Расчет воздуховодов и фасонных изделий: Расчет площади воздуховодов и фасонных изделий

Содержание

Расчет вентиляции

Главная/Вентиляция/Расчет вентиляции

При выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:
Производительность по воздуху 
Мощность калорифера
Рабочее давление, создаваемое вентилятором 
Скорость потока воздуха и площадь сечения воздуховодов 
Допустимый уровень шума

Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

Производительность по воздуху

Проектирование системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь. Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении. Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час. Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами). Так, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен.

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

Расчет воздухообмена по кратности:
L = n * S * H, где
       L — требуемая производительность приточной вентиляции, м3/ч;
       n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;
       S — площадь помещения, м2;
       H — высота помещения, м;

Расчет воздухообмена по количеству людей:
L = N * Lнорм, где
       L — требуемая производительность приточной вентиляции, м3/ч;
       N — количество людей;
       Lнорм — норма расхода воздуха на одного человека:
в состоянии покоя — 20 м3/ч;
работа в офисе — 40 м3/ч;
при физической нагрузке — 60 м3/ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования. Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции:
Для квартир — от 100 до 500 м3/ч;
Для коттеджей — от 1000 до 2000 м3/ч;
Для офисов — от 1000 до 10000 м3/ч.

 

Мощность калорифера

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температуры воздуха на выходе системы и минимальной температуры наружного воздуха. Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоны и для Москвы принимается равной -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.

При расчете мощности калорифера необходимо учитывать следующие ограничения:
Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.

Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:
I = P / U, где
       I — максимальный потребляемый ток, А;
       Р — мощность калорифера, Вт;
       U — напряжение питание:
220 В — для однофазного питания;
660 В (3 × 220В) — для трехфазного питания.

Температуру, на которую калорифер заданной мощности сможет нагреть приточный воздух, можно рассчитать по формуле:
ΔT = 2,98 * P / L, где
       ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;
       Р — мощность калорифера, Вт;
       L — производительность вентиляции, м3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить водяной калорифер, который использует в качестве источника тепла воду из системы центрального или автономного отопления.

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов. Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм.

Для точного расчета схемы вентиляции и воздухораспределительной сети, а также для разработки проекта вентиляции обращайтесь к нашим менеджерам.

Расчёт вентиляции — BOREY. Климатическое оборудование

Предлагаем вашему вниманию основы расчета систем вентиляции.

При подборе оборудования для систем вентиляции необходимо рассчитать следующие параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

Приведем упрощенную методику подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

Производительность по воздуху

Проектирование системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования каждого помещения и его площадь. Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении.

Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час. Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами).

Таким образом, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

Расчет воздухообмена по кратности

L = n * S * H, где 
L — требуемая производительность приточной вентиляции, м3/ч;
n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;
S — площадь помещения, м2;
H — высота помещения, м;

Расчет воздухообмена по количеству людей

L = N * Lнорм, где 
L — требуемая производительность приточной вентиляции, м3/ч;
N — количество людей;
Lнорм — норма расхода воздуха на одного человека:
в состоянии покоя — 20 м3/ч; 
работа в офисе — 40 м3/ч; 
при физической нагрузке — 60 м3/ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности.

При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования.

Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции: 

  • Для квартир — от 100 до 500 м3/ч; 
  • Для коттеджей — от 1000 до 2000 м3/ч; 
  • Для офисов — от 1000 до 10000 м3/ч.

Мощность калорифера

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температуры воздуха на выходе системы и минимальной температуры наружного воздуха. Два последних параметра определяются СНиП.

Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С.

Минимальная температура наружного воздуха зависит от климатической зоны и для Тюмени принимается равной -35°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 53°С. Поскольку сильные морозы в Тюмени непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года. 

При расчете мощности калорифера необходимо учитывать следующие ограничения: 
Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.

Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле: 
I = P / U, где 
I — максимальный потребляемый ток, А;
Р — мощность калорифера, Вт;
U — напряжение питание:
220 В — для однофазного питания; 
660 В (3 × 220В) — для трехфазного питания.

Температуру, на которую калорифер заданной мощности сможет нагреть приточный воздух, можно рассчитать по формуле: 
ΔT = 2,98 * P / L, где
ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;
Р — мощность калорифера, Вт;
L — производительность вентиляции, м3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить водяной калорифер, который использует в качестве источника тепла воду из системы центрального или автономного отопления.

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума. 

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов.

Носитель Right-CommDuct™ | duct

Rick Blair Сертифицированный оценщик и термограф по домашнему энергопотреблению, Performance Point, LLC говорит,
«Если вы являетесь пользователем Wrightsoft и хотели бы перейти на следующий уровень, вам подойдет Right-CAD. I Я не разбираюсь в САПР, но я почти сразу приступил к работе с 3D, импортировал некоторые из моих более сложных конструкций воздуховодов, уже созданных с помощью RSU, и был поражен, увидев то, что раньше мог только воображать. трассы воздуховодов, навигация по участкам подвесного потолка, подвесным балкам и т. д.

Кривая обучения упрощается за счет использования знакомых инструментов и вкладок, которые уже есть в RSU, но при этом с множеством наворотов для исследования в черный день и дальнейшей точной настройки представления дизайна. Я вижу в этом будущее профессионального проектирования систем отопления, вентиляции и кондиционирования воздуха без затрат и длительного обучения работе с Revit». Программное обеспечение довольно простое в использовании, учитывая его сложность, но настоящим преимуществом является сервис.

Техническая поддержка дружелюбна и терпелива, 10-дневный курс обучения был идеальным для начинающего пользователя, а тренер был открытым и понимающим — таким, который не заставляет вас чувствовать себя глупо и знает свое дело так хорошо, что может объяснить, почему программное обеспечение делает то, что делает.

Общее впечатление отличное!»

Roquey из Integrity Comfort Solutions говорит,
«Я пользуюсь Wrightsoft со времен монохромных экранов и формата электронных таблиц. Я посетил несколько занятий, побывал во Всемирной штаб-квартире в Лексингтоне и даже проводил учебные занятия. Уровень поддержки феноменальный. Оба в классе, позвоните и по электронной почте.

Я широко использовал модули Right J, Right Draw на рынках нового строительства не только по прямому назначению, но и для того, чтобы «спроектировать стоимость» процесса выбора материалов для моих клиентов. Я не могу представить лучшего продукта. Кривая обучения ярко выражена и требует приверженности со стороны пользователя, но при постоянном использовании она становится почти второй натурой.

Как ветеран нашей отрасли с более чем 40-летним стажем, я настоятельно рекомендую эту компанию.»

Майк Дуглас , from Advent Air Conditioning говорит,
«Как владельцу бизнеса, мне нравится, что Right-Draw обеспечивает высокий уровень профессионализма, будь то специализированный дом или базовый дом для начинающих. За последний год , мы на самом деле привлекли новых клиентов, потому что наши клиенты были настолько впечатлены профессионализмом наших проектов, особенно когда мы сталкиваемся с подрядчиками, которые дают им то, что равносильно изображению цветным карандашом на салфетке».

Боб Пьетранджело из Comfort Solution говорит:
«Я всегда был сторонником правильного определения размеров оборудования для кондиционирования воздуха.
Для стандартного дома площадью 3000 квадратных футов с 4 спальнями расчет нагрузки вручную занял бы много часов. Затем я нашел Wrightsoft и, используя их Right-J и Right-D, смог произвести расчет нагрузки и проект воздуховода примерно за час».

Al Gagne из Bayside Mechanical говорит,
На нашем тренинге:
«За последние 7 лет я был на трех ваших тренингах и каждый раз узнаю что-то новое. Класс дает полное представление о Right-Suite ® Универсальный и полезный короткие пути, чтобы я мог продолжать эффективно вести свой бизнес на этом меняющемся рынке».

В нашем программном обеспечении:
«Wrightsoft Right-Suite ® Universal помог нам быстрее обработать заявки, особенно для индивидуальных строителей домов. Я могу просто импортировать строительные планы AutoCAD как слой в программу, проследить до завершить расчет нагрузки и добавить воздуховоды в проект, сэкономив мне значительное количество времени. Полный проект и расчет затем сохраняются в файле AutoCAD в виде еще одного слоя».

Майк Труитт Resnet Рейтинг от This Efficient House говорит,
«Руки вниз, лучший инструмент для работы. Наши партнеры по HVAC любят чертежи в двухстрочном режиме, а экспорт в модуль REM/Rate экономит мне не менее 2 часов на каждый проект! Это настоящий переломный момент для нас с точки зрения оплачиваемых часов и доходов. Майк (продажи) и Дональд (техническая поддержка) работают с нами уже более 10 лет! Продолжайте в том же духе и еще раз спасибо, ребята. — Просто еще один лояльный счастливый клиент».

Джим Хайнц Президент Heinz Air Conditioning and Heating, Inc. говорит,
«В первую очередь мы занимаемся кондиционированием и отоплением жилых помещений в Клируотере, Флорида. Мы обнаружили серьезную проблему с неправильными размерами систем кондиционирования воздуха в существующих домах, которая вызывала проблемы с влажностью или отсутствием охлаждения. Мы использовали Manual J более 30 лет, но из-за трудоемкого процесса ввода информации вручную это не делалось, если у нас не было жалоб потребителей. Мы сотрудничали с Wrightsoft более 15 лет назад и теперь можем выполнить ручной расчет J-нагрузки менее чем за 30 минут. Wrightsoft всегда рядом с нами, с персоналом технической поддержки, который быстро отвечает на телефонные звонки и дает советы, когда это необходимо. На их веб-сайте также есть библиотека видеороликов, доступных 24 часа в сутки. Wrightsoft по-прежнему остается для нас лучшим вариантом для расчета нагрузки J вручную».

Тим Кохут Директор по устойчивому проектированию , Национальное сообщество «Возрождение» говорит,
«Я обратился в техподдержку [для выполнения сложной задачи]. [Техническая поддержка] ответила в течение часа или двух, провела меня через весь процесс и даже проверила мою электронную таблицу (необходимо внести исправления).
Я был действительно впечатлен… Я обнаружил, что на мои вопросы всегда отвечают, обычно в течение нескольких часов, и никогда не было попыток уклониться от проблемы. Реагирование Wrightsoft на стороне поддержки — это то, что действительно отличает вас. Ваша команда облегчила мне жизнь, и использование RSU стало неотъемлемым краеугольным камнем в работе, которую я выполняю, руководя нашими командами по проектированию и строительству высокопроизводительного жилья, которое вскоре станет доступным жильем ZNE».

Стив Пэкстон из Air-Dynamics говорит,
«Я пользуюсь Wrightsoft с конца 80-х. Коммунальная компания в Оклахоме в рамках программы «Хорошие центы» требовала расчета нагрузки по руководству ACCA J и проектирования воздуховодов по руководству ACCA D, чтобы квалифицироваться как структура «Хорошие центы». Если информация введена правильно, Wrightsoft исключает все догадки из уравнения.
Это дало мне душевное спокойствие и поставило наше качество установки на первое место. Я не могу представить установку без него, это так же важно для нас, как и остальные инструменты на наших грузовиках».

Том Тумминелли из Brothers Plumbing, Air & Electric говорит,
«Впечатление от Wrightsoft было отличным от начала до конца. Их вспомогательный персонал терпелив и профессионален. Правильный размер оборудования крайне важен для комфорта наших клиентов. Мы смогли предоставить нашим клиентам точные профессиональные данные для резервного копирования наших предложений, благодаря которым мы получили несколько проектов по сравнению с нашими конкурентами. Стоит потраченного времени и денег.»

Пять простых шагов для оценки падения внешнего статического давления в воздуховодах HVAC с использованием метода равного трения.

Введение

Оценка внешнего перепада давления в воздуховодах не является сложной задачей, и ее можно легко выполнить для выбора вентилятора оборудования HVAC (блок обработки воздуха, вентилятор, блок рекуперации тепла, блок фанкойла и т. д.) . соответственно, мы можем оценить и энергопотребление таких блоков.

Что такое внешнее статическое давление в воздуховодах HVAC?

Внешнее статическое давление — это просто давление, необходимое вентилятору (который находится внутри любого оборудования HVAC) для обеспечения требуемой / расчетной скорости воздушного потока и обеспечения доступа воздуха от оборудования HVAC к индексной точке, чтобы воздух мог выпускаться с требуемой скоростью воздушного потока даже из самого дальнего воздуховыпускного отверстия (диффузор или воздушная решетка и т. д.).

Для этого давление вентилятора должно компенсировать все потери в направлении воздушного потока (на стороне всасывания и нагнетания оборудования), включая, помимо прочего, заслонки регулирования объема, противопожарные заслонки, перепад давления в воздуховыпускных отверстиях. , перепад давления в воздуховоде, потери в штуцерах воздуховода, жалюзи наружного воздуха (в случае, если воздухозаборник наружного воздуха имеет индексный участок по сравнению с воздуховодом рециркуляции). .. и т. д.

Какие шаги и как оценить / рассчитать внешнее статическое давление вентилятора?

Приведенная ниже таблица расчетов очень проста, и все инженеры могут использовать ее для оценки/расчета внешнего статического давления (ESP) любого вентилятора в любом оборудовании HVAC.

Здесь также стоит упомянуть, что ESP должен быть рассчитан для различных сценариев, чтобы гарантировать, что расчетный ESP указывает максимальное падение ESP в системе, которое будет для прогона индекса, отметив, что прогон индекса не обязательно должен быть самый дальний участок воздуховода. Индексный участок – это участок воздуховода с максимальным внешним статическим перепадом давления.

Шаги:

1. Запишите «РАСЧЕТНЫЙ РАСХОД ВОЗДУХА», необходимый для вентилятора. В случае оборудования для отопления или кондиционирования воздуха расчетный расход воздуха определяется программой нагрузки на охлаждение.

2. Перейдите к диаграмме потерь на трение в любом стандарте HVAC (CARRIER и т. д.) или используйте воздуховод, чтобы получить «КОЭФФИЦИЕНТ ТРЕНИЯ» на основе требуемой скорости воздуха и размера воздуховода в соответствии с областью применения (низкое давление система, система среднего давления и т. д.).

3. Измерьте длину воздуховода по проектным чертежам и проверьте различные сценарии, как описано выше, поскольку индексным участком является участок воздуховода с максимальным перепадом внешнего статического давления , а не самый дальний участок воздуховода.

4. Используйте приведенный ниже лист (очень простой лист Excel), чтобы добавить участок воздуховода, коэффициент трения, падение давления во всех аксессуарах и повторить то же самое для воздуховода возвратного воздуха (или воздуховода свежего воздуха, в зависимости от того, что больше).

5. Добавьте любой требуемый запас прочности, чтобы гарантировать правильность выбора устройства.

Таким образом, значение падения внешнего статического давления может быть определено соответствующим образом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*