Расчет потока воздуха в воздуховоде: Скорость воздуха — Онлайн калькулятор

Содержание

Расчет скорости воздуха в воздуховоде: инструкция, формулы, таблица

Для определения внешних размеров воздуховодов нужно знать величину их поперечного сечения, которая высчитывается в зависимости от расхода воздуха в канале и скорости его движения. Расчет и подбор оптимальной скорости на каждом участке оказывает непосредственное влияние на правильную работу всей вентиляционной системы. Расчетные значения скорости после монтажа и пуска сети воздухопроводов проверяют с помощью измерений специальными приборами.

Воздуховод – это система труб из различных материалов, которые установлены в помещениях для разделения и распределения воздуха по ним и вытяжки воздуха из них.

Исходная информация для просчета

Всю вентиляционную систему раскладывают на отдельные участки и на каждом из них определяют оптимальную скорость воздушной смеси. Признак, по которому отличают один участок от другого, это количество воздуха (расход). Если данная величина неизменна, то раскладывать вентиляционную сеть трубопроводов на участки не требуется. Суть расчета сводится к следующему:

Расчет воздуховодов для равномерной раздачи воздуха.

  1. Определить расчетное значение скорости потока.
  2. Вычислить размеры воздуховодов круглой или прямоугольной формы, сравнить их с нормируемыми размерами по СНиП.
  3. Если габариты отличаются от нормируемых, взять ближайшее в ряду нормативное значение и произвести вычисления в обратном порядке для определения реальной скорости движения воздушных потоков.

Нормативный ряд диаметров в миллиметрах круглых каналов представлен в таблице:

505863718090100110125140160180
200224250280315355400450500560630710
800900100011201250 1400160018002000224025002800

Нормативные требования к воздухопроводам прямоугольной формы несколько проще: соотношение высоты и ширины сторон канала не должно быть больше чем 6:3. На практике это означает, что нельзя изготавливать слишком узкие трубопроводы при большой ширине, такие как 700х100 мм. Такой канал будет иметь очень высокое сопротивление, а при его работе допустимый уровень шума будет превышен, поскольку слишком широкая часть начнет вибрировать от воздействия на нее воздушного потока изнутри. В этом случае соотношение будет равно 7, что не соответствует нормам, а канал 600х100 мм с соотношением сторон 6 нормативами допускается. Но даже в этом случае широкую сторону необходимо ужесточить, особенно при высокой скорости воздушных масс. Для этого на ней выполняют зиги либо диагональные перегибы с определенным шагом.

Вернуться к оглавлению

Инструкция по выполнению вычислений

Формула определения воздухообмена по кратности.

Формула, применяемая для расчета скорости воздушного потока в трубопроводе, связывает между собой расход воздуха на данном участке (L, куб.м/ч), размер поперечного сечения канала (F, кв.м) и значение самой скорости (V, м/с):

L=3600xFxV.

Значение количества воздушной смеси выражается в куб.м за 1 час, а скорость – в метрах за секунду, поэтому в формуле присутствует цифра 3600 для увязки временных величин, как известно, 1 час – это 3600 секунд. Для расчета скорости потока формула выглядит так:

V=L/3600xF.

Размеры сечения трубопровода для воздуха вычисляют в зависимости от его конфигурации. Если форма канала круглая, то сечение определяется следующим образом:

F=(πxD2)/4 или F=πxr2.

В приведенных формулах:

  • D – диаметр воздуховода круглой формы в метрах;
  • r – радиус круглого канала в метрах;
  • π = 3,14.

Второй параметр, принимающий участие в основной формуле, это количество воздуха для притока или вытяжки на данном участке. Данная величина принимается из соображений потребности количества притока или вытяжки в помещении. Может определяться согласно нормативам, действующим для этих видов помещений, либо расчетам при выделении в пространстве комнаты различных вредных, горючих или взрывоопасных веществ. После выполнения таких вычислений величина расхода воздушной смеси становится величиной постоянной. При разработке схемы вентиляционной системы изменить можно только остальные 2 параметра, скорость и размеры сечения, общий расход должен оставаться неизменным.

Вернуться к оглавлению

Определение параметров существующих систем

Формула для определения поперечного сечения воздуховодов.

Зачастую есть необходимость просчитать пропускную способность существующих вентиляционных каналов, что предусматривает определение скорости воздуха. Это происходит при реконструкции промышленных зданий по причинам внедрения новых технологий или техническом перевооружении производства. Тогда потребность в притоке либо вытяжке может измениться в ту или иную сторону, потребуется принять решение, подойдут для этой цели старые воздухопроводы или надо будет монтировать новые. Определив новую потребность в количестве воздуха для производства, нужно измерить габариты этих каналов или найти их в проектной документации на здание. Однако это часто бывает невозможным по разным причинам, поэтому придется делать замеры.

После этого по основной формуле, которая приведена выше, производят расчет реальных скоростей воздушных потоков в существующей вентиляционной системе. Полученные результаты можно сравнить со значениями рекомендуемых скоростей воздуха в воздуховоде, они лежат в пределах 2-8 м/с. Следует заметить, что эти показатели не являются обязательными к выполнению, в нормативной документации (СНиП 41-01-2003) это не зафиксировано. Если же они получились слишком высокие (свыше 15 м/с), надо рассмотреть 2 варианта решения проблемы:

Таблица расчета для сечения круглых воздуховодов.

  1. Оставить существующие воздухопроводы. Тогда потребуется выполнить мероприятия по их усилению и ужесточению. Для справки: в трубопроводах аспирационных систем скорость потоков достигает 20-40 м/с, поэтому нужно изучить процесс монтажа таких систем и усиление существующих каналов выполнить аналогично вплоть до замены некоторых участков или фасонных элементов.
  2. Заменить трубопроводы. Решение оптимальное для работы будущей вентиляционной сети, но влечет за собой повышенные финансовые затраты.

Бывают и обратные ситуации, когда в результате вычислений скорость воздуха в существующей сети чрезвычайно низкая (0,5-2 м/с). Это не является проблемой в том случае, если старые трубопроводы больших размеров не мешают установке и работе нового технологического оборудования. Тогда их оставляют как есть, меняется только вентиляционная установка либо модернизируется старая. Такое решение даст некоторую экономию, ведь сеть воздухопроводов уже имеется. К тому же при малых скоростях она будет иметь невысокое сопротивление, что даст возможность использовать менее мощный вентилятор.

Расчет скорости воздуха в трубопроводах можно проверить после монтажа системы. Это делают с помощью специальных измерительных приборов – анемометров. Датчик прибора вносится в воздушный поток через технологический лючок в трубе во время работы вентилятора. Показания прибора сравнивают с расчетной скоростью и при необходимости вносят корректировки в работу системы с помощью дроссель-клапанов. Эти устройства могут перекрывать пространство канала с помощью заслонки и таким образом создавать искусственное сопротивление потоку.

При вычислении скорости воздушного потока следует добиваться оптимального соотношения параметров скорость/размер сечения канала.

Это позволит разумно тратить средства как при монтаже и пусконаладке системы, так и при ее дальнейшей эксплуатации.

формула, габариты и подбор оборудования

Описание. Формулы. Калькулятор.

Расчёт сечения воздуховода для механической (принудительной) вентиляции?

prjamougolnij_vozduhovodkrugliy_vozduhovod

   Расчёт сечения прямоугольного и/ли круглого воздуховода осуществляется с помощью двух известных параметров: воздухообмен по помещению и скорость потока воздуха.

   Воздухообмен по помещению может быть заменён на производительность вентилятора. Производительность приточного или вытяжного вентиляторов указывается заводом изготовителем в паспортных данных изделия. При проектировании или предпроектной разработке, воздухообмен рассчитывается исходя из кратности. Кратность (количество раз замены полного объёма воздуха в помщении за 1 час) — это коэффициент из нормативной документации.

   Скорость потока в воздуховоде необходимо измерить, если это смонтированная система. А если проект находится в стадии разработки, то скорость потока в воздуховоде  задаётся самостоятельно. Скорость потока в воздуховоде не должна превышать 10 м/с.

Ниже приведены формулы и калькулятор на их основе,  с помощью которых вы сможете рассчитать сечение прямоугольных и круглых воздуховодов.

Формула для расчёта круглого сечения (диаметра) воздуховода

Формула для расчёта прямоугольного сечения  воздуховода

Калькулятор расчёта сечений прямоугольных и круглых воздуховодов через воздухообмен и скорость потока

Введите в поля параметры воздухообмена и требуемую скорость потока в воздуховоде

Задача организованного воздухообмена комнат жилого дома либо квартиры – вывести лишнюю влагу и отработанные газы, заместив свежим воздухом. Соответственно, для устройства вытяжки и притока нужно определить количество удаляемых воздушных масс – произвести расчет вентиляции отдельно по каждому помещению. Методики вычислений и нормы расхода воздуха принимаются исключительно по СНиП.

Санитарные требования нормативных документов

Минимальное количество воздуха, подаваемое и удаляемое из комнат коттеджа вентиляционной системой, регламентируется двумя основными документами:

  1. «Здания жилые многоквартирные» — СНиП 31-01-2003, пункт 9.
  2. «Отопление, вентиляция и кондиционирование» — СП 60.13330.2012, обязательное Приложение «К».

В первом документе изложены санитарно-гигиенические требования к воздухообмену в жилых помещениях многоквартирных домов. На этих данных и должен базироваться расчет вентиляции. Применяется 2 типа размерности – расход воздушной массы по объему за единицу времени (м³/ч) и часовая кратность.

Справка. Кратность воздухообмена выражается цифрой, обозначающей, сколько раз в течение 1 часа полностью обновится воздушная среда помещения.

Проветривание — примитивный способ обновления кислорода в жилище

В зависимости от назначения комнаты приточно-вытяжная вентиляция должна обеспечивать следующий расход либо количество обновлений воздушной смеси (кратность):

  • гостиная, детская, спальня – 1 раз в час;
  • кухня с электрической плитой – 60 м³/ч;
  • санузел, ванная, туалет – 25 м³/ч;
  • для топочной с твердотопливным котлом и кухни с газовой плитой требуется кратность 1 плюс 100 м³/ч в период работы оборудования;
  • котельная с теплогенератором, сжигающим природный газ, — трехкратное обновление плюс объем воздуха, потребного для горения;
  • кладовка, гардеробная и прочие подсобные помещения – кратность 0.2;
  • сушильная либо постирочная – 90 м³/ч;
  • библиотека, рабочий кабинет – 0.5 раз в течение часа.

Примечание. СНиП предусматривает снижение нагрузки на общеобменную вентиляцию при неработающем оборудовании либо отсутствии людей. В жилых помещениях кратность уменьшается до 0.2, технических – до 0.5. Неизменным остается требование к комнатам, где расположены газоиспользующие установки, — ежечасное однократное обновление воздушной среды.

Выброс вредных газов за счет природной тяги — самый дешевый и простой способ обновлять воздух

В п. 9 документа подразумевается, что объем вытяжки равен величине притока. Требования СП 60.13330.2012 несколько проще и зависят от числа людей, находящихся в помещении 2 часа и более:

  1. Если на 1 проживающего приходится 20 м² и более площади квартиры, в комнаты обеспечивается свежий приток в объеме 30 м³/ч на 1 чел.
  2. Объем приточного воздуха считается по площади, когда на 1 жильца приходится меньше 20 квадратов. Соотношение такое: на 1 м² жилища подается 3 м³ притока.
  3. Если в квартире не предусмотрено проветривание (отсутствуют форточки и открывающиеся окна), на каждого проживающего необходимо подать 60 м³/ч чистой смеси независимо от квадратуры.

Перечисленные нормативные требования двух различных документов вовсе не противоречат друг другу. Изначально производительность вентиляционной общеобменной системы рассчитывается по СНиП 31-01-2003 «Жилые здания».

Результаты сверяются с требованиями Свода Правил «Вентиляция и кондиционирование» и при необходимости корректируются. Ниже мы разберем расчетный алгоритм на примере одноэтажного дома, показанного на чертеже.

Определение расхода воздуха по кратности

Данный типовой расчет приточно-вытяжной вентиляции выполняется отдельно для каждой комнаты квартиры либо загородного коттеджа. Чтобы выяснить расход воздушных масс по зданию в целом, полученные результаты суммируются. Используется довольно простая формула:

Расшифровка обозначений:

  • L – искомый объем приточного и вытяжного воздуха, м³/ч;
  • S – квадратура помещения, где рассчитывается вентиляция, м²;
  • h – высота потолков, м;
  • n – число обновлений воздушной среды комнаты в течение 1 часа (регламентируется СНиП).

Пример вычисления. Площадь гостиной одноэтажного здания с высотой потолков 3 м составляет 15.75 м². Согласно предписаниям СНиП 31-01-2003, кратность n для жилых помещений равна единице. Тогда часовой расход воздушной смеси составит L = 15.75 х 3 х 1 = 47.25 м³/ч.

Важный момент. Определение объема воздушной смеси, удаляемой из кухни с газовой плитой, зависит от устанавливаемого вентиляционного оборудования. Распространенная схема выглядит так: однократный обмен согласно нормативам обеспечивает система естественной вентиляции, а дополнительные 100 м³/ч выбрасывает бытовая кухонная вытяжка.

Аналогичные расчеты делаются по всем остальным комнатам, разрабатывается схема организации воздухообмена (естественной или принудительной) и определяются размеры вентиляционных каналов (смотрим пример ниже). Автоматизировать и ускорить процесс поможет расчетная программа.

Онлайн-калькулятор в помощь

Программа считает требуемое количество воздуха по кратности, регламентируемой СНиП. Просто выберите разновидность помещения и введите его габариты.

Примечание. Для котельных с газовым теплогенератором калькулятор учитывает только трехкратный обмен. Количество приточного воздуха, идущего на сжигание топлива, нужно прибавлять к результату дополнительно.

Выясняем воздухообмен по числу жильцов

Приложение «К» СП 60.13330.2012 предписывает производить расчёт вентиляции помещения по простейшей формуле:

Расшифруем обозначения представленной формулы:

  • L – искомая величина притока (вытяжки), м³/ч;
  • m – объем воздушной чистой смеси в расчете на 1 чел., указанный в таблице Приложения «К», м³/ч;
  • N – количество людей, постоянно находящихся в рассматриваемой комнате 2 часа в день и более.

Очередной пример. Резонно предположить, что в той же гостиной одноэтажного дома два члена семьи пребывают длительное время. Учитывая, что проветривание организовано и на каждого жильца приходится свыше 20 квадратов площади, параметр m принимается равным 30 м³/ч. Считаем количество притока: L = 30 х 2 = 60 м³/ч.

Важно. Заметьте, полученный результат больше значения, определенного по кратности (47.25 м³/ч). В дальнейшие расчеты следует включить цифру 60 м³/ч.

Результаты подсчетов лучше сразу нанести на планировку этажа здания

Если количество проживающих в квартире настолько велико, что каждому человеку отведено меньше 20 м² (в среднем), то представленную выше формулу использовать нельзя. Правила указывают: в данном случае площадь гостиной и других комнат следует умножить на 3 м³/ч. Поскольку общая квадратура жилища равна 91.5 м², расчетный объем вентиляционного воздуха составит 91.5 х 3 = 274.5 м³/ч.

В просторных залах с высокими потолками (от 3 м) обновление атмосферы считается двумя способами:

  1. Если в помещении часто пребывает большое число людей, вычисляйте кубатуру подаваемого воздуха по удельному показателю 30 м³/ч на 1 чел.
  2. Когда количество посетителей постоянно меняется, вводится понятие обслуживаемой зоны высотой 2 метра от пола. Определяете объем этого пространства (умножьте площадь на 2) и обеспечиваете требуемую нормами кратность, как описано в предыдущем разделе.

Пример расчета и обустройства вентиляции

За основу возьмем планировку частного дома внутренней площадью 91.5 м² и перекрытиями высотой 3 м, представленного выше на чертеже. Как рассчитать количество вытяжки / притока на здание целиком согласно методике СНиП:

  1. Объем удаленного воздуха из гостиной и спальни, имеющей равную квадратуру, составит 15.75 х 3 х 1 = 47.25 м³/ч.
  2. В детской комнате: 21 х 3 х 1 = 63 м³/ч.
  3. Кухня: 21 х 3 х 1 + 100 = 163 м³/ч.
  4. Санузел – 25 м³/ч.
  5. Итого 47.25 + 47.25 + 63 + 163 + 25 = 345.5 м³/ч.

Примечание. Воздушный обмен в прихожей и коридоре не нормируется.

Наружная схема подачи воздуха и выброса вредных газов из комнат загородного дома

Теперь проверим результаты на соответствие второму нормативному документу. Поскольку в доме проживает семья из 4 человек (2 взрослых + 2 детей), в гостиной, спальне и детской долго находятся по 2 чел. Пересчитаем воздухообмен в указанных комнатах по количеству людей: 2 х 30 = 60 м³/ч (в каждом помещении).

Объем вытяжки из детской удовлетворяет требованиям (63 куба в час), а вот значения для спальни и гостиной придется откорректировать. Двум человекам недостаточно 47.25 м³/ч, берем 60 кубов и снова пересчитываем общую величину воздухообмена: 60 + 60 + 63 + 163 + 25 = 371 м³/ч.

Не менее важно правильно распределить воздушные потоки в здании. В частных коттеджах принято устраивать системы естественной вентиляции – это значительно дешевле и проще монтажа электрических нагнетателей с воздуховодами. Добавим лишь один элемент принудительного удаления вредных газов – кухонную вытяжку.

Пример организация воздухообмена в одноэтажном дачном доме

Как правильно организовать естественное движение потоков:

  1. Приток во все жилые помещения обеспечим через автоматические клапаны, встроенные в оконный профиль либо прямо в наружную стену. Ведь стандартные металлопластиковые окна герметичны.
  2. В перегородке между кухней и санузлом устроим блок из трех вертикальных шахт, выходящих на кровлю.
  3. Под межкомнатными дверьми предусмотрим зазоры шириной до 1 см для прохода воздуха.
  4. Установим кухонную вытяжку и подключим к отдельному вертикальному каналу. Она возьмет на себя часть нагрузки – удалит 100 кубов отработанных газов за 1 час в процессе готовки пищи. Останется 371 — 100 = 271 м³/ч.
  5. Две шахты выведем решетками в санузел и кухню. Размеры труб и высоту рассчитаем в последнем разделе данного руководства.
  6. За счет естественной тяги, возникающей в двух каналах, воздух устремится из детской, спальни и зала в коридор, а дальше — к вытяжным решеткам.

Обратите внимание: свежие потоки, изображенные на планировке, направляются из комнат с чистой воздушной средой в более загрязненные зоны, затем выбрасываются наружу через шахты.

Подробнее об организации природной вентиляции смотрите на видео:

Вычисляем диаметры вентканалов

Дальнейшие расчеты несколько сложнее, поэтому каждый этап мы сопроводим примерами вычислений. Результатом станет диаметр и высота вентиляционных шахт нашего одноэтажного здания.

Весь объем вытяжного воздуха мы распределили на 3 канала: 100 м. куб. принудительно удаляет вытяжка на кухне в период включения плиты, оставшийся 271 кубометр уходит по двум одинаковым шахтам естественным образом. Расход через 1 воздуховод получится 271 / 2 = 135.5 м³/ч. Площадь сечения трубы определяется по формуле:

  • F – площадь поперечного сечения вентканала, м²;
  • L – расход вытяжки через шахту, м³/ч;
  • ʋ — скорость движения потока, м/с.

Справка. Скорость воздуха в каналах естественной вентиляции лежит в пределах 0.5—1.5 м/с. В качестве расчетного значения принимаем средний показатель – 1 м/с.

Как рассчитать сечение и диаметр одной трубы в примере:

  1. Находим размер поперечника в квадратных метрах F = 135.5 / 3600 х 1 = 0.0378 м².
  2. Из школьной формулы площади круга определяем диаметр канала D = 0.22 м. Выбираем ближайший больший воздуховод из стандартного ряда – Ø225 мм.
  3. Если речь идет о заложенной внутрь стены кирпичной шахте, то под найденное сечение подойдет размер вентканала 140 х 270 мм (удачное совпадение, F = 0.0378 м. кв.).
Кирпичные шахты имеют строго фиксированные размеры — 14 х 14 и 27 х 14 см

Диаметр отводящей трубы под бытовую вытяжку считается аналогичным образом, только скорость потока, нагнетаемого вентилятором, принимается больше – 3 м/с. F = 100 / 3600 х 3 = 0.009 м² или Ø110 мм.

Подбираем высоту труб

Следующий шаг – определение силы тяги, возникающей внутри вытяжного блока при заданном перепаде высот. Параметр зовется располагаемым гравитационным давлением и выражается в Паскалях (Па). Расчетная формула:

  • p – гравитационное давление в канале, Па;
  • Н – перепад высот между выходом вентиляционной решетки и срезом вентканала над крышей, м;
  • ρвозд – плотность воздуха помещения, принимаем 1.2 кг/м³ при домашней температуре +20 °С.

Методика расчета основана на подборе требуемой высоты. Вначале определитесь, на сколько вы готовы поднять трубы вытяжки над кровлей без ущерба внешнему виду здания, затем подставьте значение высоты в формулу.

Пример. Берем перепад высот 4 м и получаем давление тяги p = 9.81 х 4 (1.27 — 1.2) = 2.75 Па.

Теперь грядет сложнейший этап – аэродинамический расчет отводных каналов. Задача – выяснить сопротивление воздуховода потоку газов и сопоставить результат с располагаемым напором (2.75 Па). Если потеря давления окажется больше, трубу придется наращивать либо увеличивать проходной диаметр.

Аэродинамическое сопротивление воздуховода вычисляется по формуле:

  • Δp – общие потери давления в шахте;
  • R – удельное сопротивление трению проходящего потока, Па/м;
  • Н – высота канала, м;
  • ∑ξ – сумма коэффициентов местных сопротивлений;
  • Pv – давление динамическое, Па.

Покажем на примере, как считается величина сопротивления:

  1. Находим значение динамического давления по формуле Pv = 1.2 х 1² / 2 = 0.6 Па.
  2.  Сопротивление от трения R находим по таблице, ориентируясь на показатели динамического напора 0.6 Па, скорости потока 1 м/с и диаметра воздухопровода 225 мм. R = 0.078 Па/м (обозначено зеленым кружочком).
  3. Местные сопротивления вытяжной шахты – это жалюзийная решетка и отвод кверху 90°. Коэффициенты ξ этих деталей – величины постоянные, равные 1.2 и 0.4 соответственно. Сумма ξ = 1.2 + 0.4 = 1.6.
  4. Окончательное вычисление: Δp = 0.078 Па/м х 4 м + 1.6 х 0.6 Па = 1.27 Па.

Теперь сравниваем расчетный напор, образующийся в воздухопроводе, и полученное сопротивление. Сила тяги p = 2.75 Па значительно больше, чем потери давления (сопротивление) Δp = 1.27 Па, шахта высотой 4 метра слишком высока, строить такую бессмысленно.

Поскольку цифры отличаются вдвое (грубо), укоротим вентканал до 2 м, снова произведем перерасчет:

  1. Располагаемое давление p = 9.81 х 2 (1.27 — 1.2) = 1.37 Па.
  2. Удельное сопротивление R и местные коэффициенты ξ остаются прежними.
  3. Δp = 0.078 Па/м х 2 м + 1.6 х 0.6 Па = 1.15 Па.

Напор природной тяги 1.37 Па превышает сопротивление системы Δp = 1.15 Па, значит, шахта двухметровой высоты станет исправно работать на естественную вытяжку и обеспечит нужный расход удаляемых газов.

Замечание. Укорачивать воздуховод до 1 м не стоит, соотношение изменится в другую сторону: p = 0.69 Па, Δp = 1.04 Па, силы тяги не хватит.

Канал вентиляции Ø225 мм можно разделить на 2 меньших трубы, но не по диаметру, а по сечению. Получаем 2 круглых вентканала 150—160 мм, как сделано на фото. Высота обеих шахт остается неизменной — 2 м.

Как упростить задачу — советы

Вы могли убедиться, что расчеты и организация воздухообмена в здании – вопросы довольно сложные. Мы постарались разъяснить методику в максимально доступной форме, но вычисления все равно выглядят громоздкими для рядового пользователя. Дадим несколько рекомендаций по упрощенному решению задачи:

  1. Первые 3 этапа придется пройти в любом случае – выяснить объем выбрасываемого воздуха, разработать схему движения потоков и посчитать диаметры вытяжных воздуховодов.
  2. Скорость потока принимайте не более 1 м/с и по ней определяйте сечение каналов. Аэродинамику одолевать необязательно — правильно рассчитайте диаметры и просто выведите воздухопроводы на высоту не менее 2 метров над заборными решетками.
  3. Внутри здания старайтесь использовать пластиковые трубы – благодаря гладким стенкам они практически не сопротивляются движению газов.
  4. Вентканалы, проложенные по холодному чердаку, обязательно утеплите.
  5. Выходы шахт не перекрывайте вентиляторами, как это принято делать в туалетах квартир. Крыльчатка не даст нормально функционировать природной вытяжке.

Для притока установите в помещениях регулируемые стеновые клапаны, избавьтесь от всех щелей, откуда холодный воздух может бесконтрольно проникать в дом.

Приточно вытяжные установки

Завод ВЕНТС выпускает огромный ассортимент приточно-вытяжных установок различных типоразмеров СЃ водяным Рё электрическим нагревателем.Подробнее…

Выставочный зал

Рндивидуальный РїРѕРґС…РѕРґ Рє каждому потребителю климатического оборудования

Склад готовой продукции

Завод имеет большие складские запасы вентиляционного оборудования . Подробнее…

Павильон продукции ВЕНТС

Продукция ВЕНТС представлена на выставке климатического оборудования

Сборочные площадя

Производственная площадка, сборка крышных вентиляторов

Рнжиниринг

Конструкторский цех разрабатывает и внедряет в производство новые модели климатического оборудования новых стандартов.

Продукция ВЕНТС

Вентс занимает лидирующие позиции в продаже вентиляционного оборудования в Украине

Новинки этого сезона

Новинки промышленной и бытовой вентиляции этого сезона

Роторный рекуператор

Роторный рекуператор новинка 2014 года с фреоновым охладителем

Содержание

Зачем нужен расчет диаметров воздухопроводов

Промышленная вентиляция проектируется с учетом нескольких фактов, на все существенное влияние оказывает сечение воздухопроводов.

  1. Кратность обмена воздуха. Во время расчетов принимаются во внимание особенности технологии, химический состав выделяемых вредных соединений, и габариты помещения.
  2. Шумность. Системы вентиляции не должны ухудшать условия труда по параметру шумности. Сечение и толщина подбирается таким образом, чтобы минимизировать шум воздушных потоков.
  3. Эффективность общей системы вентиляции. К одному магистральному воздухопроводу могут присоединяться несколько помещений. В каждом из них должны выдерживаться свои параметры вентиляции, а это во многом зависит от правильности выбора диаметров. Они выбираются с таким расчетом, чтобы размеры и возможности одного общего вентилятора могли обеспечивать регламентируемые режимы системы.
  4. Экономичность. Чем меньше размеры потерь энергии в воздуховодах, тем ниже потребление электрической энергии. Одновременно нужно принимать во внимание стоимость оборудования, выбирать экономически обоснованные габариты элементов.

Эффективная и экономичная система вентиляции требует сложных предварительных расчетов, заниматься этим могут только специалисты с высшим образованием. В настоящее время для промышленной вентиляции чаще всего используются пластиковые воздуховоды, они отвечают всем современным требованиям, дают возможность уменьшить не только габариты и себестоимость вентиляционной системы, но и затраты на ее обслуживание.

Пластиковая промышленная вентиляция

Расчет диаметра воздухопровода

Для расчетов габаритов нужно иметь исходные данные: максимально допустимую скорость движения воздушного потока и объем пропускаемого воздуха в единицу времени. Эти данные берутся из технических характеристик вентиляционной системы. Скорость движения воздуха оказывает влияние на шумность системы, а она строго контролируется санитарными государственными организациями. Объем пропускаемого воздуха должен отвечать параметрам вентиляторов и требуемой кратности обмена. Расчетная площадь воздухопровода определяется по формуле Sс = L × 2,778 / V, где:

Sс – площадь сечения воздуховода в квадратных сантиметрах; L – максимальная подача (расход) воздуха в м3/час; V – расчетная рабочая скорость воздушного потока в метрах за секунду без пиковых значений; 2,778 – коэффициент для перевода различных метрических чисел к значениям диаметра в квадратных сантиметрах.

Проектировщики вентиляционных систем учитывают следующие важные зависимости:

  1. При необходимости подачи одинакового объема воздуха уменьшение диаметра воздухопроводов приводит к возрастанию скорости воздушного потока. Такое явление имеет три негативных последствия. Первое – увеличение скорости движения воздуха увеличивает шумность, а этот параметр контролируются санитарными нормами и не может превышать допустимых значений. Второе – чем выше скорость движения воздуха, тем выше потери энергии, тем мощнее нужны вентиляторы для обеспечения заданных режимов функционирования системы, тем больше их размеры. Третье – небольшие габариты воздухопроводов не в состоянии правильно распределять потоки между различными помещениями.

Зависимость скорости воздуха от диаметра воздухопровода

  1. Неоправданное увеличение диаметров воздуховодов повышает цену вентиляционной системы, создает сложности во время монтажных работ. Большие размеры оказывают негативное влияние на стоимость обслуживания системы и себестоимость изготавливаемой продукции.

Чем меньше диаметр воздухопровода, тем быстрее скорость движения воздуха. А это не только повышает шумность и вибрацию, но и увеличивает показатели сопротивления воздушного потока. Соответственно, для обеспечения необходимой расчетной кратности обмена требуется устанавливать мощные вентиляторы, что увеличивает их размеры и экономически невыгодно при современных ценах на электрическую энергию.

При увеличении диаметров вышеописанные проблемы исчезают, но появляются новые – сложность монтажа и высокая стоимость габаритного оборудования, включая различную запорную и регулирующую арматуру. Кроме того, воздуховоды большого диаметра требуют много свободного места для установки, под них приходится проделывать отверстия в капитальных стенах и перегородках. Еще одна проблема – если они используются для обогрева помещений, то большие размеры воздуховода требуют увеличенных затрат на мероприятия по теплозащите, из-за чего дополнительно возрастает сметная стоимость системы.

В упрощенных вариантах расчетов принимается во внимание, что оптимальная скорость воздушных потоков должна быть в пределах 12–15 м/с, за счет этого удается несколько уменьшить их диаметр и толщину. В связи с тем, что магистральные воздуховоды в большинстве случаев прокладываются в специальных технических каналах, уровнем шумности можно пренебрегать. В ответвлениях, заходящих непосредственно в помещения, скорость воздуха уменьшается до 5–6 м/с, за счет чего уменьшается шумность. Объем воздуха берется из таблиц СаНиПина для каждого помещения в зависимости от его назначения габаритов.

Проблемы возникают с магистральными воздуховодами значительной протяженности на больших предприятиях или в системах с множеством ответвлений. К примеру, при нормируемом расходе воздуха 35000 м3/ч и скорости воздушного потока 8 м/с диаметр воздухопровода должен быть не менее 1,5 м толщиной более двух миллиметров, при увеличении скорости воздушного потока до 13 м/с габариты воздуховодов уменьшаются до 1 м.

Таблица потери давления

Потери давления

Диаметр ответвлений воздухопроводов рассчитывается с учетом требований к каждому помещению. Допускается использовать для них одинаковые размеры, а для изменения параметров воздуха устанавливать различные регулируемые дроссельные заслонки. Такие варианты вентиляционных систем позволяют в автоматическом режиме изменять показатели работы с учетом фактической ситуации. В помещениях не должно быть сквозняков, вызванных работой вентиляции. Создание благоприятного микроклимата достигается за счет правильного выбора места монтажа вентиляционных решеток и их линейных размеров.

Сами системы рассчитываются методом постоянных скоростей и методом потери давления. Исходя из этих данных, подбираются размеры, тип и мощность вентиляторов, рассчитывается их количество, планируются места установки, определяются размеры воздуховода.

Хотите узнать стоимость изделия?

Заполните наш опросный лист

ЗаполнитьСодержание статьи:

вентиляция необходима любому зданию

Хотя для расчетов вентиляции существует множество программ, многие параметры все еще определяются по старинке, с помощью формул. Расчет нагрузки на вентиляцию, площади, мощности и параметров отдельных элементов производят после составления схемы и распределения оборудования.

Это сложная задача, которая под силу лишь профессионалам. Но если необходимо подсчитать площадь некоторых элементов вентиляции или сечение воздуховодов для небольшого коттеджа, реально справиться самостоятельно.

Расчет воздухообмена

движение потоков воздуха при разных схемах вентиляции

Если в помещении нет ядовитых выделений или их объем находится в допустимых пределах, воздухообмен или нагрузка на вентиляцию рассчитывается по формуле:

R=n * R1,

здесь R1 – потребность в воздухе одного сотрудника, в куб.мчас, n – количество постоянных сотрудников в помещении.

Если объем помещения на одного сотрудника составляет больше 40 кубометров и работает естественная вентиляция, не нужно рассчитывать воздухообмен.

Для помещений бытового, санитарного и подсобного назначения расчет вентиляции по вредностям производится на основании утвержденных норм кратности воздухообмена:

  • для административных зданий (вытяжка) – 1,5;
  • холлы (подача) – 2;
  • конференц-залы до 100 человек вместимостью (по подаче и вытяжке) – 3;
  • комнаты отдыха: приток 5, вытяжка 4.

Для производственных помещений, в которых постоянно или периодически в воздух выделяются опасные вещества, расчет вентиляции производится по вредностям.

Воздухообмен по вредностям (парам и газам) определяют по формуле:

Q=K(k2-k1),

здесь К – количество пара или газа, появляющееся в здании, в мгч, k2 – содержание пара или газа в оттоке, обычно величина равна ПДК, k1 – содержание газа или пара в приточке.

Разрешается концентрация вредностей в приточке до 13 от ПДК.

Для помещений с выделением избыточного тепла воздухообмен рассчитывается по формуле:

Q=Gизбc(tyxtn),

здесь Gизб – избыточное тепло, вытягиваемое наружу, измеряется в Вт, с – удельная теплоемкость по массе, с=1 кДж, tyx – температура удаляемого из помещения воздуха, tn – температура приточки.

Расчет тепловой нагрузки

диаграмма тепловой нагрузки от общеобменной вентиляции

Расчет тепловой нагрузки на вентиляцию осуществляется по формуле:

Qв= Vн * k * p * Cр(tвн – tнро),

в формуле расчета тепловой нагрузки на вентиляцию  – внешний объем строения в кубометрах, k – кратность воздухообмена, tвн – температура в здании средняя, в градусах Цельсия, tнро – температура воздуха снаружи, используемая при расчетах отопления, в градусах Цельсия, р – плотность воздуха, в кгкубометр, Ср – теплоемкость воздуха, в кДжкубометр Цельсия.

Если температура воздуха ниже tнро снижается кратность обмена воздуха, а показатель расхода тепла считается равной , постоянной величиной.

Если при расчете тепловой нагрузки на вентиляцию невозможно уменьшить кратность воздухообмена, расход тепла рассчитывают по температуре отопления.

Расход тепла на вентиляцию

Удельный годовой расход тепла на вентиляцию рассчитывается так:

Q=[Qo – (Qb + Qs) * n * E] * b * (1-E),

в формуле для расчета расхода тепла на вентиляцию Qo – общие теплопотери строения за сезон отопления, Qb – поступления тепла бытовые, Qs – поступления тепла снаружи (солнце), n – коэффициент тепловой инерции стен и перекрытий, E – понижающий коэффициент. Для индивидуальных отопительных систем 0,15, для центральных 0,1b – коэффициент теплопотерь:

  • 1,11 – для башенных строений;
  • 1,13 – для строений многосекционных и многоподъездных;
  • 1,07 – для строений с теплыми чердаками и подвалами.

Расчет диаметра воздуховодов

воздуховоды различного диаметра и формы сечения

Диаметры и сечения воздуховодов вентиляции рассчитывают после того, как составлена общая схема системы. При расчетах диаметров воздуховодов вентиляции учитывают следующие показатели:

  • Объем воздуха (приточного или вытяжного), который должен пройти через трубу за заданный промежуток времени, куб.мч;
  • Скорость движения воздуха. Если при расчетах вентиляционных труб скорость движения потока занижена, установят воздуховоды слишком большого сечения, что влечет дополнительные расходы. Завышенная скорость приводит к появлению вибраций, усилению аэродинамического гула и повышению мощности оборудования. Скорость движения на притоке 1,5 – 8 мсек, она меняется в зависимости от участка;
  • Материал вентиляционной трубы. При расчете диаметра этот показатель влияет на сопротивление стенок. Например, наиболее высокое сопротивление оказывает черная сталь с шероховатыми стенками. Поэтому расчетный диаметр воздуховода вентиляции придется немного увеличить по сравнению с нормами для пластика или нержавейки.
Вид участкаСкорость потока, мс
Магистральные трубопроводыОт 6 до 8
Боковые отводкиОт 4 до 5
Распределительные трубопроводыОт 1,5 до 2
Верхние приточкиОт 1 до 3
ВытяжкиОт 1,5 до 3

Таблица 1. Оптимальная скорость воздушного потока в трубах вентиляции.

Когда известна пропускная способность будущих воздуховодов, можно рассчитать сечение воздуховода вентиляции:

S=R3600v,

здесь v – скорость движения воздушного потока, в мс, R – расход воздуха, кубометрыч.

Число 3600 – временной коэффициент.

Зная площадь сечения, можно рассчитать диаметр круглого воздуховода вентиляции:

здесь: D – диаметр вентиляционной трубы, м.

Если необходимо рассчитать диаметр вентиляционной трубы прямоугольного сечения, ее показатели подбирают исходя из полученной площади сечения круглой трубы.

Расчет площади элементов вентиляции

Расчет площади вентиляции необходим в том случае, когда элементы изготавливаются из листового металла и нужно определить количество и стоимость материала.

Площадь вентиляции рассчитывают электронные калькуляторы или специальные программы, их во множестве можно найти в интернете.

Мы приведем несколько табличных значений наиболее популярных элементов вентиляции.

Диаметр, ммДлина, м
11,522,5
1000,30,50,60,8
1250,40,60,81
1600,50,811,3
2000,60,91,31,6
2500,81,21,62
2800,91,31,82,2
31511,522,5

Таблица 2. Площадь прямых воздуховодов круглого сечения.

Значение площади в м. кв. на пересечении горизонтальной и вертикальной строчки.

Диаметр, ммУгол, град
1530456090
1000,040,050,060,060,08
1250,050,060,080,090,12
1600,070,090,110,130,18
2000,10,130,160,190,26
2500,130,180,230,280,39
2800,150,220,280,350,47
3150,180,260,340,420,59

Таблица 3. Расчет площади отводов и полуотводов круглого сечения.

Расчет диффузоров и решеток

диффузор в промышленной вентиляции

Диффузоры используются для подачи или удаления воздуха из помещения. От правильности расчета количества и расположения диффузоров вентиляции зависит чистота и температура воздуха в каждом уголке помещения. Если установить диффузоров больше, увеличится давление в системе, а скорость падает.

Количество диффузоров вентиляции рассчитывается так:

N=R(2820 * v* D * D),

здесь R – пропускная способность, в куб.мчас, v – скорость воздуха, мс, D – диаметр одного диффузора в метрах.

Количество вентиляционных решеток можно рассчитать по формуле:

N=R(3600 * v * S),

здесь R – расход воздуха в куб.мчас, v – скорость воздуха в системе, мс, S – площадь сечения одной решетки, кв.м.

Расчет канального нагревателя

электрический канальный нагреватель

Расчет калорифера вентиляции электрического типа производится так:

P=v * 0,36 * ∆T

здесь v – объем пропускаемого через калорифер воздуха в куб.м.час, ∆T – разница между температурой воздуха снаружи и внутри, которую необходимо обеспечить калориферу.

Этот показатель варьирует в пределах 10 – 20, точная цифра устанавливается клиентом.

Расчет нагревателя для вентиляции начинается с вычисления фронтальной площади сечения:

Аф=R * p3600 * Vp,

здесь R – объем расхода приточки, куб.м.ч, p – плотность атмосферного воздуха, кгкуб.м, Vp – массовая скорость воздуха на участке.

Размер сечения необходим для определения габаритов нагревателя вентиляции. Если по расчету площадь сечения получается чересчур большой, необходимо рассмотреть вариант из каскада теплобменников с суммарной расчетной площадью.

Показатель массовой скорости определяется через фронтальную площадь теплообменников:

Vp=R * p3600 * Aф.факт

Для дальнейшего расчета калорифера вентиляции определяем нужное для согрева потока воздуха количества теплоты:

Q=0,278 * W * c (Tп-Tу),

здесь W – расход теплого воздуха, кгчас, Тп – температура приточного воздуха, градусы Цельсия, Ту – температура уличного воздуха, градусы Цельсия, c – удельная теплоемкость воздуха, постоянная величина 1,005.

Так как в приточных системах вентиляторы размещаются перед теплообменником, расход теплого воздуха вычисляем так:

W=R * p

Рассчитывая калорифер вентиляции, следует определить поверхность нагрева:

Апн=1,2Qk(Tс.т-Tс.в),

здесь k – коэффициент отдачи калорифером тепла, Tс.т – средняя температура теплоносителя, в градусах Цельсия, Tс.в – средняя температура приточки, 1,2 – коэффициент остывания.

Расчет вытесняющей вентиляции

схема движения потоков воздуха при вытесняющей вентиляции

При вытесняющей вентиляции в помещении оборудуются рассчитанные восходящие потоки воздуха в местах повышенного выделения тепла. Снизу подается прохладный чистый воздух, который постепенно поднимается и в верхней части помещения удаляется наружу вместе с избытком тепла или влаги.

При грамотном расчете вытесняющая вентиляция намного эффективнее перемешивающей в помещениях следующих типов:

  • залы для посетителей в заведениях общепита;
  • конференц-залы;
  • любые залы с высокими потолками;
  • ученические аудитории.

Рассчитанная вентиляция вытесняет менее эффективно если:

  • потолки ниже 2м 30 см;
  • главная проблема помещения – повышенное выделение тепла;
  • необходимо понизить температуру в помещениях с низкими потолками;
  • в зале мощные завихрения воздуха;
  • температура вредностей ниже, температуры воздуха в помещении.

Вытесняющая вентиляция рассчитывается исходя из того, что тепловая нагрузка на помещение составляет 65 – 70 Вткв.м, при расходе до 50 л на кубометр воздуха в час. Когда тепловые нагрузки выше, а расход ниже, необходимо организовывать перемешивающую систему, комбинированную с охлаждением сверху.

Видеоролик расскажет о компактной вентиляционной установке, работающей по принципу вытеснения:

Используемые источники:

  • https://torvent.ru/raschyot_ventilyacii/
  • https://otivent.com/raschet-ventiljacii-pomeshhenija
  • http://vent.vn.ua/propusknaya-sposobnost-ventilyatsionnykh-kanalov.html
  • https://plast-product.ru/vyibor-i-raschet-diametra-vozduhovoda/
  • https://strojdvor.ru/ventilyaciya/raschet-sistemy-ventilyacii-i-ee-otdelnyx-elementov-ploshhadi-diametrov-trub-parametrov-nagrevatelej-i-diffuzorov/

Расчет вентиляции

При выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:
Производительность по воздуху 
Мощность калорифера
Рабочее давление, создаваемое вентилятором 
Скорость потока воздуха и площадь сечения воздуховодов 
Допустимый уровень шума

Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

Производительность по воздуху

Проектирование системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь. Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении. Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час. Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами). Так, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен.

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

Расчет воздухообмена по кратности:
L = n * S * H, где
       L — требуемая производительность приточной вентиляции, м3/ч;
       n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;
       S — площадь помещения, м2;
       H — высота помещения, м;

Расчет воздухообмена по количеству людей:
L = N * Lнорм, где
       L — требуемая производительность приточной вентиляции, м3/ч;
       N — количество людей;
       Lнорм — норма расхода воздуха на одного человека:
в состоянии покоя — 20 м3/ч;
работа в офисе — 40 м3/ч;
при физической нагрузке — 60 м3/ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования. Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции:
Для квартир — от 100 до 500 м3/ч;
Для коттеджей — от 1000 до 2000 м3/ч;
Для офисов — от 1000 до 10000 м3/ч.

 

Мощность калорифера

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температуры воздуха на выходе системы и минимальной температуры наружного воздуха. Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоны и для Москвы принимается равной -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.

При расчете мощности калорифера необходимо учитывать следующие ограничения:
Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.

Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:
I = P / U, где
       I — максимальный потребляемый ток, А;
       Р — мощность калорифера, Вт;
       U — напряжение питание:
220 В — для однофазного питания;
660 В (3 × 220В) — для трехфазного питания.

Температуру, на которую калорифер заданной мощности сможет нагреть приточный воздух, можно рассчитать по формуле:
ΔT = 2,98 * P / L, где
       ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;
       Р — мощность калорифера, Вт;
       L — производительность вентиляции, м3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить водяной калорифер, который использует в качестве источника тепла воду из системы центрального или автономного отопления.

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов. Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм.

Для точного расчета схемы вентиляции и воздухораспределительной сети, а также для разработки проекта вентиляции обращайтесь к нашим менеджерам.

Измерение расхода воздуха с помощью анемометра

Применение анемометра позволяет практически точно определить расход воздуха. При использовании устройства диаметром 60–100 mm можно достичь минимальной погрешности измерений при определении скорости на вентиляционной решетке. Если предстоит снятие показателей внутри воздуховода, следует использовать анемометр с небольшим диаметром: в пределах 16–25 mm. Для определения скорости в труднодоступных участках воздуховодов рекомендуется воспользоваться телескопическим зондом.

Определение расхода воздуха

Этап первый. Определение зоны для создания рабочего отверстия. Основное требование — это должен быть прямой участок, минимальная длина которого составляет 5d, расстояние от изгиба трубы до точки сверления — не менее 3d, и до следующей смены направления — от 2d и более. (для справки: d=диаметр воздуховода). Важно! Необходимо позаботиться о том, чтобы диаметр отверстия совпадал с размером зонда.

Этап второй. Проведение нескольких измерений, количество определяется согласно ГОСТ 12.3.018–79. Расчет усредненной скорости в некоторых типах анемометров осуществляется автоматически. Если подобная функция отсутствует, рассчитать среднеарифметическое значение придется самостоятельно.

Полезные рекомендации

При осуществлении измерений стоит учитывать ряд ограничений.
Не использовать термоанемометры при предполагаемой скорости рабочей среды свыше 20 м/с, так как это может привести к повреждению датчика.
Трубку Пито не рекомендуется эксплуатировать в рабочей среде с большим количеством засоренности, аналогичное требование выдвигается и в отношении термоанемометра.

Ознакомление с рекомендациями изготовителя обязательно, так как каждое измерительное устройства рассчитано на эксплуатацию в определенных условиях. Игнорирование этих требований часто приводит к поломке прибора.

В газопроводах с высокой температурой рабочей среды недопустимо использование устройств, содержащих элементы из пластика, так как он с большой вероятностью может деформироваться.

Для расчета объемного расхода воздуха следует полученную скорость умножить на площадь сечения трубопровода. Есть и еще один существенный момент.

Для точного определения скорости следует воспользоваться формулой:
V=Vср.изм.+t*.+p* Vср. изм
Значения t и p необходимо взять из таблицы:
 

Температура воздуха p t Pa
50 0,03 0,05 720
40 0,02 0,03 730
30 0,01 0,02 740
20 0,01 0 750
10 0 -0,02 760
0 -0,01 -0,03 770
-10 -0,01 -0,05 780
-20 -0,07
-30 -0,09
-40 -0,11
-50 -0,13

Поправки на давление воздуха и его температуру позволяют уменьшить погрешность измерений. Для расчета площади сечения следует использовать формулу:
S=π(d/2)2
Объемный расход:
L=F*Vсредняя
При измерении скорости воздуха важно правильно расположить датчик устройства. Чем больше его отклонение от рекомендованного, тем существеннее будет погрешность расчетов.

Все публикации
Архив по годам: 2015; 2016;

Устройство для измерения скорости в воздуховоде: дифманомер, балометр, анемомет

Система вентиляции — очень сложная система, которая состоит из многих функциональных составляющих, от воздуховодов до вентиляционных агрегатов. Учитывая то, что для правильной работы такой системы берут во внимание множество показателей, выполнение любого более-менее серьезного проекта системы вентиляции и кондиционирования  не обойдется без применения измерительных приборов. А измерение скорости в воздуховодах играет одну из важнейших ролей, для правильного функционирования системы.

Содержание статьи:

Зачем измеряют скорость воздуха

Для систем вентиляции и кондиционирования одним из важнейших факторов является состояние подаваемого воздуха. То есть, его характеристики.

К основным параметрам воздушного потока относятся:

  • температура воздуха;
  • влажность воздуха;
  • расход количества воздуха;
  • скорость потока;
  • давление в воздуховоде;
  • другие факторы (загрязненность, запыленность…).

В СНиПах и ГОСТах описаны нормированные показатели для каждого из параметров. В зависимости от проекта величина этих показателей может изменятся в рамках  допустимых норм.

Скорость в воздуховоде строго не регламентируется нормативными документами, но в справочниках проектировщиков можно найти рекомендуемые значение этого параметра. Узнать как рассчитать скорость в воздуховоде, и ознакомится с ее допустимыми значениями можно прочитав данную статью. 

Например, для гражданских зданий рекомендуемая скорость движения воздуха по магистральным каналам вентиляции лежит в пределах 5-6 м/с. Правильно выполненный аэродинамический расчет решит задачу подачи воздуха с необходимой скоростью.

Но для того чтобы постоянно соблюдать этот режим скорости, нужно время от времени контролировать скорость перемещения воздуха. Почему? Через некоторое время воздуховоды, каналы вентиляции загрязняются, оборудование может давать сбои, соединения воздуховодов разгерметизируются. Так же, измерения необходимо проводить при плановых проверках, чистках, ремонтах, в общем, при обслуживании вентиляции. Помимо этого, измеряют также скорость движения дымовых газов и др.

Каким прибором измеряют скорость движения воздуха

Все устройства такого типа компактны и несложны в использовании, хотя и тут есть свои тонкости.

Прибор для измерения скорости воздуха называется анемометром

Приборы для измерения скорости воздуха:

  • Крыльчатые анемометры
  • Температурные анемометры
  • Ультразвуковые анемометры
  • Анемометры с трубкой Пито
  • Дифманометры
  • Балометры

Крыльчатые анемометры одни из самых простых по конструкции устройств. Скорость потока определяется скоростью вращения крыльчатки прибора.

Температурные анемометры имеют датчик температуры. В нагретом состоянии он помещается в воздуховод и по мере его остывания определяют скорость воздушного потока.

Ультразвуковыми анемометрами в основном измеряют скорость ветра. Они работают по принципу определения разницы частоты звука в выбранных контрольных точках воздушного потока.

Анемометры с трубкой Пито оснащены специальной трубкой малого диаметра. Ее помещают в середину воздуховода, тем самым измеряя разницу полного и статического давления. Это одни из самых популярных устройств для измерения воздуха в воздуховоде, но при этом у них есть недостаток — невозможность использования, при высокой концентрации пыли.

Дифманометры могут измерять не только скорость, а и расход воздуха. В комплекте из трубкой Пито, этим устройством можно измерять потоки воздуха до 100 м/с.

Балометры наиболее эффективны при измерениях скорости воздуха на выходе из вентиляционных решеток и диффузоров. Они имеют раструб, который захватывает весь воздух, выходящий из вент-решетки, тем самым сводя погрешность измерения к минимуму.

Особенности измерений скорости воздуха

Существуют некоторые нюансы работы с анемометрами разных видов. Как уже упоминалось, анемометры с трубкой Пито нельзя использовать при высоких концентрациях твердых частичек, иначе трубка быстро засоряется, а прибор выходит из строя. Термоанемометры не работают в условиях измерения высоких скоростей воздушного потока — свыше 20 м/с. При измерения скорости в нагретых воздушных потоках (например в газоходах) рекомендуется использовать трубку не из пластика, а из нержавеющей стали.

Как проводят измерения

Измерения скорости воздуха можно проводить в воздуховодах, на выходе из воздуховодов, в вентиляционных решетках или диффузорах.

Когда измерение скорости проводят непосредственно в воздуховоде, то место измерения должно находится после прохождения потока через фильтры. На воздуховоде следует найти специальное отверстие, которое предназначено для контрольно-измерительных операций (такие отверстия часто закрывают питометражной заглушкой). Также можно использовать очистной лючок.

[important] Следует помнить, что отверстие для контрольно-измерительных операций должно находится на прямом участке воздуховода. Его длинна не менее 5 диаметров воздуховода [/important]

При произведении замеров трубкой Пито, ее вставляют в воздуховод, направляя против потока воздуха.

Заключение

С помощью современных приборов для измерения скорости воздуха можно точно и быстро определить характеристики воздушного потока  с минимальной погрешностью, что позволит легко произвести техническое обслуживание системы вентиляции.

Читайте также:

Как посчитать давление воздуха в воздуховоде. Распределение давлений в системах вентиляции. Метод допустимых скоростей

Назначение

Основное требование
БесшумностьМин. потери напора
Магистральные каналыГлавные каналыОтветвления
ПритокВытяжкаПритокВытяжка
Жилые помещения35433
Гостиницы57.56.565
Учреждения686.565
Рестораны79776
Магазины89776

Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

150200250300350400450500
250210245275
300230265300330
350245285325355380
400260305345370410440
450275320365400435465490
500290340380425455490520545
550300350400440475515545575
600310365415460495535565600
650320380430475515555590625
700390445490535575610645
750400455505550590630665
800415470520565610650685
850480535580625670710
900495550600645685725
950505560615660705745
1000520575625675720760
1200620680730780830
1400725780835880
1600830885940
1800870935990

По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 3. Потери давления на изгибах

Для определения потерь давления в диффузорах используются данные из таблицы № 4.

Табл. № 4. Потери давления в диффузорах

В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.

Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции


Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.

Расчёт вентиляции это расчёт воздуховодов и вентиляционных каналов в системах приточной и вытяжной вентиляции . Вентиляция служит для подачи и удаления воздуха с температурой до 80°С. Расчёт производится по методу удельных потерь давления. Общие потери давления, кгс/м², в сети воздуховодов для стандартного воздуха (t = 20°C и γ = 1,2 кг/м³) определяются по формуле:

p =∑(Rl+Z),

где R- потери давления на трение на расчётном отрезке кгс/м² на 1 м; l- длинна отрезка воздуховода, м; Z- потери давления на местные сопротивления на расчётном отрезке, кгс/м².

Потери давления на трение R, кгс/м² на 1 м в круглых воздуховодах определяются по формуле R= λd v²γ2g , где λ- коэффициент сопротивления трения; d – диаметр воздуховода, м; v – скорость движения воздуха в воздуховоде, м/с; γ — объемная масса воздуха, перемещаемая по воздуховоду, кгс/м³; v²γ/2g- скоростное (динамическое) давление, кгс/м².

Коэффициент сопротивления принят по формуле Альтшуля:

где Δэ- абсолютная эквивалентная шероховатость поверхности воздуховода из листовой стали, равная 0,1 мм; d – диаметр воздуховода, мм; Re- число Рейнольдса.

Для воздуховодов изготовленных из других материалов с абсолютной эквивалентной шероховатостью Кэ≥0,1 мм значения R принимаются с поправочным коэффициентом n на потери давления на трение.

Значение Δэ для других материалов:

  1. Листовая сталь — 0,1мм
  2. Винипласт – 0,1мм
  3. Асбестоцементные трубы – 0,11мм
  4. Кирпич – 4мм
  5. Штукатурка по сетке – 10мм

Рекомендуемая скорость движения воздуха в воздуховодах при механическом побуждении. Производственные здания магистральные воздуховоды – до 12 м/с, воздуховоды ответвления – 6 м/с. Общественные здания магистральные воздуховоды – до 8 м/с, воздуховоды ответвления – 5 м/с.

В воздуховодах прямоугольного сечения за расчётную величину d принимается эквивалентный диаметр dэv, при котором потери давления в круглом воздуховоде при той же скорости воздуха равны потерям в прямоугольном воздуховоде. Значения эквивалентных диаметров, м, определены по формуле

где А и В – размеры сторон прямоугольного воздуховода. Стоит учитывать, что при равной скорости воздуха прямоугольный воздуховод и аналогичный круглый имеют разные расходы воздуха. Значение скоростного (динамического) давления и удельные потери давления на трение для круглых воздуховодов.

Потери давления на трение кгс/м²

Потери давления Z, кгс/м², на местные сопротивления определяют по формуле

Z = ∑ζ(v²γ/2g),

где ∑ζ- сумма коэффициентов местных сопротивлений на расчётном отрезке воздуховода. Если температура перемещаемого воздуха не равна 20°C на потери давления, посчитанные по формуле p =∑(Rl+Z), требуется вводить поправочные коэффициенты K1 – трение, K2 – местные сопротивления.

Если неувязки потерь давления по ответвлениям воздуховодов в пределах 10% следует устанавливать ирисовые клапаны.

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l — длина воздуховода в метрах, z — потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x — коэффициент сопротивления трения, l — длина воздуховода в метрах, d — диаметр воздуховода в метрах, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q — сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Назначение

Основное требование

Бесшумность

Мин. потери напора

Магистральные каналы

Главные каналы

Ответвления

Приток

Вытяжка

Приток

Вытяжка

Жилые помещения

Гостиницы

Учреждения

Рестораны

Магазины

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной — его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Определение скорости движения воздуха в воздуховодах:

V= L / 3600*F (м/сек)

где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.

Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

Пример расчета вентиляционной системы:

Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1: расход воздуха будет составлять 220 м3/ч. Принимаем диаметр воздуховода равным 200 мм, скорость – 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м3/ч. Принимаем диаметр воздуховода равным 250 мм, скорость – 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3: расход воздуха через этот участок будет составлять 1070 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

Участок 4: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость – 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример . Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Определение потерь давления на изгибах воздухуводов.

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый или . Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Рекомендуемая скорость движения воздуха в воздуховодах:

Определение скорости движения воздуха в воздуховодах:


V= L / 3600*F (м/сек)

где L — расход воздуха, м 3 /ч;
F — площадь сечения канала, м 2 .

Рекомендация 1.
Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

Рекомендация 2.
В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

Пример расчета вентиляционной системы:
Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1: расход воздуха будет составлять 220 м 3 /ч. Принимаем диаметр воздуховода равным 200 мм, скорость — 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м 3 /ч. Принимаем диаметр воздуховода равным 250 мм, скорость — 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3: расход воздуха через этот участок будет составлять 1070 м 3 /ч.
Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

Участок 4: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость — 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.

Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.

Определение потерь давления в воздуховодах.

Определение потерь давления в обратном клапане.

Подбор необходимого вентилятора.


Определение потерь давления в шумоглушителях.

Определение потерь давления на изгибах воздухуводов.


Определение потерь давления в диффузорах.



Проектирование системы вентиляции — расчет производительности, выбор вентилятора

Чтобы обеспечить качественное вентилирование дома, мало лишь выбрать любую понравившуюся систему вентиляции – необходимо выяснить, какой объем воздуха будет выводиться из помещений, и сколько свежего воздуха надо поставлять с улицы.

Говоря иначе, необходимо проектирование системы вентиляции, целью которого является узнать оптимальный воздухообмен дома, и уже исходя из этих данных подобрать систему вентиляции: вентиляторы определенной мощности, каналы и т.д.

Содержание

  1. Определение производительности по воздуху
  2. Выбор вентилятора и калорифера
  3. Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

 

Расчет вентиляции – это ответственная и сложная работа проектировщиков, выполнение которой требует высокой квалификации.  

 

 

Проектируя системы вентиляции, необходимо найти оптимальное соотношение между мощностью вентилятора, уровнем шума и диаметром воздуховодов.

 

При выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:

 

 Производительность по воздуху;

• Скорость потока воздуха и площадь сечения воздуховодов;

• Мощность калорифера;

• Рабочее давление, создаваемое вентилятором;

• Допустимый уровень шума.

 

Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

 

Определение производительности по воздуху

 

Производительность по воздуху, измеряемая в кубометрах в час, показывает величину воздухообмена, который должен быть обеспечен в помещении.

 Определяется данная величина от кратности воздухообмена, то есть от того, сколько раз в час происходит полная замена воздуха.

Зависит кратность воздухообмена от назначения помещения, его размеров, наличия в нем людей и различного производственного оборудования.

Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь.

 

Определение производительности по воздуху

Производительность будущей вентиляционной системы по воздуху можно (и нужно) определять двумя способами.

 

1. По кратности воздухообмена:

L = n * S * H

где

n – кратность воздухообмена в соответствии с требованиями ГОСТ и СНиП;

S – площадь помещения, м.кв.;

H – высота потолочного перекрытия, м.

Так, например, для жилого помещения объемом 200 м3 зачастую достаточно однократного обмена воздуха, а для производственного цеха такого же объема воздух должен заменяться 2-3 раза в час.

 

2. По количеству людей:

L = N * Lнорм

где

N – предполагаемое количество находящихся в помещении людей;

Lнорм — часовой расход воздуха из расчета на одного человека, м3/ч.

Lнорм регламентируется Строительными Нормами и Правилами. Для людей, находящихся в состоянии покоя (жилые квартиры и дома), Lнорм соответствует 20 м3/ч; для работников офиса Lнорм=40 м3/ч, а для работников физического труда Lнорм=60 м3/ч.

 

Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час.

 

Так, для большинства жилых помещений, достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен.

Если это офисное помещение 100 кв.м. и в нем работает 50 человек (допустим операционный зал), то для обеспечения вентиляции необходима подача около 3000 м3/ч.

 

Расчет воздуховодов вентиляции производят на основании большего значения, полученного по одной из выше приведенных формул.

 

 

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности.

 

При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора.

Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования.

 

 

участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

 

 

Типичные значения производительности систем вентиляции:

Для квартир — от 100 до 600 м3/ч;

Для коттеджей — от 1000 до 3000 м3/ч;

Для офисов — от 1000 до 20000 м3/ч.

 

 

 

Выбор вентилятора и калорифера

 

Скорость воздуха

 

Важным параметром для расчета вентиляции является допустимая скорость воздушного потока.

Для комфортного регулирования воздухообмена от скорости воздуха зависит площадь поперечного сечения воздуховодов.

 

Согласно справочной литературе при проектировании воздуховодов систем вентиляции руководствуются следующими значениями скорости воздушного потока:

— жилые и общественные помещения – 1,5…5 м/сек;

— производственные площади – до 12 м/сек.

Зная кратность воздухообмена и максимально допустимую скорость воздушного потока, можно определить площадь поперечного сечения воздуховодов.

 

Выбор воздуховодов

 

После определения сечения воздуховодной магистрали приступают к выбору воздуховодов по геометрическим параметрам. Форма воздуховодов в поперечном сечении может быть круглой или прямоугольной (реже овальной или квадратной). По площади воздуховода и форме сечения выбирают типоразмер вентиляционного канала.

 

В прямоугольных воздуховодах, для уменьшения потерь давления и снижению шума, соотношение сторон должно не превышать значение три к одному (3:1). При выборе сечения воздуховодов нужно руководствоваться тем, что скорость в магистральном воздуховоде должна быть до 5 м/с, а в ответвлениях до 3 м/с. Рассчитать размеры сечения воздуховода можно определяются по диаграмме приведенной ниже.


                          Диаграмма зависимости сечения воздуховодов от скорости и расхода воздуха

На диаграмме горизонтальные линии отображают значение расхода воздуха, а вертикальные линии – скорость.

Косые линии соответствуют размерам воздуховодов.


Подбираем сечение ответвлений магистрального воздуховода (которые заходят непосредственно в каждую комнату) и самого магистрального воздуховода для подачи воздуха расходом L=360 м3/час. 


Если воздуховод с естественной вытяжкой воздуха, то нормируемая скорость движения воздуха в нем не должна превышать 1м/час. Если же воздуховод с постоянно работающей механической вытяжкой воздуха, то скорость движения воздуха в нем выше и не должна превышать 3 м/с (для ответвлений) и 5 м/с для магистрального воздуховода.

Подбираем сечение воздуховода при постоянно работающей механической вытяжке воздуха.


Слева и справа на диаграмме обозначены расходы, выбираем наш (360 м3/час).

Далее, движемся по горизонтали до пересечения с вертикальной линией соответствующей значению 5 м/с (для максимального воздуховода).

Теперь, по линии скорости опускаемся вниз до пересечения с ближайшей линией сечения.

Получили, что сечение нужного нам магистрального воздуховода 100х200 мм или Ø150 мм.

Для подбора сечения ответвления движемся от о расхода 360 м3/час по прямой до пересечения со скоростью 3 м3/час.

Получаем сечение ответвления 160х200 мм или Ø 200 мм.

Эти диаметры будут достаточными при установке только одного вытяжного канала, например на кухне.

Если же в доме будет установлено 3 вытяжных вентканала, например в кухне, санузле и ванной комнате (помещения с самым загрязненным воздухом), то суммарный расход воздуха, который нужно отвести мы делим на количество вытяжных каналов, т. е. на 3. И уже на эту цифру подбираем сечение воздуховодов.
 

 

 

Выбор вентилятора

 

После расчета требуемого воздухообмена можно выбрать вентилятор соответствующей производительности. При этом необходимо оставлять запас по мощности, так как система воздуховодов оказывает определенной сопротивление воздушным потокам

 

При выборе вентилятора для канальной системы вентиляции следует учитывать, что сеть воздуховодов в любом случае будет иметь потери давления по следующим причинам:

— разгерметизация в местах стыков отдельных элементов воздуховода между собой и с канальным оборудованием;

— местные аэродинамические сопротивления (фильтры, рекуператоры, разветвления и пр.).

 

Чем длиннее и разветвленней вентиляционная магистраль, тем большими будут потери, соответственно, вентилятор нужно выбирать мощнее.

Однако слишком мощный вентилятор приведет к неоправданным эксплуатационным затратам, в частности к повышенному расходу электроэнергии.

От правильного выбора вентилятора будет зависеть эффективность работы всей системы канальной вентиляции.

Ориентировочно для вентиляционных сетей средней протяженности можно выбрать такой вентилятор, чтобы он с требуемой производительностью по воздуху справлялся на 90% своей мощности. Остальные 10% оставляются «про запас» — на будущую разгерметизацию и ухудшение аэродинамики за счет загрязнения воздуховодов.

 

 

Есть еще один момент, который желательно учитывать при выборе вентилятора.

Вентилятор является основным источником шума и вибраций в вентиляционной сети.

Чем больше диаметр лопастей, тем выше их линейная скорость (на крайних точках лопаток при одной и той же частоте вращения рабочего колеса).

Другими словами, чем меньше диаметр рабочего колеса вентилятора, тем меньше вибраций и шума он будет создавать.

 

Остальное канальное оборудование выбирается по своим характеристикам в зависимости от назначения и условий эксплуатации системы вентиляции.

 

Для квартир обычно выбираются вентиляторы производительностью не более 500 м3/ч, а для производственных цехов и крупных офисных помещения эта величина может доходить 10000 м3/ч.

 

 

После выбора вентилятора необходимо определиться с типом и мощность калорифера.

 

Мощность калорифера

 

Предназначен он для подогрева поступающего в вентиляционную систему наружного воздуха в зимний период.

Как правило, нагрев такого воздуха осуществляется до +16-18°С. В зависимости от способа нагрева воздуха, различают водяные и электрические калориферы. 

Водяные, в которых нагрев воздуха осуществляется за счет системы отопления здания, используются в основном в том случае, когда электрические по тем или иным причинам использовать невозможно.

 

Мощность калорифера рассчитывается исходя из производительности, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха.

Два последних параметра определяются СНиП.

 

При этом приточная система желательно должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года, дабы не платить большие счета за электричество (если стоит электрический калорифер, возможно обустройство водяного калорифера).

При расчете мощности калорифера необходимо учитывать следующие ограничения:

Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.

 

Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:

I = P / U, где

I — максимальный потребляемый ток, А;

Р — мощность калорифера, Вт;

U — напряжение питание:

220 В — для однофазного питания;

660 В (3 × 220В) — для трехфазного питания.

 

В случае если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:

ΔT = 2,98 * P / L, где

 

ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;

Р — мощность калорифера, Вт;

L — производительность по воздуху, м3/ч.

 

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов.

 

Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер).

 

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

 

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров).

Расчет воздухораспределительной сети начинают с составления схемы воздуховодов.

Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

 

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха.

Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором.

Проводим аэродинамический расчет, находим внешнее давление сети воздуховодов.

 

От диаметра воздуховодов зависит скорость потока воздуха.

Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума.

В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. А межпотолочное пространство любят уменьшать.

Для снижения этих значений до допустимых нормативов оптимальным образом подбирается мощность оборудования и конфигурация трассы.

Также дополнительно на выходе вентилятора может быть установлен специальный поглотитель шума.

 

Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм.

 

 

Измерение поперечного воздушного потока в воздуховоде | Fluke

Правильный поток воздуха в воздуховодах ОВК имеет важное значение для хорошей работы оборудования. Когда потоки воздуха неправильные, воздух не может быть кондиционирован должным образом, эксплуатационные расходы повышаются, а ожидаемый срок службы оборудования сокращается.

Многие обстоятельства требуют измерения скорости или расхода воздуха, и пересечение воздуховода является наиболее точным методом получения этой информации. Траверс воздуховода состоит из ряда равномерно распределенных измерений скорости и давления воздуха по всей площади поперечного сечения прямого воздуховода (диаграмму см. В этой направляющей воздушного потока).В этой заметке по применению объясняется, как это сделать.

Проведение пересечения воздуховода

Для максимальной точности воздушного потока снимите несколько показаний в плоскости пересечения, преобразуйте их в скорость и затем усредните их. На рисунке 1 показаны точки вдоль плоскости траверсы, в которых следует проводить измерения, в прямоугольных или круглых воздуховодах.

Измерьте расход воздуха как минимум в 25 точках, независимо от размера воздуховода.

  • Для сторон воздуховода короче 30 дюймов необходимо взять пять точек пересечения (по 5 с каждой стороны, 5 * 5 = 25).
  • Для сторон воздуховода от 30 до 36 дюймов необходимо снять шесть точек.
  • Для сторон воздуховода более 36 дюймов необходимо снять семь точек.
  • Если сторона воздуховода меньше 18 дюймов, то любые показания, которые вы снимаете, следует снимать из центра равных участков, которые находятся на расстоянии не более 6 дюймов друг от друга, с минимум двумя точками на каждую сторону воздуховода.

Предпочтительное расположение траверсы в приточном воздуховоде должно быть на прямом участке воздуховода с 10 прямыми эквивалентными диаметрами воздуховода на входе и 3 эквивалентными прямыми диаметрами воздуховода после плоскости траверсы, хотя минимум 5 эквивалентных диаметров воздуховода на входе. и 1 воздуховод эквивалентного диаметра ниже по потоку может дать адекватные результаты.

Когда траверса расположена рядом с вентилятором, условия потока обычно более благоприятны выше по потоку на стороне возврата. Траверса на стороне входа должна составлять 0,5 эквивалентного диаметра воздуховода перед входом вентилятора.

Эквивалентный диаметр воздуховода = √ (4HV / π)
H = горизонтальный размер воздуховода
V = вертикальный размер воздуховода
π = 3,14

Установка измерительного устройства

Чтобы определить глубину погружения измерительного устройства, см. Следующие таблицы .Предположим, у нас есть образец воздуховода со сторонами размером 24 x 15 дюймов. Для стороны 24 дюйма нашего образца прямоугольного воздуховода обратитесь к строке «5 линий пересечения».

Правило Лога-Чебышева для прямоугольных воздуховодов
Количество точек или линий пересечения Положение относительно внутренней стены
5 0,074, 0,288, 0,500, 0,712, 0,926
6 0,061, 0,235, 0,437, 0,563, 0,765, 0,939
7 0.053, 0,0203, 0,366, 0,500, 0,634, 0,797, 0,947
Правило Лог-Чебычева для воздуховодов круглого сечения
Число точек на диаметр Положение относительно внутренней стенки
6 0,032, 0,135, 0,321, 0,679, 0,865, 0,968
8 0,021, 0,117, 0,184, 0,345, 0,655, 0,816, 0,883, 0,981
10 0,019, 0,153, 0,217, 0,361, 0,639 , 0.783, 0,847, 0,923, 0,981

Обратите внимание на пять множителей, перечисленных в разделе «Положение относительно внутренней стены». Умножьте размер воздуховода (24 дюйма) на числа в таблице, чтобы получить различную глубину погружения для этой стороны воздуховода. Например, ближайшее к внутренней стене положение будет: 0,074 * 24 дюйма = 1,78 дюйма, и и т. д. Для стороны 15 дюймов следуйте приведенным выше текстовым инструкциям по выполнению измерений, когда стороны воздуховода меньше 18 дюймов.

Пошаговое руководство

Вот как выполнить измерения скорости и давления с помощью Fluke 922

  • Подсоедините трубку общего давления к порту 922 «+», а трубку статического давления — к порту «-».
  • Выберите режим «Объем потока».
  • Выберите круглый или прямоугольный воздуховод.
  • Введите внутренние размеры воздуховода в соответствии с запросом.
  • Нулевой счетчик.
  • Поместите наконечник трубки Pitot-Static в воздуховод в первой точке пересечения.
  • Когда отображается стабильное показание объема воздуха, нажмите «Сохранить», чтобы сохранить показания.
  • Повторить для каждой точки перемещения
  • После того, как все показания точки перемещения будут сохранены, нажмите «Расчет среднего» для среднего расхода воздуха

Общее давление минус статическое давление равно скоростному давлению.Fluke 922 автоматически преобразует давление скорости в скорость в режиме скорости. В режиме «Объем потока» 922 будет запрашивать геометрию и размеры воздуховода, чтобы отображать поток воздуха (куб. Фут / мин) непосредственно в реальном времени. Расчеты скорости и расхода воздуха в модели 922 основаны на стандартном воздухе при 29,92 дюйма ртутного столба и температуре 70 ° F.

Советы

Когда мы говорим о размещении трубки Пито на 10 диаметров прямого канала вверх по потоку и 3 диаметра прямого канала после поперечной плоскости, нам нужно сначала преобразовать размеры прямоугольных воздуховодов в их эквивалентные диаметры окружности.

Для выполнения обхода с круглым воздуховодом, по существу, следуйте тем же правилам размещения плоскости обхода, что и для прямоугольного. Однако круглые воздуховоды требуют измерения по 3 диаметрам (см. Руководство по воздушному потоку), как минимум 6 измерений на диаметр. Умножьте количество точек, которые вы будете измерять, на цифру во второй половине таблицы 1, чтобы определить положение измерения относительно внутренней стенки воздуховода.

Примечания:

  1. При выполнении пересечения воздуховода всегда следите за тем, чтобы носик трубки Пито был параллелен стенке воздуховода и обращен к воздушному потоку.
  2. По возможности снимайте показания на длинных прямых участках воздуховода. Избегайте измерения сразу после локтей или других препятствий в дыхательных путях.

Дополнительные ресурсы

Для начала ознакомьтесь со стандартами ASHRAE 111 «Методы измерения, тестирования, регулировки и балансировки систем отопления, вентиляции, кондиционирования и охлаждения зданий» и стандартами ISO 3966. Первый включает общую главу, посвященную измерениям в воздухе, со ссылкой на правило Лога-Чебычева, разработанное в ISO 3966, в дополнение к дополнительным указаниям по размещению плоскости пересечения и методам измерения.Стандарт ISO более подробно описывает разработку правила.

Для получения дополнительной информации о воздушном потоке см. Краткое справочное руководство Fluke Airflow. Для простого и краткого объяснения измерений воздушного потока см. «Воздушный поток в воздуховодах» Лео А. Мейера (LAMA Books).

Измерение расхода воздуха, учет в зависимости от профиля воздуховода

Расчет расхода через воздуховоды, трубы, вытяжки и дымовые трубы (для наших целей в совокупности называемые воздуховодами) никогда не был трудным.Площадь поперечного сечения воздуховода умножается на среднюю скорость жидкости, чтобы найти объем за время или скорость потока. Простой.

Сбор данных для точного и точного измерения скорости воздуха в воздуховодах был сложной задачей. А плохие процедуры сбора данных приводят к ошибкам в балансировке воздуховодов. Инструменты для измерения расхода воздуха, анемометры, в прошлом были ограничены временем.

Новейшие микропроцессорные анемометры обеспечивают точный сбор данных измерения расхода воздуха в воздуховоде даже до того, как терпение специалистов по HVAC иссякнет.

Как измерить скорость воздуха

Более точный вопрос заключается в том, как измерить среднюю скорость воздуха в различных поперечных сечениях воздуховода.

Физика относительно проста: Воздух замедляется трением при контакте с краем воздуховода. Наибольшая скорость достигается в условиях ламинарного течения в середине поперечного сечения без трения. Профиль скорости воздуховода зависит от формы воздуховода (минимизация стенок периметра для достижения площади поперечного сечения) и силы, толкающей воздух

Промышленный датчик скорости / температуры воздуха

Предпочтительными формами воздуховодов являются круглые, квадратные и прямоугольные в указанном порядке эффективности.

Учитывая эти факты, из скольких измерений можно составить хорошую базу данных?

Линии сетки, которые определяют точки измерения расхода в воздуховоде, являются пересекающимися. Логлинейный метод обеспечивает высокую точность (± 3%) суммирования расхода за счет измерения расхода воздуха, предпочтительно ближайшего к краям пространства воздуховода.

Воздуховоды круглого сечения

Логлинейная траверса для круглых каналов, подход по два диаметра. Бревно линейно-траверсное для круглых каналов, трехдиаметрный подход

Три поперечины диаметром, равномерно разнесенные под углом 60 °, образуют шесть кусков пирога в круглом воздуховоде.Для каждого радиуса производятся три измерения: по краю; одна треть к центру; две трети к центру. Обратите внимание, что воздух, наиболее подверженный трению, кажется чрезмерно представленным.

В общей сложности восемнадцать показаний точно описывают скорость воздушного потока.

В случае, когда можно измерить только два хода, установите их под углом 90 градусов и возьмите пять образцов на каждом радиусе. Первые четыре равномерно распределяются по первой половине радиуса, начиная с края и двигаясь к центру.Пятая точка на две трети ближе к центру.

Эти двадцать точек данных не дадут такого точного среднего значения, как восемнадцать с тремя обходами, но результаты приемлемы.

Воздуховоды прямоугольного или квадратного сечения

Пример линейной траверсы с 25 точками для прямоугольных воздуховодов.

Точность требует от минимум двадцати пяти до максимум сорока девяти точек данных. Сторона воздуховода менее тридцати дюймов требует пяти пересечений. Сторона воздуховода больше тридцати шести требует семи пересечений.Шесть для длины посередине.

Для этих воздуховодов требуется как минимум шестнадцать отсчетов у края (около 7% общего расстояния), а остальные девять должны быть равномерно распределены по сетке. Обратите внимание, что шестьдесят четыре процента точек данных прямоугольного воздуховода будут близко к стенкам воздуховода, в то время как только тридцать три процента точек данных круглого воздуховода отражают трение от стен. Это измерение демонстрирует эффективность круглого воздуховода. Что, кстати, не означает, что раунд — всегда лучшее решение.

Соберите данные по этим показаниям и просто вычислите среднее значение. Или позвольте вашему микропроцессору сделать работу. Вы рассчитали скорость воздушного потока.

Как измерить площадь поперечного сечения

Звучит достаточно просто, длина умножается на ширину или радиус в квадрате, умноженный на пи.

Три слова: запомните решетку.

Если решетка не используется, коэффициент применения равен 1,00. Таким образом, площадь поперечного сечения воздуховода не изменилась.

Если решетка имеет квадратную форму, умножьте общую площадь на.88. Решетка радиатора изменена в 0,78 раза; и решетка из стальных полос калибра 0,73.

Решетка служит для замедления скорости воздуха, а также для его рассеивания. Помните об этом факторе.

Устройства для расчета расхода

Вы рассчитали расход воздуха, чистую площадь поперечного сечения и умножили их на расход.
Q = FAV, где:
F = коэффициент применения (см. Таблицу)
A = обозначенная площадь в квадратных футах

Тип решетки Фактор применения, F Обозначенный участок
Нет 1.00 Полная площадь воздуховода
Квадрат с перфорацией 0,88 Свободная (дневная) площадь
Бар 0,78 Площадь ядра
Стальная полоса 0,73 Площадь ядра
Экономичный крыльчатый анемометр

Современные приборы для измерения расхода воздуха, такие как портативные анемометры, которые предлагают цифровые показания в кубических футах в минуту: автономный калькулятор, позволяющий сэкономить время и нервы профессионалов в области HVAC.

Мы считаем важным, чтобы технические специалисты понимали теорию измерения расхода воздуха, чтобы распознать, когда точка данных вряд ли будет правильной, ошибочные показания или расчет не кажутся правильными и должны быть проверены дважды. В сегодняшней среде «результат — сейчас» эти новые технологии ускоряют процесс. Ваш опыт будет дважды проверять процесс, но этот инструментарий быстро собирает и дважды проверяет необработанные данные.

Новые модели отличаются сложным расчетом расхода и выводом в удобном для использования формате.Балансировка воздуховодов стала менее трудоемкой и более эффективной, больше науки, чем искусства.

Техническое обучение Техническое обучение

Мы не можем найти эту страницу

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}} *

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.ТОВАРЫ}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

Как измерить воздушный поток

Технические специалисты и производители долгое время боролись с проблемами измерения расхода и расхода воздуха.

Из-за того, что многие процедуры измерения отнимают много времени, и из-за ограниченного выбора инструментов технического специалиста, обычно используются методы оценки общего расхода воздуха, которые не корректируются.Метод повышения температуры, общий внешний статический метод, падение давления на фильтрах или змеевиках — все это примеры методов оценки общего воздушного потока, которые во многих случаях подходят для процедуры ввода оборудования в эксплуатацию, однако, если необходимо оценить производительность оборудования, требуется более точный метод. .

Самый распространенный и простой способ измерить или с помощью некоторых методов оценить и установить воздушный поток — это использовать один из следующих методов:

  1. Ротационный анемометр (измерение, средний диапазон воздушного потока)
  2. Падение давления в змеевике сухого испарителя (оценка)
  3. Метод полного внешнего статического давления (оценка)
  4. Трубка Пито и цифровой манометр (Измерение, измерение расхода воздуха в полном диапазоне, однако для малого диапазона требуются специальные приборы.)
  5. Рукоятка скорости (анемометр с горячей проволокой) (измерение, поток воздуха от очень низкого до среднего)
  6. Метод повышения температуры (формула явного тепла) (оценка)
  7. Обороты и кривая вентилятора производителя (ременная передача или VF Drive) (точная оценка основана на кривой вентилятора, но ограничена точностью измерения статического давления)
  8. TRUEFlow® Grid (метод измерения предполагаемого падения давления)

Расход воздуха сначала должен быть настроен в соответствии с конструкцией оборудования, а не в соответствии с воздухом, подаваемым в регистры.Хотя конструкция системы воздуховодов является обязательной для правильного распределения воздуха в кондиционируемом помещении, измерения воздуха должны производиться только на приборе для процедуры ввода оборудования в эксплуатацию. Из-за утечки, присущей всем системам воздуховодов, воздушный поток невозможно измерить в регистрах, чтобы проверить правильность воздушного потока через змеевик испарителя или теплообменник.

Проблема не в работе оборудования. Если система не будет обогревать или охлаждать дом после того, как поток воздуха будет правильно настроен на приборе и работа оборудования будет проверена на правильность, тогда система воздуховодов должна быть оценена на предмет чрезмерной утечки, правильного размера и правильной конструкции.Если система по-прежнему не работает должным образом, может потребоваться проверка расчета тепловой нагрузки, чтобы убедиться в правильности выбора оборудования.

Основы скорости, давления и расхода воздуха

Товар

Пожалуйста, оставьте это поле пустым.

Имя *

Электронная почта *

Название компании *

Телефон *

Адрес

Город

StateAlaskaAlabamaArkansasArizonaCaliforniaColoradoConnecticutDelawareFloridaGeorgiaHawaiiIowaIdahoIllinoisIndianaKansasKentuckyLouisianaMassachusettsMarylandMaineMichiganMinnesotaMissouriMississippiMontanaNorth CarolinaNorth DakotaNebraskaNew HampshireNew JerseyNew MexicoNevadaNew YorkOhioOklahomaOregonPennsylvaniaRhode IslandSouth CarolinaSouth DakotaTennesseeTexasUtahVirginiaVermontWashingtonWisconsinWest VirginiaWyomingDistrict Колумбия

Страна ArubaAfghanistanAngolaAnguillaÅland IslandsAlbaniaAndorraUnited Арабского EmiratesArgentinaArmeniaAmerican SamoaAntarcticaFrench Южный TerritoriesAntigua и BarbudaAustraliaAustriaAzerbaijanBurundiBelgiumBeninBonaire, Синт-Эстатиус и SabaBurkina FasoBangladeshBulgariaBahrainBahamasBosnia и HerzegovinaSaint BarthélemyBelarusBelizeBermudaBolivia, многонациональное государство ofBrazilBarbadosBrunei DarussalamBhutanBouvet IslandBotswanaCentral Африканский RepublicCanadaCocos (Килинг) IslandsSwitzerlandChileChinaCôte d’IvoireCameroonCongo, Демократическая Республика theCongoCook IslandsColombiaComorosCape VerdeCosta RicaCubaCuraçaoChristmas IslandCayman IslandsCyprusCzech RepublicGermanyDjiboutiDominicaDenmarkDominican RepublicAlgeriaEcuadorEgyptEritreaWestern SaharaSpainEstoniaEthiopiaFinlandFijiFalkland остров (Мальвинские острова) ФранцияФарерские островаМикронезия, Федеративные Штаты ГабонВеликобританияГрузияГернсиГанаГибралтарГвинаГваделупаГамбияГвинея-БисауЭкваториальная ГвинеяГрецияГренадаG reenlandGuatemalaFrench GuianaGuamGuyanaHong Island KongHeard и McDonald IslandsHondurasCroatiaHaitiHungaryIndonesiaIsle из ManIndiaBritish Индийского океана TerritoryIrelandIran, Исламская Республика ofIraqIcelandIsraelItalyJamaicaJerseyJordanJapanKazakhstanKenyaKyrgyzstanCambodiaKiribatiSaint Киттс и NevisKorea, Республика ofKuwaitLao Народная Демократическая RepublicLebanonLiberiaLibyaSaint LuciaLiechtensteinSri LankaLesothoLithuaniaLuxembourgLatviaMacaoSaint Мартин (французская часть) MoroccoMonacoMoldova, Республика ofMadagascarMaldivesMexicoMarshall IslandsMacedonia, бывшая югославская Республика ofMaliMaltaMyanmarMontenegroMongoliaNorthern Mariana IslandsMozambiqueMauritaniaMontserratMartiniqueMauritiusMalawiMalaysiaMayotteNamibiaNew CaledoniaNigerNorfolk IslandNigeriaNicaraguaNiueNetherlandsNorwayNepalNauruNew ZealandOmanPakistanPanamaPitcairnPeruPhilippinesPalauPapua Новый GuineaPolandPuerto Рико, Корейская Народно-Демократическая Республика, Португалия, Парагвай, Палестина, Государство Французская Полинезия, Катар, Реюньон, Роман iaRussian FederationRwandaSaudi ArabiaSudanSenegalSingaporeSouth Джорджия и Южные Сандвичевы IslandsSaint Елены, Вознесения и Тристан-да CunhaSvalbard и Ян MayenSolomon IslandsSierra LeoneEl SalvadorSan MarinoSomaliaSaint Пьер и MiquelonSerbiaSouth SudanSao Томе и PrincipeSurinameSlovakiaSloveniaSwedenSwazilandSint Маартен (Голландская часть) SeychellesSyrian Arab RepublicTurks и Кайкос IslandsChadTogoThailandTajikistanTokelauTurkmenistanTimor-LesteTongaTrinidad и TobagoTunisiaTurkeyTuvaluTaiwan, провинция ChinaTanzania, Объединенная Республика Уганда Украина Малые отдаленные острова США Уругвай Соединенные Штаты Узбекистан Святое море (Ватикан) Сент-Винсент и Гренадины Венесуэла, Боливарианская Республика Виргинские острова, Британские Виргинские острова, США.Южный Вьетнам ВануатуУоллис и Футуна Самоа ЙеменЮжная Африка Замбия Зимбабве

Почтовый индекс *

Комментарий

PD: коэффициент воздушного потока

Квартир

Термин «коэффициент расхода» — это обобщающий термин, охватывающий диапазон различных типов коэффициентов. Например, коэффициент объемного расхода воздуха ( C v ), используемый для расчета расхода воздуха через трещины и зазоры, задается как значение в кубических метрах в секунду на перепад давления в 1 Па (м³ / сПа).С другой стороны, коэффициенты расхода ( C d ) и коэффициенты давления ( C p ) даны как безразмерные отношения между некоторыми фактическими и теоретическими расходами со значениями от 0 до 1, при которых идеальный беспрепятственный поток будет будет 1, а поток полностью заблокирован — 0.

Расчет расхода

Коэффициент объемного расхода воздуха используется в следующих уравнениях, в данном случае для потока воздуха через неравномерный зазор или трещину.n $$

где:

  • Q — объемный расход, (м³ / ч)
  • C v — объемный коэффициент расхода воздуха (м³ / сПа),
  • Δp — перепад давления, действующий через отверстие (Па), а
  • n — показатель степени потока, указывающий степень турбулентности (0-1).

n Значение 0,5 представляет полностью турбулентный поток, а 1,0 представляет полностью ламинарный поток.{0,5} $$

где:

  • Q — объемный расход, (м³ / ч)
  • C d — коэффициент расхода (0-1), а
  • A — объемный расход, (м 2 )
  • Δp — перепад давления, действующий через отверстие (Па), а
  • δ — плотность воздуха (кг / м³).

При отсутствии подробной информации коэффициент расхода ( C d ) обычно принимает значение 0.61. Предполагается, что поток воздуха через отверстие является турбулентным, поэтому показатель степени потока n имеет значение 0,5.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*