей в вашей системе центрального отопления, и комнатной температуры. При замене радиаторов в доме важно использовать правильный Delta T.Это связано с тем, что одни и те же радиаторы могут иметь разную мощность при разной температуре воды из-за используемого вами источника тепла.

Главное, что нужно помнить при попытке определить дельту Т, — это следующее уравнение:

Средняя температура радиатора минус заданная температура в помещении = Delta T

Δt50 против Δt60

Мощность радиатора обычно выражается в ваттах, а мощность вашего радиатора зависит от вероятной рабочей температуры системы.Выходной сигнал будет выражен как Дельта 60 (Δt60) или Дельта 50 (Δt50). Delta 50 — это стандарт Великобритании для всех бытовых газовых котлов. Если вы ищете новые, более возобновляемые системы отопления, вы также можете приобрести радиаторы с более низкой мощностью. Delta 30 и Delta 40 хорошо подходят для систем с более низкой температурой воды.

Почему стоит обратить внимание на низкотемпературное отопление?

По мере того, как наши дома становятся все лучше изолированными, люди переходят на низкотемпературные системы отопления. Эти новые, более возобновляемые системы отопления используют выходы Delta 30 и Delta 40 для создания более экологичного отопительного агрегата.

Низкотемпературное отопление позволяет обогревать ваш дом более равномерно и с более постоянной скоростью. Кроме того, он бережно обращается с завязками кошелька! В то время как в традиционных системах отопления используется температура подачи от 75 ° C до 85 ° C, низкотемпературный нагрев может составлять от 35 ° C до 55 ° C.

Преимущества низкотемпературного нагрева

  • Более рентабельно: в хорошо изолированном доме использование низкотемпературного отопления снизит потребление энергии.
  • Меньше холодных углов: вся ваша комната будет нагреваться более равномерно с помощью низкотемпературной системы отопления.
  • Практично: использование низкотемпературного обогрева означает, что вам не нужно выключать термостат на ночь. Это означает, что вам нужно будет отрегулировать термостат только тогда, когда вы отсутствуете на длительное время.
  • Очиститель воздуха: Использование низкотемпературной системы обогрева приведет к уменьшению количества переносимой по воздуху пыли. Это хорошая новость для всех, кто страдает аллергией, так как вы избежите ожогов, оставленных частицами пыли. Следовательно, это уменьшит раздражение чувствительных дыхательных путей.

Если вам нравится звук низкотемпературной системы отопления, обязательно обсудите это как вариант со своим сантехником. Сантехнические системы, в которых используются современные конденсационные котлы, обычно работают с Delta 50, поэтому вам нужно будет указать более низкую Delta T, если вы хотите создать более экологичную систему отопления.

Вы хотите перейти на «зеленую» систему отопления? Дайте нам знать в комментариях ниже.

Калькулятор

БТЕ — Haverland UK

Простой в использовании интерактивный калькулятор БТЕ от Haverland разработан, чтобы помочь установщикам определить потребности в отоплении для проектов, над которыми они работают, будь то домашние или коммерческие.После вычисления потребности в тепле в британских тепловых единицах (БТЕ) ​​калькулятор БТЕ может преобразовать требуемое количество тепла в ватты, чтобы установщик мог определить необходимый электрический радиатор (-ы) с точки зрения тепловой мощности, типа и количества. .

Для расчета количества тепла, необходимого для создания комфорта в комнате, калькулятор BTU рассчитывает кубический объем комнаты путем умножения высоты, ширины и длины. Затем калькулятор BTU применяет дополнительные математические уравнения для определения теплопотерь в помещении, прежде чем произвести точный расчет того, что требуется для эффективного и комфортного обогрева помещения.

Другими словами, калькулятор БТЕ сообщит установщику, сколько радиаторов какого размера и типа необходимо для обогрева помещения до комфортной температуры при минимально возможных расходах на топливо.

Выбор наиболее подходящего радиатора (ов) для данной комнаты с помощью калькулятора BTU — лучший способ сократить счета за электроэнергию. Ведь если он будет слишком большим, радиатор без надобности увеличит счета; будет генерироваться слишком мало и слишком мало тепла, чтобы поддерживать в комнате комфорт, и, как следствие, радиатор будет работать постоянно, тратя энергию и увеличивая счета за топливо.Итак, калькулятор БТЕ помогает экономить энергию.

Размер комнаты и то, для чего она используется, будут определять, сколько тепла (выраженное в БТЕ или Ваттах) потребуется установщику для поддержания комфорта. Высокие требования к отоплению могут потребовать установки в комнате более одного радиатора. Калькулятор BTU поможет установщику определить оптимальное расположение радиатора.

Короче говоря, калькулятор Haverland BTU позволяет установщику установить выходную мощность в ваттах / BTU, необходимую для конкретной комнаты, чтобы обеспечить комфортное и энергоэффективное отопление.

Калькулятор мощности

| Уотлоу

Материал № {{$ index + 1}} ×

Выберите материал CustomAir 0 ° FAIR 1000 ° FAIR 100 ° FAIR 1050 ° FAIR 1100 ° FAIR 1150 ° FAIR 1200 ° FAIR 200 ° FAIR 250 ° FAIR 300 ° FAIR 350 ° FAIR 400 ° FAIR 450 ° FAIR 500 ° FAIR 50 ° Фаир 550 ° Фаир 600 ° Фаир 650 ° Фаир 700 ° Фаир 750 ° Фаир 800 ° Фаир 850 ° Фаир 900 ° Фаир 950 ° ФацетиленВоздухСпирт, этиловый (пар) спирт, метил (пар) аммиакАргонБутанБутиленДиоксид углеродаМоноксид углеродаХлорметилхлорметан, хлористый метиленхлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлорметан, хлористый эфир Кислота Водород Сероводородметан Оксид азота Азот Оксид азота Кислород Диоксид серы Водяной пар (212 ° F) Уксусная кислота, 100% ацетон, 100% аллиловый спирт, аммиак, 100% амиловый спирт, анилин, хлор, масло, асфальт, бензол, хлористый эфир, 25% спирт, хлористый эфир, хлористый эфир, хлористый эфир, 25% спирт, хлористый эфир, хлористый эфир, 25% спирт, хлористый эфир, хлористый эфир, 25% спирт Масло, эфир, этилацетат, этиловый спирт, 95% этилбромид, этилхлорид, этилйодид, этиленбромид, этиленхлорид, этиленгликоль, жирная кислота, алеиновая жирная кислота, пальмитиновая жирная кислота, стеариновая кислота, Свежая, средняя муравьиная кислота, Freon 11, Freon 12, Freon 22, фрукты, свежее, среднее топливо, масло № 1 (керосин), мазут № 2, топливо, тяжелое топливо № 5, № 6, топливное масло, среда № 3, № 4, бензин, глицерин, гептан, гексан, мед, хлористоводородная кислота, 10% лед, этилен, этилен, хлористоводород, метилен, этиленовый сироп, мерцание, этилен, среднеэтиловый эфир, этилен, эфир , 3.5% меласса, нафталин, азотная кислота, 7% азотная кислота, 95% нитробензол, оливковое масло, парафин, плавленый (150 ° F +), изоцианат, компонент B, полиолипидная смола, перхлорэтилен, фенол (карболовая кислота), фосфорная кислота, 10% фосфорная кислота, фосфорная кислота, 10% фосфорная кислота (1000 °, пропан, 20 °) Пропионовая кислота, пропиловый спирт, SAE 10-30SAE 40-50, морская вода, натрий (1000 ° F), гидроксид натрия (каустическая сода), 30% раствор, гидроксид натрия (каустическая сода), 50% раствор, соевое масло, крахмал, сахар, 40% сахарный сироп, сахароза, 60% сахарный сироп, сера, плавленый (500 ° F) Серная кислота, 20% серная кислота, 60% серная кислота, 98% толуол Трансформаторные маслаТрихлор-трифторэтанТрихлорэтиленТурпентин Растительное масло Овощи, свежие, средние водыВина, столовые и десертные, средние ксилол-алюминий-алюминий 2024-0Алюминий-алюминий Латунь (80-20) Латунь (Желтая) Бронза (75% Cu, 25% Sn) КадмийКальцийКарбол (цементированный карбид) Углерод ХромКобальтКонстантан (55% Cu, 45% Ni) Медь Немецкое сереброЗолотоИнколой 800Инконель 600Инвар 36% N Железо, литое железо, кованый свинец, линотип, литий, магний, марганец, ртуть, молибден, монель® 400, металл Muntz (60% меди, 40% цинка), нихром (80% никель, 20% хрома), никель, 200, платина, калий, родий, кремний, Sn, серебро,%, натрий, припой (50% свинец, припой, 50% свинец, припой (50%), Sn, припой (50%) Мягкая углеродистая сталь, нержавеющая сталь 304, 316, 321, нержавеющая сталь 430, тантал, олово, титан, вольфрам, металл (85% Pb, 15% Sb), уран, цинк, цирконий, 0.5 Sn, Sn, 0.5Pb0.6 0.4PbAluminumBismuthCadmiumGoldLeadLithiumMagnesiumMercuryPotassiumSilverSodiumTinZincAllyl, CastAlumina 96% глинозем 99,9% Алюминий NitrideAluminum силикатного (Лава Класс А) Смола AmberAsbestosAshesAsphaltBakelite, PureBarium ChlorideBeeswaxBoron нитрид (Уплотненный) Кирпич, Общий ClayBrick, Облицовка / Строительство & MortorsCalcium ChlorideCarbonCarnauba WaxCement, Портленд LooseCerafelt ИзоляцияКерамическое волокноМелА угольХромовый кирпичГлинаУголь (антерцит) Угольные гудроныКоксБетон (шлак) Бетон (камень) Кордиерит (AISI Mag 202) ПробкаХлопок (лен, конопля) ДелринБриллиантЗемля, сухая и упакованнаяЭтилцеллюлоза, стекловолокно, стекловолокно, стекловолокно, стекловолокно, стекловолокно, стекловолокно, огнестойкое стекло 243) ГранатСтеклоГранитГрафитЛедИзопрен (Натуральный каучук) ИзвестнякГлитаргМагнезияМагнезитовый кирпичОксид магния (после уплотнения) Оксид магния (до уплотнения) Силикат магнияМраморМаринит I @ 400 ° Fеламин ФормальдегидСлюдаНейлоновое волокно sPaperParaffinPhenolic FormaldehydePhenolic смола, CastPhenolic, лист или труба, LaminatedPitch, HardPlastic- ABSPlastic- AcrylicPlastic- Целлюлоза AcetatePlastic- ацетат целлюлозы ButyratePlastic- EpoxyPlastic- FluoroplasticsPlastic- NylonPlastic- PhenolicPlastic- PolycarbonatePlastic- PolyesterPlastic- PolyethylenePlastic- PolyimidesPlastic- PolypropylenePlastic- PolystyrenePlastic- Поливинилхлорид AcetatePorcelainPotassium ChloridePotassium NitratePotassium Нитратная ванна (твердая) — температура вытяжки 275Гидравлическая ванна с нитратом калия (твердая) — температура вытяжки 430Кварцевая соль, резина, синтетика, песок, сухой кремнезем (плавленый), карбид кремния, нитрид силикона, силиконовый каучук, мыльный камень, карбонат натрия, хлорид натрия, ванна цианида натрия, гидроксид натрия, смесь натрия, гидроксид натрия (75%) 275 вытяжек, натриевая ванна (сплошная) — 430 вытяжек, нитрит натрия, почва, сухая, включая камни, стеатит, камень, камень, песчаник, сахар, сера, тафлон, мочевина, формальдегид, винилиден, винилит, дерево, дуб, сосна, цирконий,

Расчет мощности и количества секций

Расчет радиаторов (батарей) для отопления

Радиаторы являются наиболее распространенным отопительным прибором, применяемым в жилых, промышленных и общественных зданиях.Это полые нагревательные элементы, которые постоянно заполняются водой. Важными техническими характеристиками, на которые следует обратить внимание при покупке радиатора, являются его рабочая мощность и давление. Перед установкой отопительного оборудования нужно тщательно продумать каждую деталь: планируемый материал радиатора, его дизайн и бюджет. Дальнейший расчет радиаторов отопления должен заключаться в определении количества радиаторов и их секций и необходимой мощности для обогрева помещения.

Содержание

  • Расчет — основа для грамотного выбора
  • Расчет мощности аккумулятора
  • Коэффициенты коррекции мощности
  • Сколько секций необходимо для обогрева

Расчет — основа для грамотного выбора

Огромное количество На современном рынке представлены нагревательные батареи с различными техническими характеристиками.

После выбора оборудования, наиболее подходящего под дизайн помещения и собственные требования, можно приступать к расчету отопительных батарей.Для этого вам потребуется:

Кроме того, необходимо ознакомиться со свойствами выбранного источника тепла и узнать мощность одной секции радиатора.

Мощность одной секции биметаллического радиатора составляет 122 Вт

Перед тем, как рассчитать количество секций радиаторов отопления, необходимо рассчитать необходимую мощность для обогрева помещения.

Расчет мощности аккумулятора

Сначала определите площадь комнаты.Для этого просто умножьте ширину комнаты на ее длину. Для удобства расчета все измерения ведутся в метрах. После измерения высоты потолка необходимо рассчитать количество дверей и окон, определить материал, из которого они сделаны, узнать расположение квартиры и самую низкую температуру наружного воздуха зимой. Кроме того, расчет мощности радиаторов отопления требует знания температуры теплоносителя.

Согласно СНиП, для обогрева каждого квадратного метра жилой площади требуется 100 Вт мощности обогревателя.Следовательно, чтобы рассчитать необходимую мощность, необходимо умножить общую площадь помещения на 100 Вт и скорректировать полученное значение с помощью специальных коэффициентов увеличения и уменьшения мощности.

Коэффициенты коррекции мощности

Сначала рассмотрим коэффициенты снижения мощности

  1. Если в помещении установлены пластиковые стеклопакеты, полученное значение следует уменьшить на 20%.
  2. При высоте потолка менее трех метров мощность уменьшается на коэффициент, который рассчитывается как отношение фактической высоты к установленной по стандартным стандартам (в данном случае 3 метра).То есть, если высота потолка 4 метра, то коэффициент приведения будет 4/3 = 1,33
  3. При температуре отопительного котла выше нормы каждые 10 «лишних» градусов приводят к снижению мощности на 15%. .

Наличие стеклопакетов на окнах позволяет снизить мощность, необходимую для достаточного обогрева, на 20%.

Коэффициенты увеличения мощности

  1. Для потолков выше трех метров мощность должна быть увеличена в раз, расчет которых проводится аналогично расчету для потолков высотой менее трех метров.
  2. Если квартира имеет угловое расположение, мощность увеличивается в 1,8 раза.
  3. Если в комнате более двух окон, мощность также увеличивается в 1,8 раза.
  4. При нижнем подключении радиаторов вводится коэффициент увеличения 8%.
  5. На каждые 10 градусов охлаждающей жидкости ниже нормы мощность увеличивается на 17%.
  6. При очень низких зимних температурах мощность следует увеличивать в 2 раза.

Совет: при расчете учитывайте возможность различных случайных факторов, для этого значение необходимой мощности следует увеличить еще на 20%.

Мощность одной секции чугунного радиатора 160 Вт

Сколько секций нужно для отопления

Рассчитать радиатор на комнату можно несколькими способами:

  1. Расчет секций радиаторов отопления, обычным способом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*