Схема однофазного двигателя: Упс… Кажется такой страницы нет на сайте

Содержание

Как подключить однофазный электродвигатель, схема запуска

Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

Содержание:

  1. Отличие от трехфазных двигателей
  2. Как это работает
  3. Основные схемы подключения
  4. Другие способы
  • Подбор конденсатора
  • Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением.

    В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Схема подключения коллекторного электродвигателя в 220В

    Схема подключения однофазного асинхронного двигателя (схема звезда)

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    однофазный асинхронный двигатель и конденсатор

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    • рабочий;
    • пусковой;
    • рабочий и пусковой конденсатор.

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    С асимметричным магнитопроводом статора

    Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    Подбор конденсатора

    Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

    Керамический и электролитический конденсатор

    Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

    Схема подключения однофазного двигателя с конденсатором

    Главная » Разное » Схема подключения однофазного двигателя с конденсатором

    Как подключить однофазный асинхронный двигатель через конденсатор?

    На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

    В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

    Конструкция и принцип работы

    Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

    Конструкция асинхронного однофазного электродвигателя

    Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

    Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

    • статор с основной и дополнительной обмоткой пуска;
    • короткозамкнутый ротор;
    • борно с группой контактов на панели;
    • конденсаторы;
    • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

    Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

    Схемы подключения

     Варианты подключения двигателя через конденсатор:

    • схема подключения однофазного двигателя с использованием пускового конденсатора;
    • подключение электродвигателя с использованием конденсатора в рабочем режиме;
    • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

    Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

    Схема с пусковым конденсатором

    Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

    Схема подключения пускового конденсатора

    Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

    Соединения, центробежный выключатель на валу ротора

    Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

    Некоторые элементы

    Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

    Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

    Варианты схемы подключения конденсаторов

    В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

    Схема с рабочим конденсатором

    Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

    Комбинированная схема с двумя конденсаторами

    Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

    Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

    Установка и подбор компонентов

    Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

    Пример размещения конденсатора на внешней стороне корпуса электродвигателя

    В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

    Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

    • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
    • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.
    Конденсаторы для подключения однофазного двигателя

    Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

    Схема подключения двигателя через конденсатор

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Онлайн расчет емкости конденсатора мотора

    Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

    Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

    Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя; Пусковой подбирается в 2-3 раза больше.

    Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

    Пусковые конденсаторы для моторов

    Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

    При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

    Реверс направления движения двигателя

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

    6- 4,00 Загрузка…

    НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

    Схема однофазного двигателя с конденсатором

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

      Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

    подключение однофазного двигателя

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки. например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Как все может выглядеть на практике

    Схемы подключения однофазных электродвигателей

    Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

    Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

    • Обмотки электромотора
    • Особенности формирования вращающего момента
    • Конденсаторы
    • Косвенное включение
    • Особенности применения магнитного пускателя
    • Заключение

    Обмотки электромотора

    Укладка обмоток в статоре однофазного электродвигателя

    Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно. Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой. К сети подключатся две из них, остальные служат для коммутации.

    Для изменения мощности рабочая катушка может формироваться из двух частей, которые включаются последовательно.

    Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

    Особенности формирования вращающего момента

    Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

    Варианты создания сдвига фаз

    Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

    Для упрощения запуска двигателя с рабочим конденсатором, перед подачей на него тока от сети параллельно ему подключают вспомогательную емкость.

    Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

    Наши читатели рекомендуют!

    Для экономии на платежах за электроэнергию наши читатели советуют “Экономитель энергии Electricity Saving Box”. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

    Конденсаторы

    Схема подключения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

    Электродвигатель может комплектоваться двумя разновидностями конденсаторов. Наличие емкости, включаемой последовательно спусковой обмоткой и пропускающей через себя ток для сдвига фазы, является обязательным. Ее значение заимствуется из паспортных данных электродвигателя и дублируется на его шильдике.

    При отсутствии конденсатора нужной емкости допустимо применять любой другой с близким номиналом. При слишком сильном отклонении в меньшую сторону двигатель может не начать вращаться без ручной прокрутки его вала, а затем не будет развивать нужную мощность. При значительном превышении емкости начнется сильный нагрев.

    Емкость дополнительного пускового компонента выбирается в два-три раза выше по сравнению с основным. Такая величина обеспечивает максимальный стартовый момент.

    Для включения пускового элемента может использоваться как обычная кнопка, так и более сложные схемы.

    Косвенное включение

    Подключение однофазного двигателя

    Основным компонентом схемы косвенного включения является магнитный пускатель, который включается в разрыв между выходом силовой сети и электродвигателем.

    Силовые контакты этого блока выполнены как нормально разомкнутые. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. Из-за небольшой мощности однофазных электродвигателей обычно достаточно устройства первой группы, максимальное значение коммутируемого тока которого составляет 10 А.

    Управляющая часть катушки предназначена для подключения к сетям с различным напряжением. Наиболее удобным является магнитный пускатель с управлением от 220в переменного тока.

    Особенности применения магнитного пускателя

    В управляющей части устройства предусмотрено несколько пар контактов, на которых собирается схема релейной автоматики. Один из них всегда является нормально замкнутым, а второй – нормально разомкнутым.

    У кнопки «Пуск» рабочим считается нормально разомкнутый контакт, а у кнопки «Стоп» задействован нормально замкнутый элемент.

    При выполнении подключения рассматриваемого устройства осуществляются соединения нескольких типов.

    Схема подключения однофазного двигателя

    Фаза, наряду с входной клеммой, подключается также к входу контакта кнопки «Стоп», а ноль соединяется с входной клеммой катушки, что обеспечивает протекание через нее управляющего тока.

    Активный контакт кнопки «Пуск» при работающем двигателе шунтируется аналогичным элементом катушки. Для формирования этой цепи выполняются два дополнительных соединения, схема которых показана на рисунке выше:

    • выход рабочего контакта кнопки «Стоп» параллельно соединяется с контактами выхода кнопки «Пуск» и входа управляющей катушки;
    • выход нормально разомкнутого контакта управляющей катушки параллельно соединяется с ее выходной клеммой и с входом рабочего контакта кнопки «Пуск».

    Заключение

    Процесс подключения однофазного электромотора к сети 220в не отличается большой сложностью и фактически требует только желания, минимального набора простейших инструментов, наличия схемы соединений и аккуратности в работе. Из расходных материалов нужны только провода. Из-за опасности короткого замыкания и больших величин токов, протекающих через обмотки двигателя, необходимо обязательно выполнять требования техники безопасности и не забывать про старое, но очень действенное правило: «Семь раз отмерь, один раз отрежь».

    Однофазный асинхронный двигатель, схема подключения и запуска

    Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

    Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Схема подключения коллекторного электродвигателя в 220В

    Схема подключения однофазного асинхронного двигателя (схема звезда)

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    однофазный асинхронный двигатель и конденсатор

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    • рабочий;
    • пусковой;
    • рабочий и пусковой конденсатор.

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    С асимметричным магнитопроводом статора

    Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    Подбор конденсатора

    Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

    Керамический и электролитический конденсатор

    Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

    Поделиться с друзьями:

    Источники: http://stroychik.ru/elektrika/podklyuchenie-odnofaznogo-dvigatelya, http://electricvdele.ru/elektrooborudovanie/elektrodvigateli/shema-podklyucheniya-odnofaznogo-elektrodvigatelya.html, http://tokidet.ru/elektrooborudovanie/elektrodvigateli/odnofaznyj-asinhronnyj-dvigatel.html

    Как подключить однофазный электродвигатель – схема с конденсатором

    Функционирование однофазного электродвигателя основано на использовании переменного электрического тока посредством подсоединения к сетям с одной фазой. Напряжение в такой сети должно соответствовать стандартному значению 220 Вольт, частота – 50 Герц. Преимущественное применение моторы данного типа находят в бытовых устройствах, помпах, небольших вентиляторах и т.п.

    Мощности однофазных моторов достаточно и для электрификации частных домов, гаражей или дачных участков. В этих условиях используется однофазная электрическая сеть с напряжением 220 В, что предъявляет некоторое требования к процессу подключения мотора. Здесь применяется специальная схема, предполагающая использование устройства с пусковой обмоткой.

    Схема подключения однофазного двигателя через конденсатор

    Однофазные электродвигатели 220в подключают к сети с применением конденсатора. Это обусловлено некоторыми конструктивными особенностями агрегата. Так, на статоре мотора обмотка с переменным током создает магнитное поле, импульсы которого компенсируются лишь при условии смены полярности с частотой 50 Гц. Несмотря на характерные звуки, которые издает однофазный двигатель, вращение ротора при этом не происходит. Крутящий момент создается за счет применения дополнительных пусковых обмоток.

    Чтобы понять, как подключить однофазный электродвигатель через конденсатор, достаточно рассмотреть 3 рабочие схемы с применением конденсатора:

    • пускового;
    • работающего;
    • работающего и пускового (комбинированная).

    Каждая из перечисленных схем подключения подходит для использования при эксплуатации асинхронных однофазных электродвигателей 220в. Однако каждый вариант имеет свои сильные и слабые стороны, поэтому они заслуживают более детального ознакомления.

    Идея применения пускового конденсатора состоит в его включении в цепь лишь в момент запуска мотора. Для этого схемой предусматривается наличие специальной кнопки, предназначенной для размыкания контактов после выхода ротора на заданный уровень скорости. Его дальнейшее вращение происходит под воздействием инерционной силы.

    Читайте также:  Что такое кварцевый резонатор и как он работает?

    Поддержание вращательных движений на протяжении длительного промежутка времени обеспечивается магнитным полем основной обмотки однофазного двигателя с конденсатором. Функции переключателя при этом может выполнять специально предусмотренное реле.

    Схема подключения однофазного электродвигателя через конденсатор предполагает наличие нажимной пружинной кнопки, разрывающей контакты в момент размыкания. Такой подход обеспечивает возможность снизить количество используемых проводов (допускается применение более тонкой пусковой обмотки). Во избежание возникновения коротких замыканий между витками рекомендуется применять термореле.

    При достижении критически высоких температур этот элемент деактивирует дополнительную обмотку. Аналогичную функцию может выполнять центробежный выключатель, устанавливаемый для размыкания контактов в случаях превышения допустимых значений скорости вращения.

    Для автоматического контроля скорости вращения и защиты мотора от перегрузов разрабатываются соответствующие схемы, а в конструкции агрегатов вносятся различные корректировочные компоненты. Установку центробежного выключателя можно произвести непосредственно на роторном валу либо на сопряженных с ним (прямым или редукторным соединением) элементах.

    Воздействующая на груз центробежная сила способствует натяжению пружины, соединенной с контактной пластиной. Если скорость вращения достигает заданного значения, происходит замыкание контактов, подача тока на двигатель прекращается. Возможна передача сигнала другому управляющему механизму.

    Существуют варианты схем, при которых в одном элементе конструкции предусматривается наличие центробежного выключателя и теплового реле. Подобное решение позволяет деактивировать двигатель посредством теплового компонента (в случае достижения критических температур) либо под воздействием раздвигающегося элемента центробежного выключателя.

    В случае подключения двигателя через конденсатор часто происходит искажение линий магнитного поля в дополнительной обмотке. Это влечет за собой увеличение мощностных потерь, общее снижение производительности агрегата. Однако сохраняются хорошие показатели пуска.

    Применение рабочего конденсатора в схеме подключение однофазного двигателя с пуcковой обмоткой предполагает ряд отличительных особенностей. Так, после пуска отключения конденсатора не происходит, вращение ротора осуществляется за счет импульсного воздействия со стороны вторичной обмотки. Это существенно увеличивает мощность двигателя, а грамотный побор емкости конденсатора позволяет оптимизировать форму электромагнитного поля. Однако пуск мотора становится более продолжительным.

    Читайте также:  Что такое импульсный блок питания и где применяется

    Подбор конденсатора подходящей мощности производится с учетом токовых нагрузок, что позволяет оптимизировать электромагнитное поле. В случае изменения номинальных значений будет происходить колебание по всем остальным параметрам. Стабилизировать форму линий магнитных полей позволяет использование нескольких конденсаторов с разными емкостными характеристиками. Такой подход позволяет оптимизировать рабочие характеристики системы, однако предусматривает возникновение некоторых сложностей в процессах монтажа и эксплуатации.

    Комбинированная схема подключения однофазного двигателя с пусковой обмоткой рассчитана на использование двух конденсаторов – рабочего и пускового. Это оптимальное решение для достижения средних рабочих характеристик.

    Расчет емкости конденсатора мотора

    Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. Однако многолетний опыт профессионалов показывает, что достаточно придерживаться следующих рекомендаций:

    • на 1 кВт мощности мотора необходимо 0,8 мкФ рабочего конденсатора;
    • пусковая обмотка требует, чтобы это значение было в 2 или 3 раза выше.

    Рабочее напряжение для них должно быть в 1,5 раза выше, чем в электросети (в нашем случае 220 В). Для упрощения процесса запуска в пусковую цепь лучше устанавливать конденсатор с маркировкой «Starting» или «Start». Хотя допускается использование стандартных конденсаторов.

    Реверс направления движения двигателя

    Не исключено, что после подключения однофазные электродвигатели будут вращаться в направлении, обратном необходимому. Исправить это несложно. Во время сборки схемы один провод был выведен, как общий, ещё один проводник был подан на кнопку. Для того чтобы изменить вращающееся магнитное направление электромотора, эти 2 провода необходимо поменять местами.

    

    Реверс однофазного конденсаторного двигателя — Всё о электрике

    2 Схемы

    Принципиальные электросхемы, подключение устройств и распиновка разъёмов

    Схема подключения двигателя через конденсатор

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Онлайн расчет емкости конденсатора мотора

    Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

    Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

    Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
    Пусковой подбирается в 2-3 раза больше.

    Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

    Пусковые конденсаторы для моторов

    Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

    При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

    Реверс направления движения двигателя

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

    Реверс однофазного двигателя

    Однофазным называется такой асинхронный двигатель, на статоре которого имеется лишь одна рабочая обмотка, напрямую питаемая от единственной фазы сети. Есть в однофазном двигателе и вспомогательная (пусковая) обмотка, которая используется только в момент старта двигателя, для того чтобы придать ротору начальный импульс, фактически пусковая обмотка включается с целью вывести ротор из положения равновесия, иначе бы он не сдвинулся с места без посторонней помощи, и его пришлось бы сталкивать как-то иначе.

    Как и в любом двигателе, в однофазном тоже имеются ротор, который вращается, и статор, который неподвижен, а служит лишь для создания изменяющегося во времени магнитного поля. Рабочая и пусковая обмотки расположены на статоре друг относительно друга под прямым углом, причем рабочая обмотка занимает вдвое больше пазов, чем пусковая.

    Можно сказать, что в момент пуска такой двигатель работает как двухфазный, а после — переходит в однофазный рабочий режим. Ротор однофазного асинхронного двигателя по конструкции самый обычный — короткозамкнутый (типа «беличья клетка») или цилиндрический (полый).

    Что получилось бы, если б пусковой обмотки на статоре вообще не было, или она была бы, но не использовалась. В этом случае, при включении двигателя в сеть, в рабочей обмотке появилось бы пульсирующее магнитное поле, и ротор бы попал в условия пронизывающего его изменяющегося магнитного потока.

    Но если ротор изначально неподвижен, а мы внезапно подали переменный ток лишь в рабочую обмотку, то ротор с места не сдвинется, потому что суммарный вращательный момент (против часовой стрелки и по часовой стрелке) будет равен нулю, несмотря на индуцируемые в роторе ЭДС, и нет причин для вращения, ведь возникающие силы Ампера друг друга точно компенсируют.

    Но совсем другое дело, если ротор подтолкнуть, – тогда он продолжит вращение в том же направлении, что и стартовый толчок, ведь теперь не только по закону электромагнитной индукции в роторе наведутся ЭДС и возникнут соответствующие токи, которые по закону Ампера станут от магнитного поля отталкиваться, но и (поскольку ротор уже имеет вращение) результирующий момент по направлению толчка окажется большим, чем момент против направления толчка. В итоге получим продолжение вращения ротора.

    Чтобы пусковая обмотка смогла ротор в начальный момент толкнуть, она должна быть не просто смещена в пространстве относительно рабочей обмотки, но еще и ток в ней должен быть сдвинут по фазе относительно тока рабочей обмотки, тогда совместное действие двух этих обмоток статора окажется эквивалентно не просто пульсирующему магнитному полю, но уже вращающемуся магнитному полю. А это – как раз то, что необходимо для разгона ротора в момент пуска однофазного двигателя.

    Для смещения по фазе тока в пусковой обмотке, как правило применяют необходимой емкости конденсатор, включенный последовательно с пусковой обмоткой, и создающий сдвиг фаз в 90 градусов. Это стандартное решение для двигателя с расщепленной фазой.

    Как только двигатель включается в сеть, оператор нажимает на кнопку выключателя, который подает питание к цепи пусковой обмотки, и как только обороты достигнут необходимого значения соответствующего номиналу при данной частоте сети, кнопку отпускают.

    Для получения реверса однофазного двигателя с конденсаторным пуском, достаточно обеспечить условие, когда пусковой толчок будет подаваться в другом направлении, чем подавался изначально. Это достигается путем изменения относительного порядка чередования фаз в рабочей и пусковой обмотках.

    Для обеспечения данных условия, необходимо переключить рабочую или пусковую обмотку, то есть поменять «полярность» подключения ее выводов к сети либо к сети и к конденсатору. Это несложно реализовать, поскольку на однофазном двигателе есть клеммник, на который выведены каждый из концов как пусковой, так и рабочей обмоток. Рабочая обмотка имеет меньшее активное сопротивление, чем пусковая, поэтому ее несложно найти при помощи мультиметра. Лучшее решение — разместить выводы пусковой обмотки на двухполюсный переключатель без фиксации.

    Реверсивное подключение однофазного асинхронного двигателя своими руками

    Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?

    Постановка задачи

    Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

    Уточним важные моменты:

    • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
    • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
    • Направление вращения ротора обозначено с помощью стрелок.

    Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

    Вариант 1: переподключение рабочей намотки

    Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

    В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

    Вариант 2: переподключение пусковой намотки

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    В этом случае поступают так:

    1. Снимают конденсатор с начального вывода А;
    2. Подсоединяют его к конечному выводу D;
    3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

    Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

    Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

    • Длина пусковой и рабочей намоток одинакова;
    • Площадь их поперечного сечения соответствует друг другу;
    • Эти провода изготовлены из одного и того же материала.

    Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

    Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

    Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

    {SOURCE}

    Схема однофазного двигателя — советы электрика

    Схемы подключения однофазных электродвигателей

    Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

    Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

    ОГЛАВЛЕНИЕ

    • Обмотки электромотора
    • Особенности формирования вращающего момента
    • Конденсаторы
    • Косвенное включение
    • Особенности применения магнитного пускателя
    • Заключение

    Обмотки электромотора

    Укладка обмоток в статоре однофазного электродвигателя

    Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно.

    Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой.

    К сети подключатся две из них, остальные служат для коммутации.

    Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

    Особенности формирования вращающего момента

    Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

    Варианты создания сдвига фаз

    Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

    Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

    Конденсаторы

    Источник: http://ElectricVDele.ru/elektrooborudovanie/elektrodvigateli/shema-podklyucheniya-odnofaznogo-elektrodvigatelya.html

    Подключение однофазного двигателя

    Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

    Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

    Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.

    Обратите внимание

    В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный.

    И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

    Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

    Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

    Чтобы запустить двигатель с пусковой обмоткой необходимо подключить его по такой схеме:

    Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.

    При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.

    Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов.

    Важно

    Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

    Для подключения конденсаторного двигателя пусковая кнопка не нужна.

    Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

    Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

     Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

    Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

    Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.

     В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.
    Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

    О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

    Источник: http://shenrok.blogspot.com/p/blog-page_18.html

    Схема подключения однофазного двигателя с пусковой обмоткой

    Как определить рабочую и пусковую обмотки у однофазного двигателя

    Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

    Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

    У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

    У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

    То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

    Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

    Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

    Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

    А теперь несколько примеров, с которыми вы можете столкнуться:

    Совет

    Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в.

    И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку.

    Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

    Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов.

    Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

    Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

    Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только.

    В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя.

    также осуществляется через конденсатор.

    Источник: http://studvesna73.ru/07/23/5772/

    Схема подключения электродвигателя. Подключение однофазного электродвигателя

    Технологии 14 октября 2017

    Существует несколько схем подключения электродвигателей. Всё зависит от того, какой тип машины используется. В быту каждый человек использует множество электрических приборов, около 2/3 из общего числа имеют в своей конструкции электрические двигатели различной мощности с разными характеристиками.

    Обычно, когда приборы выходят из строя, двигатели могут продолжать работать. Их можно использовать в других конструкциях: изготовить самодельные станки, электронасосы, газонокосилки, вентиляторы. Но вот нужно определиться с тем, какую схему использовать для подключения к бытовой сети.

    Конструкция электродвигателей и подключение

    Для того чтобы использовать электрические моторы для самодельных аппаратов, нужно произвести правильно подключение обмоток. В однофазную бытовую сеть 220 В можно включить следующие машины:

    1. Асинхронные трехфазные электрические двигатели. Производится к сети подключение электродвигателей “треугольником” или “звездой”.
    2. Асинхронные электромоторы, работающие от сети с одной фазой.
    3. Коллекторные двигатели, оснащенные щеточной конструкцией для питания ротора.

    Все остальные электрические двигатели необходимо подключать при помощи сложных устройств, предназначенных для запуска. А вот шаговые моторы должны оснащаться специальными электронными схемами управления. Без знаний и умений, а также специальной аппаратуры, выполнить подключение невозможно. Приходится использовать сложные схемы подключения электродвигателей.

    Одно- и трехфазная сеть

    В бытовой сети одна фаза, напряжение в ней 220 В. Но можно подключить к ней и трехфазные электродвигатели, рассчитанные на напряжение 380 В.

    Для этого используются специальные схемы, вот только выжать из устройства больше 3 кВт мощности практически нереально, так как увеличивается риск привести в негодность электропроводку в доме.

    Поэтому если имеется необходимость установки сложного оборудования, в котором требуется применять электрические двигатели на 5 или 10 кВт, лучше провести в дом трехфазную сеть. Подключение электродвигателей “звездой” к такой сети произвести намного проще, нежели к однофазной.

    Видео по теме

    Что потребуется для подключения мотора

    Принцип работы любого электрического двигателя знаком каждому, основан он на вращении магнитного потока. При подключении однофазных электродвигателей вам теория не очень нужна, поэтому хватит следующих знаний:

    1. Вы должны иметь представление о конструкции электрического двигателя, с которым производятся работы.
    2. Знать, для какой цели предназначены обмотки, а также уметь по схеме подключения электродвигателя осуществить монтаж.
    3. Уметь работать со вспомогательными устройствами – балластными сопротивлениями или пусковыми конденсаторами.
    4. Знать, как подключается электродвигатель при помощи магнитного пускателя.

    Запрещается включать электрический двигатель, если не знаете его модель, а также назначение выводов. Обязательно проверьте, какое допускается соединение обмоток при работе в сети 220 и 380 В.

    На всех электрических двигателях обязательно присутствует табличка из металла, которая прикреплена к корпусу. На ней указывается модель, тип, схема подключения, напряжение, а также другие параметры.

    Если нет никаких данных, то необходимо при помощи мультиметра прозвонить все обмотки, после чего правильно соединить их.

    Подключение коллекторного двигателя

    Такие электродвигатели используются практически во всех бытовых электроприборах. Их можно встретить в стиральных машинках, кофемолках, мясорубках, шуруповертах, обогревателях и прочих приборах.

    Электродвигатели рассчитаны на сравнительно небольшое время работы, включаются они на несколько секунд или минут. Но зато моторы очень компактные, высокооборотные и мощные.

    А схема подключения электродвигателя очень простая.

    Подключить такой электродвигатель к бытовой сети 220 В можно очень просто. Напряжение поступает от фазы к щетке, затем через обмотку ротора – к противоположной ламели. А вторая щетка снимает напряжение и передаёт его на обмотку статора. Она состоит из двух половин, соединенных последовательно. Второй вывод обмотки поступает на нулевой провод питания.

    Особенности включения мотора

    Для того чтобы включать и отключать электрический двигатель, применяется кнопка с фиксатором (или без него), но можно использовать и простой выключатель.

    Если имеется необходимость, то обе обмотки разделяются и их можно подключать попеременно. Этим достигается изменение частоты вращения ротора.

    Но имеется один недостаток у таких двигателей — относительно низкий ресурс, который напрямую зависит от качества щёток. Именно коллекторный узел является самым уязвимым местом двигателя.

    Как подключить однофазный асинхронный мотор

    В любом асинхронном электродвигателе, рассчитанном на питание от однофазной сети 220 В, имеется две обмотки — пусковая и рабочая.

    В качестве «коллектора» используется цилиндрическая болванка из алюминия, которая насажена на валу. Можно даже отметить, что цилиндр на роторе является, по сути, короткозамкнутой обмоткой.

    Существует множество схем для включения асинхронного мотора, но применяется на практике немного:

    1. С использованием балластного сопротивления, подключенного к обмотке пуска.
    2. С включенным конденсатором на обмотке запуска.
    3. При помощи кнопочного или релейного пускателя, стартового конденсатора, включенного в цепь обмотки пуска.

    Очень часто применяется комбинация кнопочного или релейного пускателя, а также постоянно включенного рабочего конденсатора. Вместо реле очень часто используется электронный ключ на тиристоре. При помощи этого переключателя производится подключение однофазного электродвигателя с дополнительной группой конденсаторов.

    Практические схемы

    Асинхронные электрические двигатели обладают довольно маленьким на старте крутящим моментом.

    Поэтому необходимо использовать дополнительные устройства, например, пусковые реле или балластные сопротивления, а также мощные конденсаторы для подключения однофазных электродвигателей.

    Обмотки в моторах изготавливаются с разделением на несколько выводов. Если три вывода, то один из них общий. Но может быть четыре или два.

    Для того чтобы понять, к каким конкретно контактам подключена та или иная обмотка, необходимо изучить схему мотора. Если ее нет, потребуется осуществить прозвонку с помощью мультиметра. Для этого переведите его в режим измерения сопротивления.

    Если на паре выводов большое сопротивление, то это означает, что вы произвели замер одновременно двух обмоток. Обычно у рабочей обмотки асинхронных двигателей сопротивление не более 13 Ом.

    У пусковой же оно практически в три раза выше — примерно 35 Ом.

    Для того чтобы подключить при помощи пускателя однофазный асинхронный мотор, достаточно лишь правильно соединить все контакты проводами. Для того чтобы запустить асинхронник, необходимо кратковременно включить в цепи дополнительные элементы — конденсатор или балластное сопротивление. Чтобы выключить электрическую машину, достаточно просто обесточить все обмотки.

    Трехфазные электродвигатели

    В трехфазных электрических двигателях существенно большая мощность, а также крутящий момент во время запуска. Подключение трехфазного электродвигателя простое только в том случае, если имеется розетка с тремя фазами 380 В.

    Но использовать в бытовых условиях такие моторы оказывается проблематично, так как трехфазная сеть есть далеко не у всех дома.

    Обмотки соединяются по схеме «звезда» или «треугольник», это зависит от того, какое межфазное напряжение в сети.

    Но вот в том случае, если вам потребуется подключить такой электрический двигатель в бытовую сеть, придётся использовать маленькую хитрость. По сути, у вас имеется в розетке ноль и фаза. При этом «0» можно считать как один из выводов источника питания, то есть фазу, у которой сдвиг равен нулю.

    Обратите внимание

    Чтобы сделать еще одну фазу, необходимо при помощи дополнительного конденсатора осуществить сдвиг фазы питания. Всего должно быть три фазы, каждая имеет сдвиг относительно соседних на 120 градусов.

    Но чтобы сделать сдвиг правильно, необходимо рассчитать емкость конденсаторов. Так, на каждый киловатт мощности электродвигателя потребуется рабочая емкость около 70 мкФ, а также пусковая около 25 мкФ.

    При этом они должны быть рассчитаны на напряжение от 600 В и выше.

    Но лучше всего производить подключение электродвигателей 380 В трехфазного типа с помощью частотных преобразователей. Существуют модели, которые подключаются к однофазной сети, а при помощи специальных инверторных схем они преобразуют напряжение, в результате чего на выходе оказывается три фазы, которые необходимы для питания асинхронного мотора.

    Источник: fb.ru

    Источник: https://monateka.com/article/252987/

    Схема подключения электродвигателя

    Схема подключения электродвигателя во многом определяется условиями его эксплуатации. Например, подключение “звездой” обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением “треугольником”.

    Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

    На рисунке 1 представлены две схемы соединения обмоток двигателя.

    1. Схема соединения “звездой”. Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

      Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.

    2. Соединение обмоток электродвигателя “треугольником”. При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.

      В отличие от соединения “звездой” эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.

    3. Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.

    Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

    Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

    Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

    В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

    1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
    2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
    3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

      Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

    Подключение трехфазного двигателя в однофазную сеть

    Такая необходимость возникает достаточно часто. Сразу замечу – мощность электродвигателя при этом теряется.

    Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100. Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

    Наиболее простая схема приведена на рисунке 3.

    В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

    Важно

    Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

    Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 – 500 кОм.

    По этой схеме можно подключать электродвигатели с по схеме как “треугольник” так и “звезда”.

    Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

    При нажатии кнопки “пуск” срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими – включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.

    После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки “стоп”, размыкающей цепь питания.

    Катушки пускателей должны быть рассчитана на напряжение 220В.

    © 2012-2019 г. Все права защищены.

    Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

    Источник: https://eltechbook.ru/shema_jelektrodvigatelja.html

    Реверсивная схема подключения электродвигателя

    Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

    Переменная сеть: мотор 380 к сети 380

    Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

    Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

    Для подключения дополнительно понадобятся:

    • Магнитный пускатель (или контактор) – КМ2;
    • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

    Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

    Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

    Для запуска двигателя:

    1. Включите автоматы АВ1 и АВ2;
    2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
    3. Двигатель работает.

    Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

    Переменная сеть: электродвигатель 220 к сети 220

    Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

    В любом другом случае для реверсирования однофазного  конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

    • Автомат;
    • Кнопочный пост;
    • Контакторы.

    Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

    Переменная сеть: 380В к 220В

    Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

    Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

    Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

    Постоянный электроток: особенности

    Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

    Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

    • с возбуждением независимым,
    • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

    Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

    В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

    В электротранспорте применяются агрегаты с последовательным возбуждением.

    Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

    Все способы включения электродвигателей постоянного тока могут реверсироваться:

    • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
    • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

    Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

    Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

    Ещё по теме:
    — Схемы подключения асинхронного и синхронного однофазных двигателей
    — Схемы подключения электродвигателя через конденсаторы
    — Реверсивная схема подключения электродвигателя
    — Плавный пуск электродвигателя своими руками
    —В чем разница асинхронного и синхронного двигателей
    — Реверсивное подключение однофазного асинхронного двигателя своими руками
    — Как проверить электродвигатель
    — Ремонт электродвигателей

    220В или 380В? — подключение электродвигателя к сети

    Сложно представить гараж или собственный дом, в котором имеется мастерская без установленных в них электроприборов. Учитывая довольно высокую стоимость, которых владельцы мастерской стараются изготовить их самостоятельно.

    Это могут быть заточные станки или более сложные механизмы, использующие электродвигатели. В каждом гараже всегда можно найти двигатель от неисправной бытовой техники.

    Электроснабжение гаражей осуществляется от сети напряжением 220 вольт. Двигатели от бытовой техники однофазные, а при изготовлении станка появляется необходимость в схеме подключения двигателя.

    Подключение однофазного коллекторного и асинхронного моторов к сети 220 вольт

    В бытовой технике используются коллекторные или асинхронные двигатели. Схема подключения однофазного двигателя при использовании таких электродвигателей будет разная. Для того чтобы выбрать правильную схему необходимо знать тип двигателя.

    Это сделать очень просто, если сохранился шильдик. При его отсутствии следует посмотреть, имеются ли щетки. При их наличии электродвигатель коллекторный, если они отсутствуют — двигатель асинхронный.

    Схема подсоединения коллекторного двигателя очень проста. Достаточно имеющиеся провода подключить к сети 220 вольт и мотор должен заработать.

    Основным недостатком таких моторов большой шум в процессе работы. К достоинствам можно отнести легкость регулировки оборотов. Существует более сложная схема для подключения однофазного асинхронного двигателя.

    Они бывают однофазные и трехфазные. Однофазные электродвигатели выпускают с пусковой обмоткой (бифилярные) и конденсаторные.

    В момент пуска таких моторов пусковая обмотка замыкается, а после достижения необходимых оборотов отключается специальными устройствами. На практике такие электродвигатели включаются специальными кнопками, у которых средние контакты при нажатии замыкаются, а после отпускания кнопки размыкаются. Это так называемые кнопки ПНВС они специально сконструированы для работы с такими электродвигателями.

    В конденсаторных имеется две обмотки, которые работают постоянно. Они смещены относительно друг друга на 90º , благодаря чему можно осуществить реверс.

    Схема подключения асинхронного двигателя на 220в ненамного сложнее включения коллекторного. Отличие состоит в том, что к вспомогательной обмотке подсоединяется конденсатор. Его номинал рассчитывается по сложной формуле.

     

    Но опираясь на эмпирические данные его, подбирают из расчета 70 Мкф на 1 Квт мощности, а рабочий конденсатор в 2–3 раза меньше, и соответственно имеет параметры 25–30 Мкф на 1 Квт.

    Для того чтобы осуществить подключение однофазного двигателя необходимо подключить конденсатор к вспомогательной обмотке, схема несложная и ее может собрать любой человек.

    Достаточно иметь необходимые комплектующие и не перепутать обмотки. Определить назначение обмоток можно с помощью тестера, измерив, сопротивление. Пусковая обмотка имеет в два раза большее сопротивление, чем рабочая.

    Схемы включения однофазного электродвигателя

    Для включения двигателя применяются три схемы подключения электродвигателей на напряжение 220 в. Для тяжелого пуска устройств, таких как бетономешалка, применяют схему с подсоединением пускового конденсатора с последующим его отключением. Существует более простая схема подключения однофазного двигателя с постоянным подключением конденсатора малой емкости к пусковой обмотке, она применяется наиболее часто.

     

     

    При этом параллельно рабочему конденсатору во время пуска подключается дополнительный конденсатор.

    Для того чтобы наиболее полно раскрыть возможности двигателя применяется схема с постоянно подсоединенным конденсатором к вспомогательной обмотке.

    Это самая распространенная схема подключения, с помощью которой подключают любой однофазный асинхронный двигатель при изготовлении заточного станка. При использовании таких схем подсоединения следует знать, что двигатель не сможет развивать полную мощность.

    Подключение трехфазных электродвигателей

    Часто возникает необходимость в подсоединении асинхронного двигателя,предназначенного для подключения к трехфазной сети в однофазную. Схема подключения трехфазного мотора не сильно отличается от подсоединения однофазного.

    Подключение к однофазной сети 220 вольт

    Основное отличие состоит в конструкции самого двигателя. В нем имеются равнозначные обмотки, которые соединяются звездой или треугольником. Все зависит от рабочего напряжения.

    Схема подключения трехфазного двигателя к однофазной сети включает в себя магнитный пускатель, кнопку включения — выключения и конденсатор. Емкость конденсатора рассчитывается по формуле.

    Эта формула справедлива для соединения звездой. И позволяет подобрать рабочий конденсатор.

    Вторая формула позволяет рассчитать номинальную емкость для работы с электродвигателем при соединении обмоток треугольником.

    Номинал конденсатора можно рассчитать по упрощенной формуле:

    Часто при запуске по такой схеме используют пусковой конденсатор, который включают параллельно с рабочим. И выбирается из условий:

    Если необходимого номинала нет, то подбор конденсаторов возможен из имеющихся комплектующих при соединении их параллельно или последовательно.

    При параллельном соединении емкость суммируется, т. е. увеличивается. А при последовательном соединении уменьшается. И будет меньше меньшего номинала. При подборе конденсаторов необходимо учитывать рабочее напряжение, которое должно быть выше сетевого в 1,5 раза.

    При монтаже следует иметь в виду, что схема подключения 3х фазного двигателя предполагает включение конденсатора к третьей обмотке, что позволяет использовать моторы в однофазной сети 220 вольт.

    Для того чтобы использовать механизм на полную мощность, следует подключить его к трехфазной сети.

    Подключение к трехфазной сети

    Для подключения 3 х фазного двигателя на напряжение 380 вольт схема представляет собой соединение обмоток звездой. Соединение треугольником применяется при наличии трехфазной сети на 220 вольт.

    Схема подключения асинхронного двигателя к трехфазной сети имеет пускатель на три фазы, кнопку «пуск – стоп» и двигатель. Но в быту имеется однофазное подключение к гаражу или мастерской. Поэтому и возникает необходимость подключения 3х фазного двигателя через конденсаторы к сети 220 вольт, когда используется схема с применением фазосдвигающей цепочки.

    Для сдвига фазы применяют конденсатор, который подключают к одной из фаз, а две другие подключают к электрической сети. Это стандартная схема подключения асинхронного двигателя, применяемая для подключения к однофазной сети. При изготовлении всевозможных станков возникает необходимость в реверсивном включении механизмов.

    Реверсивная схема подключения при включении трехфазного двигателя к однофазной сети производится по следующей методике.

    Достаточно переключить сетевой провод с одного контакта конденсатора на другой. В результате вал начнет вращаться в обратную сторону.

    Сложнее осуществляется схема реверсивного подключения двигателя на 380 вольт, если имеется трехфазное соединение.

    Для этого применяется принципиальная схема подключения электродвигателя с применением двух магнитных пускателей. С помощью одного из них производится переключение фаз на обмотках.

    Второй имеет стандартное включение. При монтаже необходимо предусмотреть защиту от одновременного включения пускателей. В противном случае произойдет короткое замыкание.

    Техника безопасности

    При самостоятельном подключении электродвигателей следует соблюдать несложные правила. Не работать при подключенном напряжении.

    Строго соблюдать правила техники безопасности. Во время работы применять средства индивидуальной защиты.

    Нельзя допускать к работе с электричеством необученных людей и детей возрастом менее восемнадцать лет.

    Следует помнить, что электричество не имеет запаха и нельзя определить на глаз его наличие на контактах. Обязательно, для определения напряжения использовать только разрешенные средства измерения.

    Мастеровым от мастерового.: Подключение однофазного двигателя.

    Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.

    Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.

    Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом — ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель. В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный. И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.

    Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.

    Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты — отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще — мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.

    Чтобы запустить двигатель с пусковой обмоткой необходимо подключить его по такой схеме:

    Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки. При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.
    Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов. Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.

    Для подключения конденсаторного двигателя пусковая кнопка не нужна. Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.

    Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.

     Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.

    Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.

    Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.


     В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.

    Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.

    О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.

    Статья дополняется.

    Типы однофазных асинхронных двигателей

    Однофазный асинхронный двигатель запускается несколькими способами. Механические методы — не очень практичные методы, поэтому двигатель временно запускается путем преобразования его в двухфазный двигатель.

    Однофазные асинхронные двигатели классифицируются по вспомогательным средствам, используемым для запуска двигателя. Они классифицируются следующим образом:

    1. Двухфазный двигатель
    2. Двигатель конденсаторно-пусковой
    3. Конденсаторный двигатель, конденсаторный двигатель
    4. Двигатель с постоянным разделенным конденсатором (PSC)
    5. Электродвигатель с расщепленными полюсами

    1.Двухфазный асинхронный двигатель:

    Асинхронный двигатель с расщепленной фазой также известен как двигатель с резистивным пуском . Он состоит из одноклеточного ротора, а его статор имеет две обмотки? основная обмотка и пусковая (также называемая вспомогательной) обмотка. Обе обмотки смещены в пространстве на 90 °, как обмотки в двухфазном асинхронном двигателе. Основная обмотка асинхронного двигателя имеет очень низкое сопротивление и высокое индуктивное сопротивление.

    Рисунок: Асинхронный двигатель с разделением фаз (a) Принципиальная схема (b) Диаграмма

    Характеристики двигателя:

    Пусковой момент асинхронного двигателя с резистивным пуском составляет около 1.5-кратный крутящий момент при полной нагрузке. Максимальный крутящий момент или крутящий момент отрыва примерно в 2,5 раза превышает крутящий момент при полной нагрузке примерно при 75% синхронной скорости. Двигатель с расщепленной фазой имеет высокий пусковой ток, который обычно в 7-8 раз превышает значение полной нагрузки.

    Приложения:

    Электродвигатели

    с разделенной фазой наиболее подходят для легко запускаемых нагрузок, где частота запуска ограничена, и они очень дешевы.

    1. Эти моторы используются в стиральных машинах.
    2. Они используются в вентиляторах кондиционирования воздуха.
    3. Используется в пищевых миксерах, шлифовальных машинах, полировальных машинах, воздуходувках, центробежных насосах,
    4. Применяются в небольших дрелях, токарных станках, оргтехнике и т. Д.
    5. Иногда они также используются для приводов, требующих более 1 кВт.

    Конденсаторные двигатели:

    Конденсаторные двигатели — это двигатели, у которых есть конденсатор в цепи вспомогательной обмотки для создания большей разности фаз между током в основной и вспомогательной обмотках. Есть три типа конденсаторных двигателей.


    2. Конденсаторно-пусковой двигатель:

    Двигатель с конденсаторным пуском развивает гораздо более высокий пусковой момент, т. Е. От 3,0 до 4,5 раз больше крутящего момента при полной нагрузке. Для получения высокого пускового момента значение пускового конденсатора должно быть большим, а сопротивление пусковой обмотки должно быть низким. . Из-за высокого номинального значения VAr необходимого конденсатора используются электролитические конденсаторы порядка 250 F. Конденсатор Cs рассчитан на кратковременный ток.

    Эти двигатели более дорогие, чем двигатели с расщепленной фазой, из-за дополнительной стоимости конденсатора.

    Рисунок: Конденсаторный пусковой двигатель (а), принципиальная схема (б) Диаграмма

    Приложения:

    1. Эти двигатели используются для тяжелых нагрузок, когда требуется частый запуск.
    2. Эти двигатели используются для насосов и компрессоров, поэтому они используются в качестве компрессора в холодильнике и кондиционере.
    3. Они также используются для конвейеров и некоторых станков.

    3. Двухзначный конденсаторный двигатель

    Этот двигатель имеет ротор с сепаратором, а его статор имеет две обмотки, а именно основную обмотку и вспомогательную обмотку.Две обмотки смещены в пространстве на 90 °. В двигателе используются два конденсатора Cs и CR. На начальном этапе два конденсатора подключаются параллельно.

    Рисунок: Конденсаторный двигатель с двумя значениями

    Приложения:

    1. Конденсаторные двигатели с двумя номиналами используются для нагрузок с большей инерцией, требующих частого запуска.
    2. Применяются в насосном оборудовании.
    3. Применяются в холодильных установках, воздушных компрессорах и т. Д.

    4.Двигатель с постоянным разделением конденсаторов (PSC):

    Эти двигатели имеют ротор с сепаратором, и его ротор состоит из двух обмоток, а именно основной обмотки и вспомогательной обмотки. Однофазный асинхронный двигатель имеет только один конденсатор С, который включен последовательно с пусковой обмоткой. Конденсатор С постоянно включен последовательно с пусковой обмоткой. Конденсатор C постоянно включен в цепь при пуске и работе.

    Преимущества

    Однозначный конденсаторный двигатель имеет следующие преимущества:

    1. В двигателях этого типа центробежный выключатель не требуется.
    2. Этот двигатель имеет более высокий КПД.
    3. Он имеет более высокий коэффициент мощности из-за постоянно подключенного конденсатора.
    4. Обладает более высоким крутящим моментом отрыва.

    Ограничения конденсаторного двигателя с постоянным разделением:

    1. Электролитические конденсаторы нельзя использовать для непрерывной работы. Следовательно, следует использовать конденсаторы с масляным наполнением, разнесенные по бумаге. Бумажные конденсаторы того же номинала больше по размеру и дороже.
    2. Однозначный конденсатор имеет низкий пусковой крутящий момент, обычно меньший, чем крутящий момент при полной нагрузке.

    Приложения:

    1. Эти двигатели используются для вентиляторов и нагнетателей в обогревателях.
    2. Применяется в кондиционерах.
    3. Применяется для привода компрессоров холодильников.
    4. Также используется для работы с оргтехникой.

    5. Двигатель с экранированными полюсами:

    Двигатель с расщепленными полюсами — это простой тип однофазного асинхронного двигателя с самозапуском. Он состоит из статора и ротора клеточного типа. Статор состоит из выступающих полюсов.У каждого полюса есть прорези сбоку, а на меньшей части установлено медное кольцо. Эта часть называется заштрихованным полюсом. Кольцо обычно представляет собой одновитковую катушку, известную как затеняющая катушка.

    Рис.: Двигатель с расщепленными полюсами и двумя полюсами статора.

    Приложения:

    1. Двигатели с расщепленными полюсами используются для привода устройств, которым требуется низкий пусковой момент.
    2. Эти двигатели очень подходят для небольших устройств, таких как реле, вентиляторы всех типов и т. Д., Из-за их низкой начальной стоимости и легкости запуска.
    3. Чаще всего эти двигатели применяются в настольных вентиляторах, вытяжных вентиляторах, фенах, вентиляторах для холодильного оборудования и оборудования для кондиционирования воздуха, электронном оборудовании, охлаждающих вентиляторах и т. Д.

    5 случаев Выполнение 1 фазы

    Пять случаев, когда трехфазные двигатели могут работать с одной фазой

    Если однофазный провод, питающий трехфазный двигатель, открыт, двигатель обычно продолжает работать как однофазный двигатель. Но ток, потребляемый рабочей фазой, превышает расчетные условия обмотки.Вы не сможете обнаружить однофазность, пока обмотка не будет повреждена. В некоторых случаях вы можете вообще не узнать его. Предотвратить неприятности просто: используйте устройства защиты от перегрузки на всех трех фазах.

    Типичные однофазные условия
    Перегорает предохранитель в цепи двигателя или размыкается цепь из-за перегоревшего соединения, изношенных контактов переключателя и т. Д., И двигатель продолжает работать. Для защиты двигателя достаточно двух реле перегрузки. Вместо реле можно использовать подходящие двухэлементные предохранители.Эта проблема часто возникает из-за того, что выбранные нагреватели реле слишком мощные, либо были подделаны, либо ими пренебрегли. Регулярно проверяйте реле.

    Открытая первичная фаза
    Если трансформаторы подключены по схеме звезда-треугольник или треугольник-звезда и имеют изолированную нейтраль, они могут вызвать серьезный несбалансированный трехфазный ток в двигателе. Сила тока в одной фазе иногда в два раза больше, чем в другой. Если на высокой фазе отсутствуют реле, такие как B (ниже), двигатель продолжает работать до тех пор, пока обмотка не будет повреждена.Или при попытке пуска повреждение может быть нанесено до срабатывания реле перегрузки.

    Несимметричное первичное напряжение
    Трансформаторы треугольник-звезда, звезда-треугольник также могут быть источником неисправностей. Дисбаланс напряжения 2% в одной фазе первичной обмотки может вызвать перегрузку по току в одной фазе двигателя на 15%. Если это незащищенная фаза сильно нагруженного двигателя, обмотка может быть повреждена. Несимметрия напряжения не редкость, поэтому три реле в порядке там, где вы используете это трансформаторное соединение.

    Шунтированная однофазная нагрузка
    Шунтированная однофазная нагрузка может создавать несимметричные токи в двигателе при размыкании одной линии. В зависимости от величины шунтируемой нагрузки и нагрузки на двигатель, один двигатель может пропускать ток, достаточно высокий, чтобы повредить обмотку. Это еще один случай, когда обнаружение может быть непростым, поэтому избегайте проблем с третьим реле. В большинстве современных пускателей достаточно места для легкой установки третьего реле.

    Параллельные трехфазные двигатели
    Параллельные трехфазные двигатели, которые питаются от одного источника, могут обмениваться током при некоторых обстоятельствах, когда одна линия разомкнута.Двигатель большего размера, № 1 ниже, будет подавать несимметричный трехфазный ток на двигатель меньшего размера № 2. Двигатель № 2 может даже запуститься. Но одна фаза будет нести перегрузку, в то время как две другие линии будут передавать нормальный ток или ниже, поэтому снова может произойти повреждение незащищенной фазы.

    Типы однофазных асинхронных двигателей и их применение

    Существует 5 типов однофазных асинхронных двигателей в зависимости от их методов пуска: пуск с сопротивлением, пуск конденсатора, пуск конденсатора пуском конденсатора, постоянный конденсатор и однофазный асинхронный двигатель с экранированными полюсами.Каждый из них подробно рассматривается ниже.

    Однофазный асинхронный двигатель создает переменное магнитное поле при подаче переменного тока на его обмотки. Но создаваемое им магнитное поле пульсирует. Другими словами, магнитное поле не вращается, как в случае трехфазного асинхронного двигателя.

    Магнитное поле нарастает в одном направлении, падает до нуля, а затем нарастает в противоположном направлении. Таким образом, нам нужна внешняя помощь, чтобы магнитное поле вращалось.Используя некоторые методы пуска, мы можем заставить однофазный асинхронный двигатель самозапускаться.

    Основываясь на этих методах пуска, существует пять типов однофазных асинхронных двигателей. Но прежде чем обсуждать типы однофазных асинхронных двигателей, давайте рассмотрим минимальные требования для создания вращающегося магнитного поля.

    Как создается вращающееся магнитное поле в однофазном асинхронном двигателе

    Для вращающегося магнитного поля требуется как минимум две обмотки.И установка должна соответствовать этим двум правилам:

    • Обмотки должны быть разнесены на 90 электрических градусов.
    • Они должны возбуждаться двумя переменными ЭДС, которые смещены на 90 градусов во временной фазе.
    Два условия для создания вращающегося магнитного поля

    ** Изображение предоставлено: Electrical Revolution

    Но однофазный асинхронный двигатель имеет только одну обмотку. Итак, для создания вращающегося магнитного поля с использованием одного источника переменного тока и одной обмотки используется вспомогательная обмотка.Эта обмотка расположена перпендикулярно первичной обмотке двигателя.

    Полное сопротивление вспомогательной обмотки отличается от полного сопротивления первичной обмотки. Таким образом, он создает разность фаз между токами, протекающими в двух обмотках, что приводит к созданию вращающегося магнитного поля.

    Типы однофазных асинхронных двигателей

    В зависимости от типа импеданса, подключенного к вспомогательной обмотке двигателя, существует пять типов однофазных асинхронных двигателей.

    • Пусковой двигатель с сопротивлением
    • Пусковой двигатель с конденсатором
    • Пусковой двигатель с конденсатором
    • Двигатель с постоянным конденсатором
    • Двигатель с экранированными полюсами

    Давайте подробно обсудим каждый из вышеперечисленных типов однофазных асинхронных двигателей.

    Однофазный асинхронный двигатель с резистивным пуском

    В этом методе мы последовательно подключаем высокое сопротивление к вспомогательной обмотке двигателя, как показано на рисунке.

    Пуск с сопротивлением Асинхронный двигатель

    Общая индуктивность обеих обмоток следующая:

    • Вспомогательная обмотка имеет высокое сопротивление, но низкое индуктивное сопротивление.
    • Первичная обмотка имеет низкое сопротивление, но высокое индуктивное сопротивление.

    Из-за этого ток первичной обмотки (Im) отстает от приложенного напряжения на 65-75 градусов, а ток вспомогательной обмотки (Is) — на 35-45 градусов. Таким образом, разница между двумя токами составляет около 20-30 градусов, как показано на векторной диаграмме ниже.

    Диаграмма сопротивления запуска асинхронного двигателя

    Несмотря на небольшую разность фаз между токами, этого достаточно для запуска двигателя.

    Когда скорость двигателя достигает 75–80% синхронной скорости, центробежный переключатель отключает вспомогательную обмотку от цепи двигателя. Он защищает вспомогательную обмотку от перегрева и возгорания.

    Приложения

    • Эти двигатели идеально подходят только для небольших инерционных нагрузок, требующих умеренного пускового момента.
    • Включает деревообрабатывающий инструмент, шлифовальные станки, вентиляторы, воздуходувки и др.

    Однофазный асинхронный двигатель с конденсаторным пуском

    Принципиальная схема конденсаторного запуска асинхронного двигателя

    Это улучшенная форма метода пуска с сопротивлением. Он содержит электролитический конденсатор, включенный последовательно со вспомогательной обмоткой. В этом случае:

    • Вспомогательная обмотка имеет более высокое емкостное реактивное сопротивление.
    • Первичная обмотка имеет высокое индуктивное сопротивление.

    Из-за этого ток в первичной обмотке отстает от приложенного напряжения, в то время как ток вспомогательной обмотки опережает приложенное напряжение, как показано на векторной диаграмме.

    Электронная схема асинхронного двигателя с конденсаторным пуском

    Видно, что разность фаз между токами значительно увеличилась. Следовательно, пусковой момент двигателя также увеличивается.

    Приложения

    • Конденсаторные пусковые двигатели эффективны для использования в вентиляторах, нагнетателях, струйных насосах, отстойниках и т. Д.
    • Они также идеально подходят для сельскохозяйственных и бытовых инструментов, масляных горелок и т. Д.

    Однофазный асинхронный двигатель с конденсаторным пуском

    Хотя использование электролитического конденсатора увеличивает пусковой момент, у него есть две проблемы:

    • Эти конденсаторы рассчитаны только на непродолжительную работу. При длительном использовании он повреждается.
    • Диэлектрик конденсатора повреждается, если двигатель запускается слишком часто в короткий промежуток времени.

    Итак, для обеспечения плавного пуска и работы мы используем конденсаторные двигатели с конденсаторным запуском. В нем используются два разных конденсатора, размещенных параллельно друг другу, как показано на рисунке.

    Конденсатор пуск конденсатор работа Асинхронный двигатель
    • Первый — конденсатор пропитанный маслом (Cr). Это конденсатор непрерывного действия с меньшим номиналом.
    • Второй — электролитический конденсатор (Cs). Это кратковременный конденсатор с более высокой емкостью.

    При запуске оба конденсатора остаются в цепи. Увеличивается общая емкость, что дает более высокий пусковой момент.
    Когда двигатель выбирает 75% синхронной скорости, центробежный выключатель отключает пусковой конденсатор (Cs) от цепи. Таким образом, после этого со вспомогательной обмоткой остается только рабочий конденсатор (Cr).

    Этот метод отличается от двух вышеуказанных типов однофазных асинхронных двигателей. Здесь вспомогательная обмотка все время остается включенной в цепь, т.е.е., как пусковые, так и работающие.

    Преимущества

    • Он обеспечивает постоянный крутящий момент и снижает уровень шума.
    • Эти двигатели имеют на 25% лучшую перегрузочную способность.
    • Его КПД лучше, чем у двух вышеуказанных типов однофазных асинхронных двигателей.

    Приложения

    • Благодаря лучшему пусковому и рабочему крутящему моменту эти двигатели идеально подходят для компрессоров, холодильников и насосов.
    • Низкий уровень шума делает их полезными для использования в больницах и студиях.

    Однофазный асинхронный двигатель с постоянным конденсатором

    Асинхронный двигатель с постоянным конденсатором

    В этом двигателе используется только один конденсатор, включенный последовательно со вспомогательной обмоткой. Здесь конденсатор остается подключенным к цепи как во время запуска, так и во время работы. Таким образом, нет необходимости в центробежном переключателе, как обсуждалось в вышеупомянутых типах однофазных асинхронных двигателей.

    Преимущества этого двигателя аналогичны преимуществам конденсаторного пускового асинхронного двигателя с конденсаторным запуском.Но из-за использования только одного конденсатора этот двигатель не может обеспечить оптимальные условия запуска и работы. В нем используется бумажный конденсатор с изоляцией из пиранола.

    Приложения

    • Они идеально подходят для потолочных вентиляторов, нагнетателей, комнатных холодильников и других бытовых применений.
    • Из-за простого реверсирования двигателя они лучше всего подходят для индукционных регуляторов и устройств управления печами.

    Электродвигатель с экранированными полюсами

    Этот двигатель полностью отличается от однофазных асинхронных двигателей вышеуказанных типов.В нем нет конденсаторов или движущихся частей переключателя. Его статор имеет выступающие полюса, снабженный возбуждающей катушкой. Медная полоса (затеняющая катушка) охватывает 25% полюса статора, как показано на рисунке.

    Асинхронный двигатель с экранированными полюсами

    рабочий

    Однофазное питание обмотки статора создает переменное магнитное поле в сердечнике. Это переменное магнитное поле взаимодействует с затеняющей катушкой и индуцирует ток в затеняющей катушке. Ток затеняющей катушки создает магнитный поток (поток затеняющей катушки), который отстает от потока основной катушки на некоторый угол.

    Похоже, что поток поля смещается от незатененной части к заштрихованной части полюса. Это смещение потока похоже на слабое вращающееся поле. Это вращающееся поле взаимодействует с ротором и создает пусковой момент.

    Приложения

    • Из-за низкого пускового момента они подходят только для игрушек, небольших вентиляторов, электрических часов и т. Д.
    • Они также идеально подходят для устройств малого бизнеса, таких как копировальные аппараты и торговые автоматы.

    Электропроводка электродвигателя с разделенной фазой — узнайте, как однофазные электродвигатели делают самозапускающимися

    Введение

    В моей последней статье мы рассмотрели конструкцию однофазного асинхронного электродвигателя и причины, по которым он не является самозапускающимся электродвигателем.Также существуют различные типы однофазных двигателей, классифицируемые в зависимости от их конструкции и способа запуска. Это

    1. Асинхронные двигатели (двухфазные, конденсаторные и с экранированными полюсами).
    2. Отталкивающие двигатели (иногда называемые двигателями индуктивной серии), двигатели серии
    3. переменного тока,
    4. Синхронные двигатели без возбуждения.

    В этой статье мы рассмотрим метод двухфазного пуска, центробежные выключатели, двигатели с электромагнитным релейным управлением, характеристики крутящего момента / скорости этих двигателей.

    Двухфазная машина

    Двухфазная машина имеет две обмотки от одной фазы, расположенные в статоре. Одна является основной обмоткой, а другая — пусковой, которая используется только для пусковых целей. Основная обмотка имеет низкое сопротивление, но высокое реактивное сопротивление. Пусковая обмотка имеет высокое сопротивление, но низкое реактивное сопротивление.

    В переменном токе В цепи с чистой индуктивностью ток отстает от напряжения на некоторый фазовый угол. Имея это в виду, легко понять метод двухфазного пуска однофазных асинхронных двигателей.

    Пусть Is будет током, проходящим через обмотку стартера. Im — ток, проходящий через основную обмотку. Из принципиальной схемы видно, что напряжение, приложенное как к основной обмотке, так и к пусковой обмотке, одинаково. Таким образом, ток Is, потребляемый обмоткой стартера, отстает от приложенного напряжения V на небольшой угол, в то время как ток Im, проходящий через основную обмотку, отстает от приложенного напряжения V на очень большой угол. Фазовый угол между Is и Im должен быть максимально большим, поскольку пусковой момент двигателя с расщепленной фазой пропорционален sin α.

    После того, как стартер и основная обмотка создали вращающееся магнитное поле, ротор начинает вращаться, и для дальнейшего вращения ротора обмотка стартера не требуется. Таким образом, предусмотрен переключатель, который можно размыкать, чтобы изолировать обмотку стартера от цепи двигателя. Обычно переключатель может быть центробежного типа, и, таким образом, после того, как двигатель достигает скорости от 70 до 80% от полной нагрузки, центробежный переключатель размыкается, изолируя обмотку стартера. Центробежный выключатель S включен последовательно с обмоткой стартера и расположен внутри двигателя.

    В некоторых двигателях, которые используются для холодильников, могут быть герметичные компрессоры-двигатели. В этих двигателях принято использовать электромагнитные реле вместо центробежных выключателей. В таких двигателях обмотка реле включена последовательно с основной обмоткой, а пара контактов, которые нормально разомкнуты, включена в обмотку пускателя. Во время периода запуска, когда Im большое, контакты реле замыкаются, позволяя Is течь, и двигатель запускается как обычно.После того, как двигатель разгонится до 75% от скорости полной нагрузки, Im падает до значения, достаточно низкого, чтобы вызвать размыкание контактов.

    Типичная кривая характеристик крутящего момента / скорости показана на рисунке. Можно сделать вывод, что пусковой момент примерно в 200–300 раз превышает крутящий момент при полной нагрузке, а пусковой ток в 6–8 раз превышает ток при полной нагрузке. Эти двигатели обычно предпочтительнее по сравнению с двигателями с конденсаторным пуском. Эти двигатели обычно используются для вентиляторов, нагнетателей, центробежных насосов, небольших станков, бытовых приборов и т. Д.

    Направление вращения таких двигателей может быть изменено на обратное путем реверсирования или смены одной из двух обмоток статора. Только для этого у этих двигателей четыре вывода выведены из рамы. Также эти двигатели аналогичны характеристикам трехфазного асинхронного двигателя с точки зрения управления скоростью. Эти двигатели могут работать с переменной скоростью от 2 до 5% от холостого хода до полной нагрузки. Таким образом, эти двигатели можно назвать двигателями с постоянной скоростью.

    Здесь необходимо отметить, что эти двигатели также называются асинхронными двигателями с двухфазным запуском через сопротивление.

    В моей следующей статье мы обсудим индукционные двигатели с конденсаторным пуском.

    Изображение предоставлено.

    www.mechatronic-design.com

    www.web-books.com

    Как подключить автоматический выключатель защиты трехфазного двигателя к однофазному двигателю?

    2 минуты на чтение

    Последнее обновление 9 июня 2021 г. Автор: Крунал Шах (мод)

    Недавно один из подписчиков моего YouTube-канала задал интересный вопрос. Он спросил меня, как он может подключить автоматический выключатель защиты трехфазного двигателя (MPCB) к однофазному двигателю?

    Объявление

    Мы можем это сделать, это возможно?

    Да, но с осторожностью.

    Внимание!

    Обязательно используйте автоматический выключатель правильного типа для электрической цепи. Перед выполнением таких подключений ознакомьтесь с инструкциями производителя. Если в своем руководстве / каталоге они упоминают такие соединения, то только вы не можете делать иначе. Подобно Schneider GV2 и GV3 позволяют подключать однофазную нагрузку, как указано на их официальном сайте.

    Если только не пытайтесь выполнять соединения, не зная внутренней схемы выключателя.

    Посмотрите это видео, чтобы понять и увидеть автоматический выключатель изнутри.

    Вот. Я дам вам пошаговое руководство по подключению 3-фазного MPCB к однофазному двигателю.

    Как подключить автоматический выключатель защиты трехфазного двигателя к однофазному двигателю?

    Шаг 1: Сначала подключите токоведущий провод к L1. Посмотрите на изображение ниже.

    Шаг 2: Затем подключите нейтральный провод к L3.

    Шаг 3: Теперь подключите провода двигателя к клеммам T1 и T2 MPCB.

    Шаг 4: Наконец, подключите провод от L2 к T3 MPCB.

    Пояснение

    В однофазной цепи нейтраль действует как обратный путь.

    Вы это знаете — верно?

    Итак, мы должны сделать такое соединение, чтобы все три полюса автоматического выключателя защиты двигателя находились под петлей.

    Взгляните на изображение ниже.Два полюса автоматического выключателя защиты двигателя включены последовательно.

    Таким образом, вы можете запустить однофазный двигатель с 3-фазным MPCB.

    Убедитесь, что теперь вы настроили диапазон MPCB в соответствии с номинальными токами на паспортной табличке двигателя.

    Объявление

    Однофазные двигатели

    Однофазные двигатели

    Однофазные электродвигатели вносят большой вклад в наш комфорт и удобство на розничном рынке и в наших домах.Хотя они не так активно используются на промышленных и коммерческих рынках, это не значит, что они вообще не используются … просто не так часто, как на розничных и жилых рынках. И это в первую очередь связано с тем, что «Однофазное питание» является единственной электрической системой. доступна для 99% рынка жилой недвижимости, в то время как система «Трехфазное питание» доступна для большинства коммерческих / промышленных рынков. Таким образом, использование однофазных двигателей дает больше возможностей. с доступными источниками питания, чем что-либо еще.

    По большому счету, выбор однофазных двигателей, из которых мы можем выбирать, определенно ограничен по сравнению с теми, которые доступны на рынке трехфазных двигателей. И это связано с рынок, который необходимо обслуживать, и эффективность трехфазного питания по сравнению с однофазным питанием. В приведенной ниже таблице вы можете сравнить различные типы однофазных двигателей в зависимости от мощности, пусковой момент, пусковой ток, эффективность и применение. Это, безусловно, должно дать вам представление о том, почему вам следует использовать определенный тип и какую пользу он принесет вам, когда вы это сделаете.

    От
    Рабочие характеристики однофазного двигателя
    Тип Размер — л.с. Пусковой момент Пусковой ток Приложения КПД
    Двухфазный 1/20 — 1/2 л.с. Низкий Высокая вентиляторы, нагнетатели, центробежные насосы, стиральные машины, шлифовальные машины, токарные станки, вентиляторы для кондиционирования воздуха и печные вентиляторы Низкий
    Конденсатор пуск-индукция от 1/3 до 10 л.с. Высокая Высокая конвейеры, болгарки, кондиционеры, компрессор Умеренная
    Пусковой конденсатор — Работа конденсатора от 1/3 до 10 л.с. Высокая Высокая конвейеры, кондиционеры, компрессоры, разгрузчики силосов для сельского хозяйства Высокая
    Постоянный разделенный конденсатор от 1/20 до 3/4 л.с. Низкий Умеренная вентиляторы и нагнетатели в отопителях и кондиционерах вентиляторы конденсатора Высокая
    Затененный полюс 1/300 — 1/20 л.с. Очень низкий Низкий маленькие инструменты, фены, игрушки, проигрыватели, маленькие вентиляторы, электрические часы Низкий
    Универсальный до 2500 Вт Низкий Умеренная Бытовая техника и электроинструменты. Низкий
    Пуск отталкивания — индукционный прогон 1/2 до 40 л.с. Очень высокий Умеренная Рубанки, деревообрабатывающие станки, разгрузчики силосов, холодильные компрессоры Умеренная

    Для этих однофазных двигателей доступен ряд опций, которые зависят от фактических потребностей приложения.Большинство двигателей доступны в различных вариантах исполнения. типы монтажа, варианты корпусов и расположение валов.

    Например, варианты корпуса могут включать: ODP (защита от капель открытого типа), TEAO (полностью закрытый воздуховод), TENV (полностью закрытый без вентиляции и TEFC (полностью закрытый вентилятор). Охлажден). Для типов монтажа список включает: крепление на жестком основании, на упругом основании, упругое кольцо (только), крепление с помощью сквозных болтов, крепление на поясе, крепление на пьедестале, и, возможно, некоторые дополнительные опции, которые не так распространены.И вот еще один момент, который следует иметь в виду при использовании одного из конкретных типов корпуса; т.е. TEAO (полностью закрытый Воздух над). Этот двигатель ПРЕДНАЗНАЧЕН для того, чтобы технологический воздух (воздух, который перемещается) проходил над двигателем и действовал как «охлаждающий» воздух. Если вы поместите этот тип двигателя в В случае применения, когда двигатель находится «вне» воздушного потока, двигатель сгорит, поскольку в нем недостаточно охлаждающего воздуха.

    Что касается опций вала, они тоже различаются в зависимости от области применения и размера рамы.Например, некоторые двигатели могут иметь основание с отверстиями для крепления, пробитыми для 48 и 56 рамы. монтаж, но вал двигателя будет 1/2 дюйма с «плоским». Тогда есть двигатели с «двусторонним валом» для установки 2-х вентиляторов с короткозамкнутым ротором. В то время как нормальная длина вала составляет длина двигателя может составлять 2-1 / 2 дюйма или 3 дюйма, некоторые PSC или другие двигатели могут иметь вал длиной 8 дюймов или более, чтобы обеспечить длину, необходимую для установки вентилятора конденсатора при использовании в наружный тепловой насос.Поэтому убедитесь, что вы ЗНАЕТЕ, какой диаметр вала вам нужен и какой длины он должен быть для вашего применения.

    И последнее замечание, направление вращения … Вы должны понять это правильно! Некоторые конструкции двигателей, в частности PSC, обычно проектируются с использованием простой сборки «вилка и розетка». вы отключите вилку, поверните ее на 180 ° и снова вставьте вилку, чтобы изменить направление вращения. У других есть дополнительные электрические соединительные штыри на клеммной колодке, где вы подключите входящую мощность.В этом типе вам нужно переместить определенный провод из исходного положения в этот другой штифт, чтобы изменить направление. А потом НАСТОЯЩИЙ выпуск …! Двигатели которые просто НЕОБРАТИМЫ. С этими двигателями вы ДОЛЖНЫ знать, в каком направлении вам нужно вращать двигатель при покупке. Имея трудности с пониманием направления вращение? Вот определение «ротации», взятое с веб-сайта службы поддержки Siemens:

    В соответствии с DIN EN 60034-8 направление вращения двигателя определяется следующим образом:
    • Направление вращения направление, если смотреть со стороны привода.
      • Это означает заглядывание в «ведущий» конец вала.

    • Приводной конец — это сторона с выступом вала.
      • Для машин с двумя удлинениями вала приводной конец:
        • a) конец с большим диаметром вала
          b) конец на противоположной стороне вентилятора,
          • , если оба конца вала имеют одинаковый диаметр.

    • Вращение по часовой стрелке
      • Поверните вал по часовой стрелке, если смотреть со стороны привода.
      • Направление обзора — от приводной стороны к неприводной.

    • Вращение против часовой стрелки
      • Поверните вал против часовой стрелки, если смотреть со стороны привода.
      • Направление обзора — от приводной стороны к неприводной.

    Типы однофазных двигателей

    Разделенная фаза

    Двигатели с разделенной фазой имеют пусковой выключатель, но не имеют конденсатора или дополнительного пускового механизма.Их пусковая обмотка просто электрически смещена от рабочей обмотки на количество, достаточное для начала вращения элемента в определенном направлении. Поскольку нет «дополнительной» помощи при пуске, этот двигатель имеет пусковой режим от умеренного до слабого. крутящий момент …. в диапазоне от 100% до 125% крутящего момента при полной нагрузке. К тому же пусковой ток будет достаточно высоким. Двигатели этого типа используются в приложениях, которые относительно легко запустить, но может потребоваться мощность при увеличении скорости вращения.

    Типичные области применения — это нагружающие вентиляторы с ременным приводом и некоторые насосы.

    Пуск конденсатора-индукция

    Это настоящая «рабочая лошадка» линейки однофазных двигателей. Эти двигатели содержат пусковую обмотку, пусковой выключатель и электролитический конденсатор. Когда мотор Когда его попросили запустить, конденсатор разряжается в пусковой обмотке, давая ему «выстрел в руку», чтобы он заработал.Затем, как и в других однофазных двигателях с пусковыми выключателями, при ротор достигает примерно 75-80% полной скорости, пусковой выключатель ОТКРЫВАЕТСЯ, удаляет конденсатор и запускает обмотку из цепи и позволяет ОСНОВНОМУ или обмотки для завершения набора скорости до полных рабочих оборотов в минуту.

    Эти двигатели могут изготавливаться с пусковым моментом от среднего до высокого в зависимости от номинала конденсатора и конструкции пусковой обмотки.Мотор также будет иметь высокий момент пробоя, который удерживает двигатель «заблокированным» на его рабочей скорости даже при высоких перегрузках. Эти двигатели с УМЕРЕННЫМ пусковым моментом 175% или меньше обычно используются. на вентиляторах, нагнетателях и насосах. Двигатели с высоким пусковым моментом …. используются при нагрузках, требующих для запуска крутящего момента полной нагрузки до 300% и выше, могут использоваться на компрессорах и промышленное, торговое и сельскохозяйственное оборудование.На сельскохозяйственном рынке такие устройства, как разгрузчики силосов и другие «трудно запускаемые» грузы, являются естественными для этих устройств.

    Пусковой конденсатор — Работа конденсатора

    Эти двигатели аналогичны конструкции и применению двигателя конденсаторного пуска, указанного выше, за исключением того, что они заполнены маслом, РАБОЧИЙ конденсатор в цепи с ГЛАВНОЙ или бегущей обмоткой.Этот конденсатор остается в цепи ВСЕ ВРЕМЯ и помогает повысить эффективность работы и снижает полную нагрузка рабочий ток. Эти двигатели обычно имеют более высокую однофазную мощность … более 2 л.с., при этом сельскохозяйственная промышленность является основным пользователем этих двигателей.

    Постоянный разделенный конденсатор

    Двигатели этого типа используются во многих из тех же приложений, что и двигатели с экранированными полюсами.Основные отличия заключаются в том, что двигатель PSC имеет гораздо более высокий КПД, более низкий ход ток (на 50% — 60% меньше) и более высокая выходная мощность. Двигатель PSC получил свое название из-за того, что в цепь двигателя вообще включен конденсатор «RUN». раз. Это устройство помогает поддерживать высокий КПД и коэффициент мощности, а также снижает количество потребляемой мощности при той же выходной мощности. Эти двигатели можно использовать для Замените ЛЮБОЙ двигатель с экранированными полюсами, кроме тех, для которых физический размер PSC не подходит…. то есть часовой двигатель или небольшой вентилятор охлаждения испарителя. Выходная мощность PSC Двигатель будет находиться в диапазоне «суб-дробных HP», то есть от 1/20 л.с. до максимум 3/4 л.с. Односкоростные или многоскоростные двигатели могут быть спроектированы с максимальной скоростью 1625 об / мин и 1075 об / мин — самая популярная скорость. Несколько скоростей в одном двигателе достигаются либо путем «постукивания» обмотки, либо «дроссельной катушки». Пусковой крутящий момент на этом двигателе Тип также считается НИЗКИМ.

    Затененный полюс

    Эти двигатели имеют низкий пусковой момент, низкий КПД, средний рабочий ток, низкую мощность, отсутствие конденсаторов, пускового переключателя и низкую стоимость. Двигатели этот тип используется в небольших печных воздуходувках с прямым приводом, оконных вентиляторах и других вентиляторах, используемых в жилых районах.Двигатели с экранированными полюсами ЗАПРЕЩАЕТСЯ использовать для заменить ДРУГИЕ ТИПЫ однофазных двигателей, в основном из-за низкого крутящего момента и КПД. Двигатели этого типа также используются в мелкой бытовой технике и таких предметах, как вытяжка в ванных комнатах. вентиляторы, часовые двигатели и вентиляторы испарителей холодильников и морозильников.

    Несмотря на низкий КПД, с низким пусковым моментом из-за присущей им НИЗКОЙ СТОИМОСТИ, эти двигатели широко используются в жилых домах.Выходная способность Двигатель с экранированными полюсами будет находиться в диапазоне от «субфракционной HP», т. е. от 1/30 л.с. до максимальной 1/4 или 1/3 л.с. Скорости обычно будут 2-полюсными (3000 об / мин), 4-полюсными (1550 об / мин) и 6-полюсными (1050 об / мин). Об / мин).

    Универсальный двигатель

    Универсальный двигатель — это тип электродвигателя, который может работать как от переменного, так и от постоянного тока и использует электромагнит в качестве статора для создания магнитного поля.это Коммутируемый двигатель с последовательной обмоткой, в котором обмотки возбуждения статора соединены последовательно с обмотками ротора через коммутатор. Его часто называют серией переменного тока. мотор. Универсальный двигатель очень похож на двигатель постоянного тока по конструкции, но немного изменен, чтобы двигатель мог правильно работать от сети переменного тока. Этот тип Электродвигатель может хорошо работать на переменном токе, потому что ток как в катушках возбуждения, так и в якоре (и в результирующих магнитных полях) будет чередоваться (обратная полярность) синхронно с подачей.Следовательно, результирующая механическая сила будет действовать в постоянном направлении вращения, независимо от направления приложенного напряжения, но определяется коммутатором и полярностью катушек возбуждения.

    Универсальные двигатели

    обладают высоким пусковым моментом, могут работать с высокой скоростью, легки и компактны. Они обычно используются в портативных электроинструментах и ​​оборудовании, а также в много бытовой техники. Они также относительно легко управляются электромеханически с помощью катушек с отводами или электронным способом.Однако на коммутаторе есть щетки, которые изнашиваются, поэтому они гораздо реже используются для оборудования, которое постоянно используется. Кроме того, отчасти из-за коммутатора универсальные двигатели обычно очень шумные, оба акустически и электромагнитно.

    Отталкивающий пусковой индукционный двигатель

    Хотя этот двигатель упоминается здесь, мы считаем его более «специальным» двигателем, и его можно найти более подробно на странице этой темы.Нажмите здесь, чтобы перейти на страницу Special Motor нашего сайта.

    Мы надеемся, что вы были в некоторой степени осведомлены об этих типичных однофазных двигателях. Как всегда, вы можете поговорить с нашими специалистами по приложению по телефону или электронной почте. для дополнительной информации. Щелкните эту ссылку, чтобы получить номера телефонов и / или адреса электронной почты нашей команды.

    Сравнение однофазных и трехфазных двигателей

    Есть три основных категории двигателей:

    1. постоянного тока
    2. Однофазный переменный ток (1-фазный переменный ток)
    3. Трехфазный переменный ток (3-фазный переменный ток)

    Даже в рамках этих основных категорий существует множество вариаций и стратегий.Двигатели постоянного тока обладают некоторыми уникальными свойствами, но обычно принципы работы различных вариантов двигателей переменного тока могут быть неясными. Понимание этих различий может объяснить причины, по которым в некоторых ситуациях можно использовать только один тип двигателя, а не другие.

    Двигатели работают по принципу магнитных полей, создаваемых катушками с проволокой. В уникальной ситуации с двигателем постоянного тока полюса магнитного поля должны каким-то образом переключаться извне. Чаще всего это достигается с помощью щеток коммутатора или, возможно, путем переменного напряжения с внешней схемой драйвера (например, в бесщеточном или шаговом двигателе).

    Когда дело доходит до кривой переменного напряжения переменного тока, это создает идеальную ситуацию для управления двигателем без дополнительных схем или шумных, неэффективных угольных щеток. Переменное напряжение — идеальный источник питания для перемещения тяжелых грузов с минимально возможными потерями. Однако даже между двумя системами напряжения (1-фазная и 3-фазная) существуют различия в работе, приводящие к преимуществам и недостаткам в зависимости от требований приложения.

    Однофазные двигатели переменного тока

    Внутри однофазного двигателя основная катушка привода на самом деле представляет собой серию катушек, равномерно распределенных внутри, чтобы плавно вращать ротор внутри.Будет приложено напряжение, ведущее к каждой катушке, чередующейся север и юг на основной частоте сети. Ротор будет намагничен к этим полюсам, неся его по непрерывному кругу.

    Работает, пока двигатель работает на полной скорости, но при запуске возникает проблема. Ротор остановится в случайном месте, когда двигатель выключен, поэтому в следующий раз, когда будет приложено напряжение при запуске, трудно понять, будет ли магнитное притяжение NS заставит его двигаться вперед или назад, чтобы начать свое вращение. при запуске.Случайное направление вращения явно недопустимо.

    Рисунок 1. Разрез однофазного двигателя.

    Наиболее распространенный метод исправления этой проблемы — использование конденсатора, соединенного последовательно с вторичной катушкой, обычно называемой «пусковой катушкой». Поскольку конденсатор предназначен для подачи всплеска тока в самом начале формы волны напряжения, ток через эту пусковую катушку будет проходить за доли секунды до основной катушки.Это приводит к тому, что ротор сначала притягивается к этой пусковой катушке, а затем к главной катушке привода в тесной последовательности, обеспечивая предсказуемое направление вращения.

    Полярность этой пусковой катушки может быть изменена, чтобы изменить направление запуска. Как только двигатель будет достаточно запущен, очень отчетливый «щелчок» будет указывать на то, что центробежный выключатель открыл пусковую катушку, и его работа завершена. Выпуклость на стороне корпуса обычно содержит конденсатор, поэтому, если эта выпуклость присутствует, это почти наверняка конденсаторный однофазный двигатель.

    Эти однофазные двигатели имеют преимущества, когда источником напряжения является дом или магазин без трехфазного источника питания. Провода, идущие к двигателю, будут состоять только из линии и нейтрали от стандартного источника питания на 120 вольт или двух линейных проводов в случае системы на 240 вольт. В любом случае эта единственная цепь проводимости должна содержать весь ток возбуждения.

    Если двигатель требует большой мощности, провода должны быть огромными. Это приводит к основному недостатку однофазных двигателей: они обычно используются только для небольших приложений.Но, тем не менее, поскольку однофазные источники питания настолько распространены, этот тип двигателя можно найти повсюду в торговом оборудовании.

    Трехфазные двигатели переменного тока

    Многие принципы управления катушками внутри трехфазного двигателя точно такие же, как и в однофазном. Единственное отличие состоит в том, что в трехфазном режиме магнитные полюса катушки перемещаются с шагом пути вокруг ротора, когда каждая линия достигает полного напряжения. Это означает, что в зависимости от последовательности намагничивания катушек направление вращения больше не будет случайным, как это было в однофазном двигателе — оно полностью предсказуемо и согласовано.Пусковая цепь с конденсатором больше не нужна, поскольку двигатель работает вполне естественно.

    Рисунок 2. Разрез трехфазного двигателя

    Основным преимуществом этого типа двигателя является его применение в больших мощностях. Источник питания и проводники обычно способны обеспечивать большее количество тока, чем жилые системы в первую очередь, и каждая из трех линий будет пропускать меньше тока по отдельности, чем если бы весь ток проходил через одну цепь.Это делает двигатель привлекательным для приложений с большей мощностью. В случае большинства трехфазных двигателей электрик может настроить электропроводку на высокое или низкое напряжение. Это может снизить потребление тока, если будет обеспечено более высокое напряжение.

    Очевидным недостатком этого типа двигателя является то, что для его привода требуется трехфазное питание. В современных системах управления это на самом деле не всегда так, поскольку некоторые маломощные преобразователи частоты (VFD) могут питаться однофазным питанием, но обеспечивать трехфазный ток.

    Сводка

    Для большинства небольших магазинов, где требуются двигатели с низким энергопотреблением, нормальным будет однофазный двигатель с конденсаторной пусковой катушкой. Для справки с точки зрения «мощности», двигатель мощностью 5 лошадиных сил, работающий при 240 В переменного тока, потребляет около 15 ампер.

    Работая только при 120 В переменного тока, тот же двигатель мощностью 5 л.с. потребляет 30 А. Это довольно значительная величина тока. Для более крупных промышленных приложений естественным решением будет трехфазный двигатель, поскольку источники напряжения и тока намного больше.Идеальное решение практически для любого двигателя!

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    *