Схема включения варистора: используем мультиметр и другие способы

Методы защиты устройств (датчиков, приборов, контроллеров) с транзисторными выходами от токов самоиндукции

Содержание:

  • Введение
  • Техника безопасности
  • 1. Электромагнитная индукция. Определение. Физический смысл
  • 2. Теоретический расчет ЭДС самоиндукции
  • 3. Практическое измерение ЭДС самоиндукции
  • 4. Методы и средства защиты от ЭДС самоиндукции
  • Заключение

Введение

В данной статье будет рассмотрено явление самоиндукции, проявляющееся зачастую при коммутации индуктивных нагрузок. Также будут рассмотрены способы защиты и используемое для этого оборудование.

Техника безопасности

ВНИМАНИЕ! К работам по монтажу, наладке, ремонту и обслуживанию технологического оборудования допускаются лица, имеющие техническое образование и специальную подготовку (обучение и проверку знаний) по безопасному производству работ в электроустановках с группой не ниже 2 для ремонтного персонала, а также имеющие опыт работ по обслуживанию оборудования, в конструкцию которого вносятся изменения и дополнения, либо производится модернизация. За неисправность оборудования и безопасность работников при неквалифицированном монтаже и обслуживании ООО «КИП‑Сервис» ответственности не несет.

1. Электромагнитная индукция. Определение. Физический смысл

Электромагнитная индукция — явление возникновения электрического тока, при изменении во времени магнитного поля. Изменение магнитного поля, в силу закона электромагнитной индукции, приводит к возбуждению в контуре индуктивной электродвижущей силы (ЭДС). Процесс возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока называется самоиндукцией. Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию, а при убывании тока — препятствует убыванию. Величина ЭДС самоиндукции определяется уравнением:

E=−L×dI/dtE= -L times dI / dt

где:
E — ЭДС самоиндукции
L — индуктивность катушки
dI/dt — изменение тока во времени.

Знак «минус» означает, что ЭДС самоиндукции действует так, что индукционный ток препятствует изменению магнитного потока. Этот факт отражён в правиле Ленца:

Индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Явление самоиндукции можно наблюдать при включении и последующем выключении катушек соленоидов, промежуточных реле, электромагнитных пускателей. При подаче напряжения на катушку создается электромагнитное поле, в следствии чего образуется электродвижущая сила, которая препятствует мгновенному росту тока в катушке. Согласно принципу суперпозиции, основной ток в катушке можно представить в виде суммы токов, один из которых вызван внешним напряжением и сонаправлен с основным током, а второй вызван ЭДС самоиндукции и имеет противоположное направление основному току. Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки. При протекании тока катушка «запасает» энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдает запасенную энергию, стремясь поддержать величину тока в цепи.

Это, в свою очередь, вызывает всплеск напряжения обратной полярности на катушке. Данный всплеск может достигать значений во много раз превышающих номинальное напряжение источника питания, что может помешать нормальной работе электронных устройств, вплоть до их разрушения.

Разберем более подробно, почему скачок ЭДС самоиндукции будет иметь обратную полярность. На рисунке 1 изображены две схемы, на которых стрелками обозначено направление движения тока, а так же потенциалы на всех элементах схемы при закрытом и открытом ключе.

а — закрытый ключб — открытый ключ

Рисунок 1 — Направление тока при закрытом и открытом ключе

При закрытом ключе потенциалы на всех элементах совпадают с потенциалом источника питания (рисунок 1, а). Во время размыкания ключа, из схемы исключается источник питания, и ЭДС самоиндукции стремится поддержать ток в катушке. Для того, что бы сохранить направление тока в катушке, ЭДС меняет свой потенциал на противоположный по знаку источнику питания (рисунок 1, б). Именно поэтому всплеск ЭДС самоиндукции будет иметь обратную полярность.

Более наглядно этот всплеск показан на рисунке 2. На графике изображено напряжение источника питания Uпит, ток возникающий в катушке I, ЭДС самоиндукции.

Рисунок 2 — График изменения тока и напряжения при коммутации

2. Теоретический расчет ЭДС самоиндукции

Рассмотрим явление самоиндукции на примере работы электромагнитной катушки при пропускании через нее постоянного тока. Включение катушки происходит при помощи бесконтактного датчика. Катушку можно заменить на последовательно соединенные активное Rk и индуктивное Lk сопротивления (рисунок 3).

Рисунок 3 — Эквивалентная схема электромагнитной катушки

Тогда электрическая схема будет иметь вид, представленный на рисунке 4.

Рисунок 4 — Схема включения электромагнитной катушки

При сработавшем датчики падение напряжения U на катушке составляет 24 В. При коммутации индуктивной нагрузки в первый момент времени ток остается равным току до коммутации, а после изменяется по экспоненциальному закону. Таким образом, при переходе управляющего транзистора в закрытое состояние катушка начинает генерировать ЭДС самоиндукции, предотвращающую падение тока. Попробуем рассчитать величину генерируемого катушкой напряжения.

На рисунке 5 показано направление тока при открытом транзисторе. Переход транзистора в закрытое состояние фактически означает что цепь катушки с генерируемым ЭДС самоиндукции замыкается через подтягивающий резистор. Обозначим его Ro. По документации датчика это сопротивление составляет 5,1 кОм.

Рисунок 5 — Направление тока при открытом транзистореРисунок 6 — Направление тока после перехода транзистора в закрытое состояние

На рисунке 6 видно что ток на резисторе Ro поменял направление — это обусловлено возникновением ЭДС самоиндукции в катушке. Для полученного замкнутого контура выполняется следующее уравнение:

UR0+URk+ULk=0U_R0+U_Rk+U_Lk=0

Выражая напряжение через ток и сопротивление, получим:

I×R0+I×Rk+ULk=0I times R_0 + I times R_k +U_Lk=0

ULk=−I×(Rk+R0)U_Lk= -I times ( R_k + R_0 )

При этом ток в цепи стремится к значению тока при открытом транзисторе:

I=U/RkI= U / R_k

Подставим данное выражение в предыдущую формулу, получим величину генерируемого напряжения самоиндукции:

ULk=−U×(Rk+R0)/Rk=−U×(1+R0/Rk)U_Lk= -U times ( R_k + R_0 ) / R_k = -U times ( 1 + R_0 / R_k )

Все переменные из этой формулы известны:
U = 24В — напряжение питания
Ro = 5,1кОм — сопротивление подтягивающего резистора датчика
Rk = 900 Ом — активное сопротивление катушки (данные из документации).

Подставив значения в формулу, рассчитаем примерное значение напряжения самоиндукции:

ULk=−U×(1+R0/Rk)=−24×(1+5100/900)=−160ВU_Lk= -U times ( 1 + R_0/R_k ) = -24 times ( 1 + 5100 / 900 )=-160 В

Данный расчет упрощен и не учитывает индуктивность катушки, от которой так же зависит ЭДС самоиндукции. Но даже из упрощенного расчета видно, что величина генерируемого напряжения оказывается во много раз больше номинального напряжения 24В.

Воздействие ЭДС самоиндукции может повредить устройства, имеющие общие с индуктивной нагрузкой цепи питания. На рисунке 7 приведена некорректная схема, на которой от одного источника питания подключен бесконтактный датчик и катушка соленоидного клапана.

Рисунок 7 — Некорректная схема подключения

На первый взгляд, данная схема может работать без каких-либо сбоев. Однако, при выключении катушки клапана возникает всплеск напряжения в результате самоиндукции. Всплеск распространяется по цепи питания на клемму «минус» датчика. В результате, разница потенциалов между коллектором и эмиттером закрытого транзистора превышает максимальное значение, что приводит к его пробою.

3. Практическое измерение ЭДС самоиндукции

Чтобы проверить правдивость приведенных выше теоретических расчетов, проведем измерение ЭДС самоиндукции. Для проведения измерений необходимо собрать схему, для которой мы проводили расчеты. При помощи осциллографа на клеммах катушки произведем измерение напряжения (рисунок 8).

Рисунок 8 — Измерение ЭДС самоиндукции

На рисунке 9 изображена осциллограмма значений напряжения самоиндукции катушки с питанием 24 В. На графике видно, что реальный всплеск напряжения при отключении катушки в несколько раз больше напряжения питания и составляет 128 В. Как следствие, транзисторный ключ выйдет из строя. Возникающий скачок ЭДС приводит к пробою транзисторных ключей, бесконтактных датчиков, слаботочных коммутирующих элементов и другим нежелательным эффектам в схемах управления.

Рисунок 9 — ЭДС самоиндукции при выключении катушки с питанием 24 В

4.

Методы и средства защиты от ЭДС самоиндукции

Для подавления ЭДС самоиндукции и предотвращения выхода из строя оборудования необходимо принимать специальные меры. Для подавления пиков напряжения на катушке во время выключения, необходимо параллельно катушке включить в схему диод (для постоянного напряжения) или варистор (для переменного напряжения). ЭДС самоиндукции будет ограничиваться этими элементами, тем самым они будут обеспечивать защиту схемы.

Диод включается параллельно катушке против напряжения питания (рисунок 10). Таким образом, в установившемся режиме он не оказывает никакого воздействия на работу схемы. Однако при отключении питания на катушке возникает ЭДС самоиндукции, имеющая полярность, противоположную рабочему напряжению. Диод открывается и шунтирует катушку индуктивности.

а — включение диода в схему PNPб — включение диода в схему NPN

Рисунок 10 — Схема включения диода для защиты от самоиндукции

Варистор также включается параллельно катушке (рисунок 11).

Рисунок 11 — Схема включения варистора для защиты от самоиндукции

При увеличении напряжения выше пороговой величины, сопротивление варистора резко уменьшается, шунтируя индуктивную нагрузку. Соответственно, при броске тока варистор быстро срабатывает и обеспечивает надежную защиту схемы.

На рисунке 12 изображен график напряжения во время включения и выключения индуктивной катушки с использованием защитного диода для напряжения 24 В.

Рисунок 12 — ЭДС самоиндукции с использованием диода

На графике видно, что использование защитных диодов сглаживает переходную характеристику напряжения.

Для защиты от ЭДС самоиндукции существует целый ряд готовых устройств. Их выбор зависит от применяемой катушки и типа напряжения питания. Для гашения ЭДС самоиндукции на катушках промежуточных реле используют модули FINDER серии 99 (рисунок 13):

Рисунок 13 — Защитный модуль Finder/99.02.9.024.99

99.02.0.230.98 Finder/ Модуль защитный(светодиод+варистор)~/=110…240

99.02.9. 024.99 Finder/ Модуль защитный(светодиод+диод), =6…24В

Модули устанавливаются непосредственно на колодку реле, не требуют дополнительного изменения схемы управления.

В случае подключения катушек пускателей, либо катушек соленоидных клапанов, необходимо использовать защитные клеммники Klemsan серии WG-EKI (рисунок 14):

Рисунок 14 – Защитный клеммник WG-EKI

110 220 Клеммник WG-EKI с варистором (0,5…2,5 мм2, рабочее напряжение до 30В, рабочий ток до 10А)

110 040 Клеммник WG-EKI с защитным диодом (0,5…2,5 мм2, рабочее напряжение до 1000В, рабочий ток до 10А, ток диода 1А)

Клеммники позволяют осуществить подключение индуктивной катушки без дополнительного изменения схемы. Клеммник имеет два яруса, соединенных между собой защитным диодом либо варистором. Для осуществления защиты необходимо провести провода питания катушки через этот клеммник. При использовании клеммника с защитным диодом необходимо соблюдать полярность при подключении (рисунок 15).

Рисунок 15 — Схема подключения клеммника WG-EKI с защитным диодом

Заключение

В рамках данной статьи было рассмотрено явление самоиндукции, приведен теоретический расчет ЭДС и практическое подтверждение этого расчета.

Применяя модули Finder серии 99 и клеммники Klemsan серии WG-EKI, можно избавиться от пагубного воздействия самоиндукции и сохранить целостность коммутирующих элементов цепей управления.

Инженер ООО «КИП-Сервис»
Хоровец Г.Н.

Список использованной литературы:

  1. Сивухин, Д.В. Общий курс физики. Электричество. Том III / Сивухин Д.В — М.: Наука, 1977. — 724.с.
  2. Калашников, С.Г. Электричество / Калашников С.Г. — 6-е изд., стереот. — М.: Физматлит, 2003.-624.с.
  3. Алексеев Н.И., Кравцов А.В. Лабораторный практикум по общей физике (электричество и магнетизм). Самоиндукция / Лицей No1580 при МГТУ им. Н.Э. Баумана, 2012. — 16 с.

новое предложение от компании Bourns. Рынок Электротехники. Отраслевой портал

Для некоторых приложений нужен определенный подход к подавлению электромагнитных помех (ЭМП), при котором требуется как собственно подавление ЭМП, так и защита от скачков напряжения, а точнее — поглощение их энергии.

Обычно эту проблему решает использование двух компонентов — конденсатора для подавления излучаемой ЭМП и металлооксидного варистора для поглощения энергии броска напряжения. В настоящее время в портфеле предложений компании Bourns, широко известной на рынке дискретных компонентов для защиты цепей и решения проблем электромагнитной совместимости (ЭМС), появились уникальные компоненты — вариконы, в которых сочетаются преимущества варисторов (вари-) и конденсаторов (-кон). Эти компоненты типа «2 в 1» защищают приложения от скачков напряжения (варистор), решая вопросы ЭМС (конденсатор) и делая их отвечающими требованиям стандарта CISPR, при этом сокращаются габариты печатной платы. Статья знакомит читателей с двумя сериями вариконов: автомобильного (серия OV) и общего (серия MV) назначения.

Введение

Задача защиты — предотвращать или сводить к минимуму ущерб, вызванный скачком напряжения, при этом сама система защиты или защитный элемент должны срабатывать безопасным способом, а после снятия воздействия защищаемое оборудование, в свою очередь, должно вернуться в штатное рабочее состояние с минимальным перерывом по времени.

К тому же при отсутствии возмущающих воздействий защита или используемые для ее реализации элемент (элементы) не должна мешать нормальному функционированию оборудования — другими словами, должно сохраняться то, что мы называем «целостность сигнала». Это может быть электропитание или линии передачи/приема данных.

Для целей защиты могут использоваться различные компоненты или их совокупности. До недавнего времени компания Bourns предлагала и предлагает [1]:

  • Семейства газовых разрядников (Gas Discharge Tubes, GDT), которые создают квазикороткое замыкание, когда при перенапряжении достигается ионизация наполняющего их газа, потом они опять возвращаются к состоянию высокого импеданса.
  • Семейство устройств защиты на основе тиристоров TISP, которые сначала ограничивают напряжение в линии, а затем переключаются в проводящее состояние при низком напряжении. После скачка напряжения, когда ток падает ниже тока удержания, устройство возвращается в исходное состояние высокого импеданса.
  • Семейство диодов подавления переходных напряжений (Transient Voltage Suppressor, TVS), которые работают за счет быстрого перехода от высокого импеданса к нелинейной характеристике сопротивления, ограничивающей скачки напряжения.
  • Семейство защитных устройств в виде многослойных варисторов (multilayer varistor, MLV). Эту серию отличают низкие токи утечки, которые делают устройства незаметными при нормальной работе.
  • Объемные силовые металлооксидные (Metal Oxide Varistor MOV) варисторы.

Основные характеристики защитных устройств можно оценить по таблице 1.

Таблица 1. Сравнительный анализ защитных ограничителей напряжения

ПараметрГазовые разрядникиЗащитные тиристорыВаристоры объемныеОбычные TVS-диодыСпециальные TVS-диоды
Уровень пиковых токоввысокийсреднийвысокийсреднийсредний
Минимальное напряжение включения, В75866~3
Точность напряжения включениянизкаявысокаянизкаявысокаявысокая
Эффективность ограничения выбросов напряжениясредняявысокаясредняявысокаявысокая
Типовая емкость, пФ~1,5~30~1400~1000,2
Соотношение «пиковый ток/габариты»низкоесреднеевысокоесреднеевысокое
Время срабатываниябольшоесреднеебольшоемалоесверхмалое

 

Рис. 1. Типовой металлооксидный варистор и его вольтамперная характеристика

Как можно видеть из таблицы 1, наиболее простым и экономически эффективным решением, если дело не касается высокоскоростных линий передачи данных, требующих минимальной емкости, здесь являются варисторы.

Что такое варистор? Название «варистор» (от англ. Varistor) составлено из двух частей VARI-able и resi-STOR (буквально: резистор с изменяемым сопротивлением, или, что более правильно, нелинейный резистор). Варисторы могут быть выполнены на основе карбида кремния (красные) и металлооксидные (синие), которые более распространены, конструкция типового варистора в общем виде и его вольтамперная характеристика показаны на рис. 1.

Металлооксидные варисторы (Metal Oxide Varistor, MOV) выполнены на основе оксида цинка (ZnO) с небольшим содержанием висмута, кобальта, магния и других элементов, образующих микрогранулы. В местах соприкосновения микрогранул варистора возникает эффект проводимости. Так как количество гранул в объеме варистора очень велико, абсорбируемая варистором энергия значительно превышает энергию, которая может пройти через единичный p-n-переход в диодах. В процессе протекания тока через варистор весь проходящий заряд равномерно распределяется по всему объему. Таким образом, количество энергии, которую может абсорбировать варистор, напрямую зависит от его объема и может достигать больших величин.

Кроме единичных, скажем так — самодостаточных устройств защиты, компания Bourns имеет в своем портфеле и комбинированные устройства. Инженерам Bourns удалось соединить в одном устройстве положительные свойства газового разрядника и объемного варистора. Это проприетарное решение было представлено в апреле 2019 года в виде инновационной линейки гибридных двунаправленных компонентов защиты от перенапряжения под торговым названием GMOV. В данном продукте инженеры компании объединили инновационную и компактную газоразрядную трубку (GDT) Bourns с технологией FLAT с MOV [2]. Не так давно портфель компании Bourns пополнился еще одними интересными гибридными устройствами — вариконами.

Вариконы — симбиоз варистора и конденсатора

Вариконы — это наследие от приобретенной компанией Bourns компании KEKO-Varicon d. o.o. Zuzemberk (Словения). За счет данного приобретения Bourns существенно расширил свое портфолио в сегменте металлооксидных и многослойных варисторов (MOV, MLV) и укрепил позиции в качестве одного из крупнейших производителей защитных компонентов.

Компания KEKO-Varicon — один из ведущих мировых производителей компонентов защиты от перенапряжения и подавления электромагнитных помех. Продукция компании разработана для широкого спектра применений в низковольтных приложениях, телекоммуникации, автомобильной электронике, линиях переменного тока и промышленного оборудования. Сочетание обширных технических знаний и современного оборудования позволяет KEKO-Varicon производить продукцию с высочайшим уровнем и почти 100%-ным выходом готовой продукции. Примеры продукции компании KEKO-Varicon, которые теперь доступны в портфеле заказов компании Bourns можно увидеть на рис. 2.

Компания KEKO-Varicon выпускала как стандартные радиальные дисковые варисторы общего применения, так и их специализированные серии [3]: многослойные SMD-варисторы для низковольтных применений, варисторы для автомобильной промышленности и медицинской техники, силовые варисторы с высоким уровнем рассеиваемой энергии, а также интересующие нас в рамках данной статьи вариконы.

В технике иногда недостаток может оказаться или использоваться как несомненное достоинство. Если посмотреть на сравнительные данные, приведенные в таблице 1, то можно видеть, что варисторы имеют самою большую поглощаемую мощность импульса напряжения, но и самую большую собственную емкость, которая ограничивает их применение. Инженеры тогда еще самостоятельной компании KEKO-Varicon посмотрели на это под другим углом — а что если эту емкость увеличить и нормировать? В таком случае мы получим новый двухфункциональный элемент, который будет решать проблемы защиты от импульсов напряжения и подавления ЭМП. Так получился варикон (Varicon, VARI (stor) — варистор + COND (enser) — конденсатор), давший наименование компании. Для этого им потребовалось ни много ни мало соединить в одном корпусе варистор и многослойный керамический конденсатор, на первый взгляд — это просто, однако по факту — сложно. Кроме того, здесь необходимо уточнение: варикон не надо путать с созвучным ему варикондом — сегнетоэлектрическим конденсатором, емкость которого изменяется нелинейно в зависимости от приложенного напряжения, это совершенно разные компоненты и для разных целей.

Рис. 2. Внешний вид отдельных серий варисторов KEKO-Varicon, доступных ныне от компании Bourns

 

 

Рис. 3. Примеры типового использования вариконов серии MV компании Bourns: а) недопущение дуги при замыкании и размыкании контактов реле; б) защита полупроводниковых компонентов схемы — транзисторов и диодов; в) устранение помех от электродвигателей; г) подавление переходных процессов при выключении тиристора; д) стабилизация напряжения и поглощение бросков напряжения; е) защита транзисторов от подачи недопустимо высокого напряжения; ж) предотвращение акустического удара и защита пьезоизлучателя; з) защита от накопления статического электричества

Комбинированные варисторы со встроенным конденсатором применяются не только для поглощения энергии всплесков напряжения, но и для подавления сопутствующих им высокочастотных шумов и помех, как следствие, переходных процессов. Кроме того, они в определенной мере решают и вопросы электромагнитной совместимости (ЭМС), подавляя электромагнитные помехи (ЭМП) непосредственно самого приложения, например, коллекторного двигателя. Схемы включения вариконов, на примере использования варикона серии MV, общего назначения, показаны на рис. 3 [4] (кстати, обращаю ваше внимание, что в оригинале допущены ошибки!), а пример практического применения на рис. 4.

Рис. 4. Пример практического применения вариконов серии OV на щеточной плате двигателя постоянного тока и схема для управления привода сиденья автомобиля

Серии MV/OV

Вариконы серий MV и OV представляют собой защитные устройства двойного действия, которые защищают от бросков напряжения и от высокочастотного шума, заменяя два компонента — варистор низкого напряжения и конденсатор. Вариконы серии MV предназначены для широкого применения, работают в диапазоне постоянного напряжения 3-125 В (до 170 В по запросу) и как высокочастотные шунтирующие конденсаторы выполнены на основе диэлектрика X7R, имея диапазон емкостей 10 нФ — 1 мкФ. Также доступны более низкие значения емкости. Они предназначены для защиты самой различной радиоэлектронной аппаратуры электронных устройств, чувствительной к броскам напряжения и высокочастотным шумам, производимых электромеханическими устройствами, такими как зуммеры, реле, щеточные электродвигатели и т. п. (примеры на рис. 3).

Вариконы серии OV предназначены в первую очередь для применения в автомобильном оборудовании (пример на рис. 4).

Вариконы серии OV включают варистор, предназначенный для работы на автомобильных шинах напряжения постоянного тока 12, 24 и 42 В и имеют диапазон напряжений 16, 20, 26, 38 и 56 В. Встроенный в ва-риконды серии OV конденсатор фильтрации радиочастотных помех с емкостью на основе диэлектрика X7R имеет емкость в диапазоне 0,47-1,5 мкФ (более высокие значения емкости доступны по запросу), что делает их оптимальными для защиты и обеспечения требований в части ЭМС в целом ряде приложений автомобильной электроники.

Серии MV и OV представляет собой компоненты квадратной формы. Для серии MV доступны компоненты размером 6×8 мм с линейными выводами для монтажа в отверстия. Для серии OV доступны два стандартных размера 7,5×9 мм и 8×12 мм (меньшие размеры доступны по запросу). Они требуют очень небольшого пространства для установки, как правило, занимая площадь на 30% меньше, чем два отдельных компонента. По запросу вариконы этих серий также доступны в SMD-исполнении для поверхностного монтажа (рис. 5). Обе серии могут поставляться с классификацией согласно AEC-Q200 Grade 1 (-40….+125 °C) для использования в автомобильной индустрии, а серия OV способна выдерживать мощные импульсы при сбросе нагрузки в соответствии с требованиями SAE J1113. Основные технические характеристики вариконов серий MV и OV компании Bourns приведены в таблице 2. Полные технических характеристики вариконов серий MV и OV компании Bourns доступны в спецификациях [4, 5].

Полная номенклатура защитных компонентов, которой владела компания KEKO-Varicon и которая перешла к Bourns, приведена в каталоге [6]. К сожалению, каталог не обновлялся с 2015 года и в нем допущены ошибки, поэтому для уточнения следует обращаться либо напрямую к службе поддержки компании Bourns, либо к ее авторизованному дилеру. В любом случае отказываться от использования таких компонентов, как вариконы, не стоит, а объединение компаний KEKO-Varicon и Bourns несомненно даст новый толчок к развитию этого перспективного направления защитных элементов. Полная номенклатура защитных компонентов компании доступна по ссылке [7].

Рис. 5. Варианты исполнения вариконов серий MV и OV компании Bourns и их графический символ

 

Таблица 2. Основные технические характеристики коммерчески доступных вариконов серий MV и OV

 

Параметр Серия MVСерия OV
Непрерывный режимПриложенное установившееся напряжение  
Диапазон напряжения постоянного тока (Vdc), В3-17016-56
Диапазон переменного напряжения (Vrms), В2-130*14-40
Импульсный режимЭнергия сброса нагрузки (WLD), Дж6-12
Возможность запуска от внешнего источника — 5 мин (Vjump). В24-65
Непериодический импульсный ток, форма волны 8/20 мкс (Imax), А150800-1200
Энергия неповторяющихся всплесков напряжения, форма волны 10/1000 мкс (Wmax), Дж0,1-2,52,4-10,5
Номинальная емкость конденсатора, нФ10-1000470-4700
ТКЕ конденсатораX7R
Рабочая температура окружающей среды, °С-40…+125
Температур хранения, °С-40…+150
Температурный коэффициент порогового напряжения, не более, %/°С+0,5
Сопротивление изоляции, не менее, ГОм1
Допустимое напряжение изоляции, кВ, не менее1,25
Время отклика, не более нс25
Климатическая категория40/125/56

Примечание. * Вариконы с номинальным напряжением 2—8 В являются нестандартными и доступны только по запросу.

 

Литература

1. Рентюк В. Элементы BOURNS для защиты от статического электричества и переходных процессов. В сб. «Электромагнитная совместимость в электронике». 2019.

2. Рентюк В. Комбинированный варистор компании BOURNS — эффективное решение проблемы защиты оборудования. В сб. «Электромагнитная совместимость в электронике». 2019.

3. Верхулевский К. Варисторы и конденсаторы Keko Varicon для автомобильных и промышленных применений // Компоненты и технологии. 2015. № 7.

4. MV Series — Low Voltage Dual Function Varicons. REV. A 01/20. https://www.bourns.com/docs/product-datasheets/mv_series.pdf?sfvrsn=22ed46f6_6

5. OV Series — Automotive Grade Dual Function Varicons. REV. A 01/20. https://www.bourns.com/docs/product-datasheets/ov_series.pdf?sfvrsn=eed46f6_6

6. Catalogue PROTECTIVE DEVICES. Edition 2015. http://www.keko-varicon.si/application/keko/upload/files/KEKO_OV. pdf 

7. www.bourns.com/products/circuit-protection/varistor-products

 

Опубликовано на сайте официального дистрибьютора Bourns ГК Симметрон и в сборнике «Электромагнитная совместимость в электронике» 2020 г. http://emc-e.ru

Выберите правильные варисторы для защиты цепей от перенапряжения

Варисторы, также называемые металлооксидными варисторами (MOV), используются для защиты чувствительных цепей от различных условий перенапряжения. По сути, эти нелинейные устройства, зависящие от напряжения, имеют электрические характеристики, аналогичные встречно-параллельным стабилитронам.

Загрузить эту статью в формате .PDF

Переходные процессы напряженияВаристоры отличаются высокой надежностью, что необходимо для того, чтобы выдерживать повторяющиеся импульсные токи с высокими пиками и переходные процессы с высокой энергией. Они также предлагают широкий диапазон напряжения, высокое поглощение энергии и быструю реакцию на переходные процессы напряжения. Номинальный пиковый ток находится в диапазоне от 20 до 70 000 А, а номинальная пиковая энергия — в диапазоне от 0,01 до 10 000 Дж.

В этом контексте «переходные процессы напряжения» определяются как кратковременные выбросы электрической энергии. В электрических или электронных цепях, которые предназначены для защиты варисторов, эта энергия может высвобождаться либо предсказуемым образом посредством управляемых переключений, либо случайным образом индуцироваться в цепь из внешних источников. Общие источники включают:

Молния: На самом деле переходные процессы, вызванные молнией, не являются результатом прямого удара. Удар молнии создает магнитное поле, которое может вызвать переходные процессы большой величины в близлежащих электрических кабелях. Удар от облака к облаку может повлиять как на воздушные, так и на подземные кабели. Исход также непредсказуем: удар, произошедший на расстоянии мили, может вызвать 70 В в электрических кабелях, а другой удар может создать 10 кВ на расстоянии 160 ярдов.
Коммутация индуктивной нагрузки: Генераторы, двигатели, реле и трансформаторы представляют собой типичные источники индуктивных переходных процессов. Включение или выключение индуктивных нагрузок может генерировать высокоэнергетические переходные процессы, которые усиливаются по мере увеличения нагрузки. Когда индуктивная нагрузка отключается, разрушающееся магнитное поле преобразуется в электрическую энергию, которая принимает форму двойного экспоненциального переходного процесса. В зависимости от источника эти переходные процессы могут достигать сотен вольт и сотен ампер при продолжительности 400 мс. Из-за различных размеров нагрузки будут различаться форма волны, длительность, пиковый ток и пиковое напряжение переходных процессов. Как только эти переменные будут аппроксимированы, разработчики схем смогут выбрать подходящий тип подавителя.
Электростатический разряд (ESD): Эта энергия является результатом дисбаланса положительных и отрицательных зарядов между объектами. Он характеризуется очень быстрым временем нарастания и очень высокими пиковыми напряжениями и токами.

Основные сведения о варисторах

Варисторы в основном состоят из массивов шариков из оксида цинка (ZnO), в которых ZnO изменен небольшими количествами других оксидов металлов, таких как висмут, кобальт или марганец. В процессе производства MOV эти шарики спекаются (вплавляются) в керамический полупроводник. Это создает кристаллическую микроструктуру, которая позволяет этим устройствам рассеивать очень высокие уровни переходной энергии по всей своей массе. После спекания поверхность металлизируется, а выводы прикрепляются с помощью пайки.

Благодаря высокому рассеиванию энергии варисторами MOV их можно использовать для подавления молний и других высокоэнергетических переходных процессов, характерных для линий электропередач переменного тока. Они способны выдерживать большое количество энергии и отводить эту потенциально разрушительную энергию от чувствительной электроники, расположенной ниже по течению. MOV, которые также используются в цепях постоянного тока, бывают различных форм-факторов (рис. 1) .


1. Металлооксидные варисторы (MOV) доступны в различных форм-факторах и размерах для широкого спектра применений. Тип диска с радиальными выводами является наиболее распространенным вариантом.

 

Многослойные варисторы

Многослойные варисторы (MLV) предназначены для определенной части спектра переходного напряжения: среды печатной платы. Несмотря на меньшую энергию, переходные процессы от электростатического разряда, переключения индуктивной нагрузки и даже остатки грозовых перенапряжений могут в противном случае достичь чувствительных интегральных схем на плате. MLV также изготавливаются из материалов ZnO, но они изготовлены из переплетенных слоев металлических электродов и производятся в бессвинцовых керамических корпусах. Они предназначены для перехода из состояния с высоким импедансом в состояние проводимости при воздействии напряжения, превышающего их номинальное номинальное напряжение.

MLV бывают разных размеров в форме микросхем и способны рассеивать значительную энергию импульса для своего размера. Таким образом, они подходят как для линий передачи данных, так и для приложений подавления переходных процессов в источниках питания.

Руководство по применению

При выборе подходящего MOV для конкретного приложения защиты от перенапряжения разработчик схемы должен сначала определить рабочие параметры защищаемой цепи, включая:

• Условия цепи, такие как пиковое напряжение и ток во время всплеск событие
• Постоянное рабочее напряжение MOV (должно быть на 20 % выше максимального напряжения системы при нормальных условиях)
• Количество скачков напряжения, которое MOV должен выдержать
• Допустимое сквозное напряжение для защищаемой цепи
• Любые стандарты безопасности, с которыми цепь должна соответствовать

Для простоты в этом примере предположим, что цель состоит в том, чтобы выбрать низковольтный дисковый MOV постоянного тока для следующих условий и требований цепи:

• Цепь постоянного тока 24 В
• Текущая форма волны для всплеска составляет 8 × 20 мкс; форма волны напряжения составляет 1,2 × 50 мкс (это типичные формы сигналов промышленного стандарта)
• Пиковый ток во время выброса = 1000 А
• MOV должен выдерживать 40 импульсов
• Другие компоненты схемы (ИС управления и т. д.) должны иметь номинал, выдерживающий максимальное напряжение 300 В

Шаг 1:  Чтобы найти номинальное напряжение MOV, примите во внимание 20-процентный запас с учетом скачков напряжения и допусков источника питания: 24 В постоянного тока × 1,2 = 28,8 В постоянного тока. Учитывая, что никакие варисторы не имеют номинального напряжения точно 28,8 В, проверьте спецификации для варисторов на 31 В постоянного тока.

Шаг 2:   Чтобы определить, какой размер диска MOV использовать, сначала определите серию MOV, которая минимально соответствует требованиям к скачку напряжения 1000 А. Изучив приведенную выше таблицу, можно предположить, что 20-мм MOV с максимальным номинальным постоянным напряжением 31 В постоянного тока (номер по каталогу V20E25P) является возможным решением для удовлетворения требований.

Шаг 3: Используйте кривые импульсной мощности (рис. 2) в том же листе данных, чтобы определить характеристики импульса относительно 40 импульсов при требовании 1000 А.


2. В техническом описании MOV будет представлена ​​кривая импульсной мощности; этот пример для 20-мм MOV.

 

Шаг 4:   Используйте кривую V-I (рис. 3) в техническом описании MOV, чтобы убедиться, что напряжение утечки будет меньше максимального значения в 300 В.


3. Техническое описание MOV также будет содержать кривую зависимости напряжения от тока, такую ​​как эта кривая максимального напряжения фиксации для 20-мм устройства на рис. 2.

Защита MOV от теплового разгона

Поглощение варистором переходной энергии во время перенапряжения приводит к локализованному нагреву внутри компонента, что в конечном итоге приводит к его износу. Если оставить незащищенным, деградация варистора может увеличить нагрев и тепловой разгон. Таким образом, все большее число устройств защиты от перенапряжений на основе варисторов предлагают встроенную функцию теплового отключения. Он обеспечивает дополнительную защиту от катастрофических отказов и опасностей возгорания даже в экстремальных условиях, когда варистор выходит из строя или при длительном перенапряжении.

MOV рассчитаны на определенные рабочие напряжения сети переменного тока. Превышение этих предельных значений при длительном аномальном перенапряжении может привести к перегреву и повреждению MOV.

MOV имеют тенденцию к постепенному ухудшению после сильного выброса или нескольких небольших скачков. Это ухудшение приводит к увеличению тока утечки MOV; в свою очередь, это повышает температуру MOV даже в нормальных условиях, таких как рабочее напряжение 120 В переменного тока или 240 В переменного тока. Терморазъединитель рядом с MOV (рис. 4) можно использовать для определения повышения температуры MOV, пока он продолжает деградировать до исходного состояния. В этот момент тепловое размыкание разомкнет цепь, удалив испорченный MOV из цепи и, таким образом, предотвратив потенциальный катастрофический отказ.


4. Термический разъединитель может разомкнуть цепь, предотвращая катастрофический отказ поврежденного MOV.

 

Драйверы для светодиодов и Lightning

Как правило, большинство источников питания для светодиодов имеют постоянный ток и часто называются драйверами для светодиодов. Их можно приобрести в виде готовых сборок, содержащих MOV, для удовлетворения более низких требований к перенапряжениям.

Обычно драйверы рассчитаны на перенапряжения в диапазоне от 1 до 4 кВ. Варистор диаметром от 7 до 14 мм обычно располагается после предохранителя в сети переменного тока. Тем не менее, чтобы обеспечить более высокий уровень устойчивости к перенапряжениям для освещения, установленного на открытом воздухе в условиях воздействия скачков напряжения, OEM-производители наружного освещения могут захотеть добавить устройства защиты от перенапряжения (SPD) на входных линиях переменного тока своих светильников перед драйвером светодиода.

Пример конструкции MOV: промышленные двигатели

Одним из аспектов защиты двигателя переменного тока является устойчивость самого двигателя к импульсным перенапряжениям. Параграф 20.36.4 стандарта NEMA MG-1 для двигателей-генераторов определяет единичное значение перенапряжения следующим образом: линейное напряжение сети переменного тока.

Для времени нарастания переходного процесса от 0,1 до 0,2 мкс требуется удвоенное единичное значение импульсной способности обмотки статора. Когда время нарастания достигает 1,2 мкс или больше, указывается 4,5-кратное значение единицы измерения. В случае внешних переходных процессов, таких как молния, это соответствует допустимому перенапряжению 918 В PEAK для двигателя 230 В (полный ток нагрузки = 12 А) в условиях высокого напряжения 250 В. (Молниеносные перенапряжения могут превысить эти значения, поэтому для защиты обмоток статора также потребуется гасящий элемент.)

Загрузите эту статью в формате .PDF

Рабочие температуры являются еще одним соображением. Предположим, что рабочая температура окружающей среды для этого приложения находится в диапазоне от 0 до +70°C. Это будет в пределах диапазона от -40 до +85 °C MOV, и не будет требований по снижению номинальных значений импульсного тока или энергии в этом температурном диапазоне. быть выбраны для этого примера. При использовании однофазного двигателя среднего размера мощностью 2 л.с. требуемый номинальный импульсный ток MOV будет определяться пиковым током, индуцируемым в цепи питания двигателя. Предполагая место обслуживания двигателя и полное сопротивление линии 2 Ом, было определено, что возможен грозовой перенапряжение 3 кА.
В этом случае в одном техническом паспорте указано максимальное напряжение фиксации 3 кА при 900 В, что ниже рекомендуемой выдерживаемой способности обмотки статора при напряжении 918 В. Если бы срок службы двигателя был оценен в 20 лет и указан как способный выдержать 80 грозовых переходных процессов в течение срока службы, кривые номинальных импульсов в паспорте подтвердили бы рейтинг 100+ импульсных перенапряжений.

Для получения более подробной информации о том, как согласовать MOV с приложениями, ознакомьтесь с «Руководством по проектированию варисторов для приложений постоянного тока».

Металлооксидный варистор (MOV) Обзор: работа и применение

1.

Введение

Круглая часть синего или оранжевого цвета, которую обычно можно увидеть на входе переменного тока любой цепи питания, представляет собой металлооксидный варистор. или МОВ. Металлооксидный варистор можно рассматривать как еще одну форму переменного резистора, который может изменять свое сопротивление в зависимости от приложенного к нему напряжения. Когда большой ток проходит через MOV, он уменьшает значение сопротивления и действует как короткое замыкание. Поэтому для защиты цепей от скачков высокого напряжения MOV обычно используются в сочетании с предохранителем. В этом посте мы узнаем больше о работе с MOV и о том, как использовать его для защиты ваших цепей от скачков напряжения в ваших проектах. Мы также узнаем об электрических свойствах MOV и о том, как выбрать MOV в соответствии с вашими требованиями к конструкции, так что давайте начнем.

2. Определение MOV

MOV — это просто переменный резистор, но MOV может регулировать свое сопротивление в зависимости от приложенного напряжения, в отличие от потенциометров. Сопротивление уменьшается и наоборот, если напряжение на нем увеличивается. Это свойство полезно для защиты цепей от скачков высокого напряжения, поэтому они часто используются в электронных сетях в качестве устройств защиты от перенапряжения. Базовый MOV показан на изображении ниже.

3. Работа MOV

Сопротивление MOV будет сильным при нормальных условиях эксплуатации, и они будут потреблять очень небольшой ток, однако, когда в сети есть всплеск, напряжение увеличится выше колена или напряжения фиксации, и они будут потреблять больше тока , рассеивая всплеск и защищая оборудование.

MOV можно использовать только для защиты от кратковременных перенапряжений, они не справляются с длительными перенапряжениями. Их свойства могут немного ухудшиться, если варисторы подвергаются повторным скачкам напряжения. Всякий раз, когда они сталкиваются с перенапряжением, фиксирующее напряжение падает несколько ниже, что также может привести к их разрушению через некоторое время. MOV часто соединяют последовательно с тепловым выключателем/предохранителем, который может сработать, если потребляется большой ток, чтобы предотвратить подобные риски. Давайте поговорим подробнее о том, как работает MOV в цепи.

 

4. Использование MOV в цепи

Параллельно с цепью, которую необходимо охватить, MOV, также известные как варисторы, широко используются вместе с предохранителями. На рисунке ниже показано, как использовать MOV в схеме для электроники.

Сопротивление MOV будет очень высоким, когда напряжение ниже номинального предела, и тогда весь ток протекает через цепь, а ток через MOV не течет. Но когда скачок напряжения возникает в основном напряжении, когда оно расположено параллельно сети переменного тока, оно появляется прямо на MOV. Значение сопротивления MOV будет уменьшено до очень низкого значения из-за этого высокого напряжения, что сделает его похожим на короткое замыкание.

Это приводит к протеканию большого тока через MOV, который может сжечь предохранитель и изолировать цепь от напряжения сети. Неисправное высокое напряжение очень быстро вернется к нормальным значениям во время скачков напряжения, в таких ситуациях длина протекающего тока не будет достаточно большой, чтобы перегорел предохранитель, и когда напряжение станет нормальным, схема вернется в нормальный режим работы. Но каждый раз, когда наблюдается всплеск, MOV ненадолго отключает цепь, закорачивая себя и каждый раз повреждая себя большим током. Но если вы обнаружите, что MOV поврежден в какой-либо цепи питания, вероятно, через цепь прошло несколько скачков напряжения.

 

5. Конструкция  MOV

Металлооксидный варистор представляет собой резистор, зависящий от напряжения, изготовленный из керамических порошков оксидов металлов, таких как оксид цинка, и некоторых других оксидов металлов, таких как оксиды кобальта, марганца, бис мут и т. д. MOV состоит примерно на 90% из оксида цинка и ограниченного количества оксидов других металлов. Между двумя металлическими пластинами, известными как электроды, сохраняются керамические порошки оксидов металлов.

Диодный переход между каждым ближайшим соседом создается зернами оксидов металлов. Итак, MOV — это большое количество последовательно соединенных диодов. Обратный ток утечки возникает через переходы при подаче на электроды небольшого напряжения. Первоначально создаваемый ток будет небольшим, но из-за туннелирования электронов и лавинного пробоя краевые переходы диода разрушаются при приложении высокого напряжения к MOV. На рисунке ниже показана внутренняя структура MOV.

Когда через соединительные провода подается определенное напряжение, варистор MOV начинает проводить и прекращает проводить, когда напряжение падает ниже порогового напряжения. MOV доступны в различных форматах, таких как дисковые форматы, устройства с осевым выводом, блоки и винтовые клеммы, а также устройства с радиальным выводом. Для увеличения пропускной способности MOV всегда следует подключать параллельно, а если вы хотите получить более высокое номинальное напряжение, вам следует соединить их последовательно.

 

6. Электрические характеристики MOV

Чтобы лучше понять свойства MOV, давайте рассмотрим различные электрические характеристики MOV.

•  Статическое сопротивление

Кривая статического сопротивления MOV строится со значением сопротивления MOV по оси X и значением напряжения по оси Y.

Приведенная выше кривая представляет собой кривую напряжения и сопротивления MOV; сопротивление максимально при стандартном напряжении, но сопротивление варистора уменьшается при повышении напряжения. Эту кривую можно использовать, чтобы понять, какое сопротивление будет у вашего MOV при различных уровнях напряжения.

 

•  ВАХ  

Кривая ВАХ линейного резистора всегда представляет собой прямую линию, согласно закону Ома, но в отношении переменного резистора мы не можем предположить то же самое.

MOV может работать в обоих направлениях, поэтому он имеет двунаправленные симметричные характеристики. Кривая будет выглядеть идентично характеристической кривой двух встречно соединенных стабилитронов. Кривая имеет линейную зависимость, когда MOV не работает, когда ток, протекающий через варистор, почти равен нулю, при высоком сопротивлении до определенного напряжения, скажем, 0-200 Вольт. Сопротивление уменьшается, когда мы увеличиваем приложенное напряжение в диапазоне 200-250В, и варистор начинает проводить и начинает течь несколько микроампер тока, что не делает большой разницы в кривой.

Варистор становится высокопроводящим, когда возрастающее напряжение превышает номинальное или фиксирующее напряжение (250 В), через варистор начинает протекать ток около 1 мА. Сопротивление варистора становится малым, когда переходное напряжение на варисторе равно или превышает напряжение фиксации, которое превращает его в проводник из-за лавинного эффекта полупроводникового материала.

 

•  Емкость MOV

Поскольку мы уже узнали, что MOV состоит из двух электродов, он работает как диэлектрическая среда и имеет конденсаторные эффекты, которые, если их не учитывать, могут повлиять на работу системы. функционирование. В зависимости от области, которая также обратно пропорциональна его толщине, каждый полупроводниковый варистор будет иметь значение емкости.

Когда речь идет о цепи постоянного тока, значение емкости не имеет большого значения, поскольку емкость будет оставаться почти постоянной до тех пор, пока напряжение устройства не превысит напряжение фиксации. Когда напряжение превышает напряжение фиксации, емкостного эффекта не будет, поскольку варистор начнет свою нормальную работу.

Емкость MOV может повлиять на общее сопротивление корпуса MOV, которое вызывает ток утечки в цепях переменного тока. Сопротивление утечки варистора быстро уменьшается по мере увеличения частоты, поскольку варистор подключается параллельно системе, которую нужно покрыть. Значение реактивного сопротивления MOV можно определить по формуле

Xc=1/2πfC

Где Xc — емкостное реактивное сопротивление, а частота сети переменного тока равна f. Ток утечки, как видно из непроводящей области утечки кривой вольт-амперной характеристики, описанной выше, также будет увеличиваться при увеличении частоты.

 

7. Как выбрать C hoos e  Подходящий MOV для защиты

параметров MOV. Спецификация MOV зависит от следующей информации:

• Максимальное рабочее напряжение: это установившееся напряжение постоянного тока, при котором типичный ток утечки ниже указанного вами значения.

• Напряжение фиксации: это напряжение, при котором импульсный ток начинает проходить и рассеиваться MOV.

• Импульсный ток: максимальный пиковый ток, который может быть подан на устройство без причинения ему вреда; это часто выражается для данного времени в «текущем». Производители предлагают демонтировать систему в случае броска тока, хотя устройство может справиться с броском тока.

• Сдвиг всплеска: Если в системе наблюдается всплеск, номинальное ограничивающее напряжение уменьшается, смещением всплеска называют изменение напряжения после всплеска.

• Поглощение энергии: максимальное количество энергии, которое может быть рассеяно MOV во время выброса за заданный пиковый период импульса определенной формы волны. Вы можете оценить это значение, запустив все устройства с уникальными значениями внутри конкретной регулируемой цепи. В стандартном переходном режиме x/y энергия обычно выражается, где x — переходный подъем, а y — время для достижения своего полупикового значения.

• Время отклика: Это время, в которое варистор начинает работать после выброса напряжения, в некоторых случаях точное время отклика отсутствует. Стандартное время отклика всегда устанавливается равным 100 нс.

• Максимальное напряжение переменного тока: это максимальное среднеквадратичное напряжение сети, которое может постоянно подаваться на варистор, максимальное среднеквадратичное значение должно быть выбрано таким, чтобы оно было немного выше фактического среднеквадратичного напряжения сети. Пиковое напряжение синусоиды не должно перекрываться с минимальным напряжением варистора, иначе это может сократить срок службы компонентов. В самом описании продукта производители могут указать максимальное напряжение переменного тока, которое мы можем подавать в систему.

• Ток утечки: Когда варистор работает ниже напряжения фиксации, это величина тока, потребляемая варистором, когда в сети нет перенапряжения. Ток утечки обычно определяется в системе при заданном рабочем напряжении.

 

8. Применение MOV

MOV можно использовать для защиты различного оборудования от различных типов неисправностей. Их можно использовать в электрических цепях переменного/постоянного тока для однофазной линейной защиты, а также однофазной линейной защиты и защиты между линией и землей. Их можно использовать в устройствах с электроприводом для полупроводниковой коммутационной защиты в транзисторах, полевых МОП-транзисторах или тиристорной и контактной дуговой защите.

MOV можно использовать в цепях везде, где есть вероятность скачков или скачков напряжения, когда дело доходит до реализации. MOV часто используются в адаптерах и полосах с защитой от перенапряжения, источниках питания, подключенных к сети, телефонных и других контактных линиях, промышленной защите линий переменного тока высокой мощности, сетях передачи данных или силовых сетях, общей защите электронных устройств, таких как мобильные телефоны, цифровые камеры, цифровые персональные помощники, MP3-плееры и портативные компьютеры.

В некоторых случаях также используются MOV, такие как микроволновые смесители для модуляции, обнаружения и преобразования частоты, которые не являются наиболее распространенными приложениями MOV.

 

9. Цепь защиты  защитного варистора

Теперь, когда мы поговорили о том, что такое варистор и как он используется для защиты схемы от скачков напряжения, давайте завершим статью несколькими советами по проектированию, которые помогут быть полезным при разработке схемы.

Вы должны выбрать варистор с самым высоким переменным или постоянным напряжением, которое соответствует приложенному напряжению или немного превышает его. Первым шагом при выборе MOV является определение постоянного рабочего напряжения, которое будет подаваться через варистор. Обычно выбирают варистор с максимальным номинальным напряжением на 10-15 процентов выше, чем фактическое напряжение сети, поскольку линии питания часто допускают отклонение напряжения. В некоторых ситуациях, если вы предпочитаете добиться исключительно низкого тока утечки, несмотря на самый низкий доступный уровень безопасности, вы можете использовать варистор с более высоким рабочим напряжением. Это соотношение будет включено в их значения напряжения.

• Узнайте количество энергии, которое потребляет варистор в случае волны. Это можно рассчитать, используя всю абсолютную максимальную нагрузку варистора во время скачка напряжения окружающей среды и требования, указанные в техническом описании. Вы можете выбрать варистор, который может рассеивать больше энергии, равной или немного большей, чем рассеяние энергии, которое схема может генерировать во время скачка напряжения.

• Использование варистора для измерения пикового переходного тока или импульсного тока. Чтобы убедиться, что он работает правильно, вы должны выбрать варистор, у которого номинальный импульсный ток равен или немного превышает номинальный ток, требуемый событием, которое вызовет цепь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*