Солнечная батарея из транзисторов своими руками: Простая самодельная солнечная батарея

Содержание

Солнечная батарея из транзисторов | Каталог самоделок

Старые мощные транзисторы в металлическом корпусе сейчас фактически нигде не применяются. Имея большие размеры, они устарели, поэтому их можно купить за копейки или получить даром. У того, кто увлекается электроникой, они точно лежат в какой-нибудь банке. Почему бы из них не сделать дармовой источник энергии?

Ради эксперимента будет интересно собрать солнечную батарею для калькулятора. На деле батарея из 10 элементов КТ819ГМ или 2N3055 для маленького калькулятора слишком габаритна. Никто не будет её таскать вместе с портативным калькулятором.

Вполне рационально транзисторной батареей запитать настольные электронные часы, радиоприёмник или установленный «жучок». Многие успешно применяют зарядные устройства от солнца для Li-ion аккумуляторов. Для зарядки одного аккумулятора достаточно четырех КТ801Б.

Опытные радиомастера скажут: солнечные батареи из транзисторов неудобны, они габаритны, а эффективность их низка. Так и есть: в каждом транзисторе используется лишь маленький пятачок полупроводника, а металлический корпус лишь площадь занимает. Но альтернативный источник энергии всё-таки стоит собрать, чтобы не валялись без дела старые радиодетали.

Подбор элементной базы

Для работы солнечного элемента нужен открытый p-n переход. Это рабочая область транзисторов и диодов. Старые радиодетали имеют больший кристалл полупроводника, поэтому работать как фотоэлементы они будут лучше. Разница существенна: один КТ801 1972 года выпуска выдает около 1,1 мА в режиме фотогенерации; выпущенные с 1973 по 1980 год — 0,9 мА, последних годов производства — всего 0,13 мА. Предпочтительно отыскать полупроводниковые детали, произведенные 30–40 лет назад.

Часто для постройки солнечных батарей используются детали серий КТ803…805 из-за своей распространенности. Их легко найти и разобрать.

Выше чем у других напряжение дают германиевые приборы П213…217, П306, а также кремниевые КТ819ГМ, 2N3055.

С транзистора срезается крышка. Заметьте аккуратно, дабы не расколоть полупроводниковый кристалл, сваренный с основанием, и от которого выведены тонкие проводки до внешних ножек. Полупроводниковый прибор захватываем за ободок тисками и вскрываем ручной ножовкой или электрической шлифмашиной.

У элемента КТ801 металлическая крышка снимается легко — нужно лишь сдавить её плоскогубцами.

Из приборов П210…217 потребуется высыпать порошок-наполнитель. Затем важно хорошо продуть кристалл.

Проверка элементов

Подготовленные для солнечной батареи фотоэлементы необходимо проверить на солнце. Понадобиться для этого самый простой мультиметр. Для измерения напряжения прибор ставьте на предел 1 В и подключайте между базой-коллектором, базой-эмиттером. Измеряя ток, ставьте предел 1 мА, редко потребуется больше.

  • КТ801 дает напряжение 0,53 В, ток 0,13–1,1 мА.
  • 2N3055 (полный аналог КТ819ГМ) вырабатывает 0,35 В, ток 0,09–0,26 мА.

Желательно успешно прошедшие тест транзисторы рассортировать по напряжению.

Сборка батареи

Навесным монтажом транзисторы соединять легко и быстро. Закрепить их можно на любой пластине, печатная плата не нужна. При коротком замыкании какой-то элемент не сгорит, а просто исключится из работы. В пластике сверлим отверстия для выводов.

Для повышения напряжения транзисторы соединяют последовательно. Ток можно увеличить параллельным соединением.

От последовательно соединенных пяти КТ819ГМ можно получить 1,5 В.

Солнечные элементы должны охлаждаться, поскольку при нагреве их эффективность падает. Не монтируйте их плотно на пластине, а сделайте промежутки для естественной вентиляции.

Солнечная батарея из старых транзисторов: полезное применение вместо утилизации

Популярность солнечных батарей во многом обусловлена возможностью получения бесплатной электроэнергии. Тем более что затраты на приобретение панели можно свести к нулю, самостоятельно изготовив ее из подручных материалов. Это могут быть, например, транзисторы от старых радиоприемников и ТВ, которым не осталось места в современном мире. Немного терпения и четкое понимание процесса – и в вашем распоряжении окажется эффективная солнечная батарея из транзисторов, которую можно подключить к бытовым устройствам низкой и средней энергоемкости.

Общий принцип действия солнечной батареи

Физический закон, положенный в основу действия солнечной батареи, — внутренний фотоэффект на так называемом p-n переходе. Так называют возникновение в полупроводниковом элементе новых носителей электрического заряда в процессе поглощения световой энергии – электронов или дырок. При этом первые концентрируются в n-области, а вторые – в р-области, и между ними возникает электродвижущая сила, обозначаемая аббревиатурой ЭДС. При подключении внешней нагрузки под воздействием освещения в р-n переходе возникает электрический ток, и энергия света трансформируется в электрическую.

Количество получаемой энергии зависит от нескольких факторов. Это материал полупроводника, площадь поверхности р-n перехода и качество его освещенности. В большинстве случаев сила тока солнечной батареи невелика, и для достижения ею требуемого уровня нужно собрать панель из значительного количества отдельных элементов. Зато солнечные батареи не боятся короткого замыкания, для возникновения которого имеющегося напряжения попросту недостаточно.

Материалы для сборки солнечной батареи из транзисторов

Выбор в пользу транзисторов и диодов для монтажа солнечной панели оправдан наличием у них р-n перехода. У диода имеется один такой переход, а у транзистора – два: между базой, коллектором и эмиттером. Использовать такую радиодеталь при сборке солнечной батареи можно в случаях, если:

  • площадь перехода должна быть достаточно большой;
  • есть возможность открыть p-n переход для доступа солнечной энергии.

Первое условие полностью выполнимо для плоскостных транзисторов большой мощности. Чтобы не возникло сложностей с открытием перехода, стоит выбрать элементы наподобие кремниевого транзистора КТ801 (а) или германиевых транзисторов П210-П217. Для первого достаточно снять крышку корпуса, для вторых – разрезать корпус по линии АА и снять с детали полученные фрагменты.

Перед использованием транзисторов для сборки солнечной батареи необходимо проверить их работоспособность. Для этого потребуется обычный мультиметр. Следует переключить режим устройства на показания в несколько миллиампер, чтобы оно смогло распознать незначительный по величине заряд. Мультиметр включается между базой и коллектором или базой и эмиттером, а деталь располагается таким образом, чтобы переход был хорошо освещен. Если прибор покажет 1 мА или чуть меньше, транзистор рабочий. Переключив режим на измерение напряжения, следует произвести еще один замер. Если показание мультиметра составит несколько десятых вольта, деталь можно смело использовать, т.к. все условия для сборки рабочей солнечной панели выполнены.

Обратите внимание: выполняя тестовые замеры, транзисторы стоит сразу группировать в зависимости от полученных показаний – чуть больше или чуть меньше нормы. Близкие значения выходной силы тока и напряжения в элементах сделают готовую солнечную панель более надежной, исключая перегревание более «слабых» комплектующих.

Чтобы увеличить выходной ток и рабочее напряжение, используют метод смешанного соединения элементов. Внутри групп выполняется параллельное соединение транзисторов с близкими выходными значениями, которые были отобраны на этапе тестирования. Группы соединяют между собой последовательно. Общий уровень выходной силы тока и напряжения равен сумме аналогичных параметров всех групп.

Оптимальным решением для сборки источника тока будет разработка монтажной платы на основе фольгированного стеклотекстолита. Ее можно поместить в подходящий по размеру корпус и закрыть оргстеклом. Нескольких десятков транзисторов достаточно, чтобы сгенерировать ток напряжением несколько вольт для питания маломощных устройств или подзарядки аккумуляторов.

Особенности солнечной панели из диодов

Если вместо транзисторов решено использовать диоды, стоит отдать предпочтение кремниевым моделям КД202 или выпрямителям типа Д242, Д237, Д226 или Д223. Для открывания перехода р-n следует:

  1. Надежно зажать диод за фланец.
  2. Отрезать и расправить вывод анода, чтобы появилась возможность освободить медный провод р-n перехода.
  3. Отделить защитный фланец с помощью острого металлического предмета.

Аналогичным образом отделяются фланцы всех диодов, которые планируется использовать для сборки солнечной батареи. Проще всего сделать это с диодами марки Д223. Их достаточно выдержать в ацетоне, который растворит краску на стеклянном корпусе и откроет для света р-n переход.

Соединение диодных элементов полностью аналогично сборке батареи на основе транзисторов. Внутри групп диоды соединяют параллельно: с одной стороны – только аноды, с другой – только катоды. Тестирование и классификация диодов по группам в зависимости от выходных параметров осуществляется так же, как и отбор транзисторов.

Чем больше элементов использовано для сборки солнечной батареи, тем выше будут выходные параметры мощности конструкции. Так, пяти групп по 10 диодов достаточно, чтобы получить напряжение в 2,5 В силой тока до 25 мА. Аналогичные расчеты можно произвести для любого количества диодов, если вам требуется более или менее мощная солнечная батарея.

Обратите внимание: диоды и транзисторы чувствительны к температурному воздействию и легко выходят из строя при перегреве. Поэтому для их пайки следует использовать маломощный паяльник. Его будет достаточно, чтобы надежно соединить элементы между собой в единую полупроводниковую систему.

Солнечная батарея из старых транзисторов


У людей, которые увлекаются радиоделом со временем накапливается достаточно много различных электронных деталей, среди которых могут быть и старые советские транзисторы в металлическом корпусе. Как радиодетали они уже давно не актуальны из-за своих больших габаритов, однако их можно использовать совершено по другому назначению: в качестве солнечной батареи. Правда мощность такой батареи выходит достаточно мала по соотношению к ее размерам , и годится лишь для запитки маломощных устройств. Но все же можно собрать ее в качестве эксперимента и ради интереса.

Для переделки транзистора в солнечную батарею в начале необходимо спилить с него крышку. Для этого транзистор аккуратно зажимается в тисах за ободок на корпусе и ножовкой спиливаем крышку. Нужно делать это аккуратно ,чтобы не вывести из строя кристалл и тонкие провода внутри транзистора.


После этого можно увидеть , что прячется внутри:

Как видно на фото кристалл достаточно не велик, по сравнению с корпусом транзистора, а ведь именно он и будет преобразовывать солнечную энергию в электрическую.

Далее необходимо направить на кристалл свет и тестером замерить, на каких выводах получим максимально высокое напряжение. Его величина, конечно же зависит мощности транзистора и размера кристалла.


Вот таблица измерений, приведенная автором на примере транзистора КТ819ГМ:

После замеров можно приступить к сборке солнечной батареи для запитки калькулятора. Для получения 1,5 вольта необходимо последовательно собрать пять транзисторов, при этом коллектор будет минусом, а база – плюсом.

Для крепления транзисторов использовался кусок тонкого пластика, с предварительно просверленными под ножки отверстиями. После установки транзисторов на места, производится подключение из между собой, по указанной выше схеме:

Как показал эксперимент, на улице, при солнечном свете калькулятор работал неплохо, однако в помещении ему определенно не хватало энергии, и на расстоянии больше 30 сантиметров от лампы накаливания он работать отказывался.

Для увеличения мощности батареи имеет смысл подключить параллельно еще пять таких же транзисторов.

Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

МОЩНАЯ САМОДЕЛЬНАЯ СОЛНЕЧНАЯ БАТАРЕЯ

   Все началось с того, что один знакомый, который в молодости был радиолюбителем, мне согласился за символическую цену отдать чемодан с радиодеталями времен Советского Союза. Чемнодан был настоящей наxодкой и когда открыл его, увидел совсем новые стеклодиоды и мощные железные диоды серии кд2010 и кд203. Уверен многие знают, что если осветить полупроводниковый кристалл солнцем, то он способен отдать до 0,7 вольт напряжения. Если кто не в курсе о чем говорю, советую читать статью о зарядке мобильного телефона самодельной диодной солнечной панелью. Итак, после небольшего расчета оказалось, что имеющихся диодов более чем достаточно для реализации моей идеи. Один кристалл из диода кд2010 способен дать до 0,7 вольт напряжения, а сила тока одного кристалла может достигать 7 миллиампер (для сравнения скажу, что номинальный ток потребления белого светодиода составляет 20 миллиампер). 


   В общем от диодной солнечной панели я желал получить номинальное напряжение при нормальном солнечном освещении 9 вольт, напряжение при облачной погоде не менее 6 вольт, а при ярком солнечном освещении планировалось получить до 14-16 вольт напряжения, про силу тока поговорим потом. Итак, поскольку пиковое значение напряжение в 0,7 вольт мои кристаллы отдавали очень редко (в течении 3-х дней испытании на солнце мультиметр только один раз показал такое значение от одного кристалла), то решил для удобства проведения расчетов использовать расчетную величину тока одного кристалла 0,5 вольт. Для получения 12 вольт напряжения нужно последовательно соединить 24 кристалла полупроводниковых диодов. Теперь поясню, как достать кристалл из диода. Берем сам диод и при помощи молотка разбиваем стеклянный держатель верxнего контакта диода. Затем при помощи плоскогубцев нужно открыть диод. Там мы увидим кристалл, который припаян к основании диода. К кристаллу припаян медный многожильный провод на конце которого прикреплен верxний контакт диода. Берем нижнее основание диода на который припаян кристалл и идем к газовой плите. Держим его при помощи плоскогубцев на огне (так, что полупроводниковый кристалл наxодился сверxу). Через пол-минуты олово кристалла расплавится и уже можно спокойно взять его при помощи пинцета. Так нужно делать со всеми диодами. У меня на это ушло пару дней. Работа действительно трудная, но дело стоит того. Как уже было сказано, каждый полупроводный кристалл способен отдавать до 7 миллиампер тока на ярком солнце. Для удобства расчета использовал значение силы тока одного кристалла 5 миллиампер. То есть, если параллельно соединить 32 кристалла мы получим силу тока 160 миллиампер, почему именно 160 миллиампер? Просто у меня диодов xватило как раз только для получения такого тока. Нужно подключить 24 диода последовательно для получения 12 вольт напряжения и собрать 32 блока по 12 вольт и включить параллельно для получения желаемой емкости. В итоге когда панель была готова (после почти недели работ) я почему то получил иные параметры которые меня очень обрадовали. Максимальное напряжение при ярком солнечном освещении до 18 вольт, а сила тока достигала 200 миллиампер, иногда до 220 миллиампер. 

   Для корпуса панели были использованы два каркаса от советского стабилизатора напряжения. На стабилизаторе есть отверстия для вентиляции и именно в ниx были поставлены полупроводные кристаллы. 

   Поскольку солнечный свет не всегда будет освещать нашу панель, то было решено зарезервировать напряжение от панели в аккумулятораx. Аккумуляторы были использованы от китайскиx фонариков. Каждый аккумулятор имеет следующие параметры: напряжение 4 вольт, емкость до 1500 миллиампер.

   То есть наша панель за сутки успеет зарядить такой аккумулятор, точнее три такиx аккумулятора, поскольку аккумуляторы были включены последовательно для получения 12 вольт напряжения, потом переделал панель и она также при желании могла отдавать 8 вольт 300 миллиампер. Также была изготовлена небольшая панель из стеклодиодов. Стеклодиод при ярком солнечном освещении отдавал напряжение до 0,3 вольт, а сила тока до 0,2 миллиампер. 

   Стеклодиодная панель у меня дает напряжение 4 вольта, сила тока до 80 миллиампер. Все напряжение от солнечныx панелей накапливалось в свинцовыx аккумулятораx от фонарей, однако желательно использовать аккумулятор с большой емкостью, даже и от автомобиля. Все напряжение от аккумуляторов тратилось с одной целью — осветить дом в ночное время. Освещение выполнялось светодиодами. 

   Для этого из магазина были куплены светодиодные китайские фонарики. Затем были созданы светодиодные панельки.

   На каждой панельке 42 светодиода. В общей сложности были созданы три идентичные панели которые вместе потребляли всего 20 ватт. Но освещенность равна 100 ваттной лампе накаливания и даже больше. 

   Свет, которые дают светодиоды, более приятный и успокаивающий. К тому же светодиоды имеют ничтожные тепловые потери.

   Ну в прочем думаю все отлично знают, что светодиоды более эффективны. Все светодиоды были подключены параллельно и питаются от 4-х вольт напряжения, но напряжение нужно подать через токоограничивающий резистор 10 ом — мощность резистора 1 ватт, и нагрева резистора не наблюдалась. Ака.

   Форум по энергосберегающим технологиям

   Форум по обсуждению материала МОЩНАЯ САМОДЕЛЬНАЯ СОЛНЕЧНАЯ БАТАРЕЯ

Солнечная батарея своими руками из транзисторов в короткие сроки

Электрическая энергия сегодня стоит недешево, поэтому такой вопрос, как альтернативные источники энергии, является очень актуальным. Среди таких источников энергии одним из самых распространенных является солнце, поэтому солнечные батареи становятся все более популярными. Такой источник энергии действительно является очень хорошим, однако если приобретать солнечную батарею в магазине, то нужно быть готовым к тому, что стоит такое оборудование недешево. Однако можно существенно сэкономить, если сделать солнечную батарею своими руками. Лучше всего делать солнечную батарею из транзисторов, поскольку во многих домах всегда найдутся диоды и транзисторы от старых, ставших ненужными радиоприемников и телевизоров. Если все сделать правильно, то таким транзисторам можно дать новую жизнь и с их помощью можно получать большое количество энергии.

При помощи солнечной батареи можно уменьшить затраты на электроэнергию в доме.

Изготовление солнечной батареи из транзисторов

Сделать своими руками полупроводниковую солнечную батарею для радиоприемника на транзисторах не сложно.

Конечно, преимущество имеют те, кто располагает опытом в технической сфере, тем не менее, обязательным условием это не является. Главное – четко придерживаться инструкции, и тогда все получится. При изготовлении такой солнечной батареи своими руками нужно принимать во внимание то обстоятельство, что, когда проводник освещается светом (в данном случае светом солнца), он является источником электрического тока, то есть фотоэлементом. Именно этим свойством и необходимо воспользоваться, когда делается солнечная батарея из транзисторов своими руками.

Что касается силы тока и такого важного фактора, как электродвижущая сила такого фотоэлемента, то все зависит от материала полупроводника, величины его поверхности и освещенности. Однако превратить транзистор в фотоэлемент не так просто. Для того чтобы это сделать, надо уметь добраться до полупроводникового кристалла, для этого его необходимо вскрыть.

Схема контроллера заряда солнечной батареи.

Надо отметить то обстоятельство, что энергия, которая вырабатывается одним фотоэлементом, слишком мала, именно поэтому такие фотоэлементы собираются в одну батарею. Для того чтобы увеличить силу тока, отдаваемого во внешнюю цепь, все одинаковые фотоэлементы нужно соединить в строгой последовательности. Тем не менее следует учитывать то обстоятельство, что самые лучшие результаты можно получить, если работать по принципу смешанного соединения. Такой принцип подразумевает процесс сборки фотобатареи из последовательно соединенных групп, каждая группа при этом состоит из одинаковых, параллельно соединенных элементов. Транзисторы необходимо подготовить заранее, собрать их нужно на пластине из генитакса, текстолита или органического стекла. Что касается способа соединения, то между собой все элементы нужно соединять тонкими лужеными проводами, сделанными из меди. Выводы, которые подходят к кристаллу, паять не рекомендуется, так как в процессе паяния возникает высокая температура, в результате чего полупроводниковый кристалл может повредиться.

Пластина с фотоэлементом помещается в корпус из прочного материала, который должен иметь прозрачную верхнюю крышку. Оба вывода нужно подпаять к разъему, к нему потом подключить шнур от радиоприемника. Солнечная батарея, сделанная своими руками таким способом, на солнце может генерировать напряжение до 2,1 В при токе до 0,8 Ом. Такой мощности вполне достаточно для того, чтобы работал радиоприемник на одном-двум транзисторах.

Вернуться к оглавлению

Что понадобится для изготовления солнечной батареи?

Превратить транзисторы в фотоэлементы можно следующим способом. Нужно предварительно подготовить оловянно-свинцовый припой, канифоль и батарейку на 4,5 В. Из инструментов понадобятся следующее:

Схема устройства солнечной батареи.

  • плоскогубцы;
  • маленький молоток;
  • паяльник;
  • тестер;
  • пинцет;
  • бокорезы;
  • тиски.

С помощью бокорезов нужно отрезать выводы по линиям, затем смятую трубочку нужно расправить, чтобы один из выводов был свободен. Потом нужно диод в тисках зажать за фланец, к сварному шву прикладывается острый нож, по его тыльной стороне нужно слегка ударить и удалить крышку. При этом нужно внимательно следить за тем, чтобы лезвие ножа не проходило слишком глубоко внутрь, в противном случае кристалл может быть поврежден. Именно такие фотоэлементы и являются основой для оборудования, которое можно сделать своими руками в короткие сроки, не затрачивая при этом больших усилий.

Изготовление солнечной батареи на транзисторах самостоятельно в России актуально еще и потому, что собственного производства нет, а зарубежное оборудование стоит недешево. Нельзя сказать, что мощность его большая, однако следует учитывать то обстоятельство, что стоимость изготовления его очень мала, а выгода от его использования очевидна.

Солнечная батарея своими руками

Если говорить об экономической целесообразности, то для изготовления небольшой солнечной батареи своими руками в домашних условиях выгодней купить фабричную панель, а не несколько десятков новых диодов или транзисторов. При одинаковой производительности (мощности) такая самоделка будет дешевле, а ее изготовление займет меньше времени. Единственное условие, оправдывающее потраченное время — это возможность дешево купить старые комплектующие, которые были списаны как «неликвиды».

Устройство и принцип работы

Есть два основных способа использования солнечной энергии:

  • Прямое использование для нагрева воды и аккумулирования тепла в гелио системах отопления и горячего водоснабжения.
  • Преобразование света в электроэнергию.

Справка. Основные законы преобразования света в электроэнергию были сформулированы в конце XIX века российским ученым Александром Столетовым.

Первые солнечные панели появились еще в семидесятые годы прошлого столетия, но несовершенные технологии и низкая эффективность делали производство батарей дорогим и низкорентабельным. И только последние разработки в этой области сделали производство «солнечной» электроэнергии технически и экономически доступными.

Есть несколько типов панелей, использующих разные материалы. Но все они построены на полупроводниках. Преобразование света основано на внутреннем фотоэффекте p-n перехода — возникновении дополнительных «дырок» и свободных электронов под воздействием света. Электроны «стремятся» в n-область, дырки — в p-область. Как результат перераспределения заряда между областями, возникает разность потенциалов и через переход протекает ток.

Каждый модуль заводской солнечной батареи имеет собственный несущий каркас, с расположенной на нем клеммной коробкой. Это делает возможным объединять модули в единую систему, с подключением к общему оборудованию, которое позволяет контролировать работу, накапливать электроэнергию, преобразовывать ее и распределять между потребителями. А для защиты фотоэлементов используют специальное покрытие из закаленного стекла.

Стационарные солнечные батареи дополнительно оборудуют инверторами, преобразующими постоянный ток в переменный. Компактным модулям для питания устройств, работающих от аккумуляторов, инвертор не нужен.
Аналогичный компактный модуль можно сделать своими руками из диодов или транзисторов и подключить его к «промежуточному» аккумулятору. А уже от него заряжать мобильный телефон (как от Power Box) или использовать для питания LED светильника.

Солнечная панель из диодов

Для изготовления панели можно использовать диоды в металлических и стеклянных корпусах. Первый вариант мощнее, но более трудоемкий. Второй — проще, хотя для достижения такой же мощности понадобится больше элементов.

Панель из диодов в металлическом корпусе

Диоды КД203

Если говорить о максимальной мощности, которую можно получить с одного кристалла полупроводника, то лучшими в этом отношении будут диоды серии КД203 (КД2010).

При ярком солнечном свете один кристалл способен выдать напряжение порядка 0.7 В при токе до 7 мА.

Но сложность заключается в том, что диоды этой серии изготовлены в металлокерамическом корпусе, который заодно выполняет роль теплоотвода при монтаже на металлическое шасси.

Чтобы вынуть кристалл кремниевого полупроводника и «открыть» его для освещения, надо:

  • аккуратно разбить керамику и освободить верхний контакт;
  • раскрыть корпус, сняв с основания «крышку»;
  • разогреть диод до температуры плавления олова, которым к кристаллу припаяны контакты;
  • освободить от верхнего жесткого контакта кристалл, а вместо него припаять гибкий проводник.

Диоды средней мощности в металлическом или металлостеклянном корпусе серии Д7, Д214, Д215, Д226, Д237, Д242-Д247 разбирать проще. Сначала бокорезами обрезают жесткий контакт и часть корпуса в виде трубки со стороны анода. А затем вставив нож в шов между основанием и крышкой, открывают корпус. Для облегчения процесса можно предварительно слегка сжать фланец корпуса в тисках, чтобы раскрылась щель между основанием и крышкой.

И эту процедуру надо выполнить с каждым диодом, а их должно быть несколько десятков. В реальных условиях напряжение на одном кристалле будет ниже максимума раза в полтора — около 0.5 В. Чтобы получить на выходе 5 В, надо последовательно соединить в блок 10 кристаллов.

Приблизительно такое же соотношение максимальной и реальной силы тока — рассчитывать надо на величину 4-5 мА. Чтобы «нарастить» силу тока и повысить мощность солнечной батареи, надо параллельно соединить на панели несколько таких блоков.

Сама панель должна иметь вид решетки из расположенных в несколько рядов ячеек двух разных диаметров, расположенных поочередно. Большое отверстие — для посадки корпуса, меньшее — для гибкого проводника, которым соединяют в цепь расположенные рядом диоды. Такая заготовка для диодов в металлическом корпусе без крышки глядит так:

Возможны и другие варианты конструкции панели, но принцип прежний — последовательно-параллельное соединение элементов. Принцип как сделать солнечную батарею из диодов был описан еще в советское время. Ниже приведено фото иллюстрации тех времен, на которой показаны способы разборки элементов и принципиальная схема соединения:

Панель из диодов в стеклянных корпусах

Эти элементы менее мощные и способны «генерировать» токи менее одного миллиампера, но их достоинство в том, что кристалл полупроводника не надо «открывать».

У некоторых серий корпус изначально прозрачный, а у тех элементов, корпуса которых окрашены, надо просто смыть краску растворителем.

К таким относятся диоды Д223Б, которые способны при оптимальной ориентации относительно яркого солнца выдавать напряжение около 0,3 В, что почти сопоставимо с более мощными аналогами.

Пошаговый процесс изготовления солнечной панели выглядит так:

  • помещают на некоторое время диоды в емкость с растворителем;
  • достают из растворителя элементы и счищают с них размягченную краску;
  • сгибают под 180° выводы анодов (это необходимо для правильного положения кристалла полупроводника относительно плоскости монтажной платы;
  • монтируют на монтажной плате элементы, объединяя их в последовательно параллельные группы согласно схеме соединения.

Вот так выглядит панель, состоящая из 9 параллельно соединенных блоков по 12 элементов в каждом:

Как видно, помещенная на солнце, она выдает напряжение в 2.5 В, а ее мощности хватает, чтобы полностью зарядить за 2 часа ионистор емкостью 0,47 Ф.

Панель из светодиодов

Любой светодиод обладает обратимостью: он не только излучает свет под напряжением, но и наоборот — генерирует электричество под воздействием света. Максимальная ЭДС у сверхярких элементов — до 1.65 В, но ток при этом получается очень маленьким — до 20 мкА. Зеленые индикаторные светодиоды с линзой диаметром 3 или 5 мм при освещении выдают почти 1.6 В. Совсем немного уступают им красные и оранжевые светодиоды с линзой 5 мм.

Но изготовить из них солнечную панель, способную работать как эффективное зарядное устройство, не получится из-за крайне маленького тока.

Панель солнечной батареи из транзисторов

Так же как и у диодов, открытый полупроводниковый кристалл транзистора при освещении образует разность потенциалов на p-n переходах. Если провести измерения, то в результате окажется, что всегда есть пара контактов, которая выдает максимально возможную мощность.

Но перед этим надо «открыть» корпус транзистора — аккуратно снять крышку. Вот так выглядит транзистор 2Т908А «внутри»:

Обычно наибольшая ЭДС возникает между коллектором и базой или эмиттером и базой. Перед сборкой домашней солнечной панели надо протестировать все заготовленные элементы и рассортировать их по группам (блокам) с наиболее близкими значениями суммарных напряжений.

Примечание: Один из основных недостатков мощных транзисторов отечественного производства — это «нестабильность» характеристик.

Например, чтобы подобрать приблизительно одинаковую пару для двухкаскадного усилителя, надо было «прозвонить» вручную несколько транзисторов.

Для увеличения общего напряжения и тока применяют смешанное соединение.

Схема сборки элементов солнечной батареи

Первый вариант. Соединяют параллельно группы (блоки) с одинаковым суммарным напряжением последовательно собранных элементов, и получают на выходе сумму токов от каждого блока. Схема приведена ниже:

Второй вариант. Элементы с приблизительно одинаковыми напряжениями соединяют в группе параллельно (выходной ток будет равен сумме токов). А чтобы нарастить напряжение, несколько таких групп соединяют последовательно.

В сравнении с диодной солнечной панелью собранный транзисторный блок при одинаковой мощности будет занимать большую площадь.

Сборка корпуса

Самый простой корпус для панели домашней солнечной батареи изготавливают из фанеры или листового пластика:

  • Вырезают по размеру лист, к которому крепят панель.
  • По периметру листа крепят саморезами или на клей небольшие бортики высотой чуть больше толщины панели.
  • Сверлят отверстия под выходной кабель с клеммами для подключения аккумулятора.
  • Подключают к панели кабель через диод Шотки (это надо, чтобы обезопасить аккумулятор от короткого замыкания).
  • Сверху накрывают лист светопрозрачным листом — оргстеклом или монолитным поликарбонатом. Крепят его к бортам саморезами.

В качестве средства повышения эффективности панели из одного блока иногда используют алюминиевые банки. Такая солнечная батарея своими руками выглядит так:

В этой конструкции донышко от алюминиевой банки выполняет роль вогнутого зеркала, которое «собирает» в фокусе отраженные лучи света.

Даже если кристалл полупроводника не лежит в главном фокусе, он все равно расположен на главной оптической оси, а это уже увеличивает концентрацию светового потока. Но такая конструкция оправдана в случае, если размеры панели не имеют значения, а количество диодов или транзисторов ограничено.

Описанные выше схемы не могут служить в качестве источника альтернативной энергии для подключения сколь значимого по мощности потребителя.

Их достоинство в том, что можно использовать элементную базу, которая морально устарела и досталась практически даром как «наследство» от советской промышленности. Изготовление подобной батареи можно рассматривать как хобби или приобретение полезных навыков у новичка. А практическая польза, хоть небольшая, но будет.

Солнечные батареи своими руками: процесс сборки

Альтернативная энергетика стала доступнее! В 2018 году можно купить поликристаллическую солнечную панель мощностью в 150 Вт и напряжением в 12 В примерно за 115 долларов. Технологии изготовления панелей осваиваются и совершенствуются, поэтому уже несколько лет подряд наблюдается тенденция снижения их стоимости. Чтобы использовать энергию солнца в полной мере, нужно собрать домашнюю СЭС. Профильные компании предлагают готовые комплекты и услуги по монтажу солнечной установки. С другой стороны, есть менее затратное решение – солнечная батарея своими руками.

Солнечная батарея: что это и как работает

Солнечная батарея – это набор панелей, преобразующих энергию света, соединенных в конкретную схему, для достижения нужных электрических характеристик: напряжения, тока и мощности. Каждая панель – это кремниевая пластина с металлизированными дорожками для подключения к цепи. В готовых решениях они соединены на заводе, а монтажнику нужно собрать схему из нескольких, чтобы обеспечить электроснабжение объекта в необходимом объеме.

Принцип действия основан на фотоэффекте. Посветив на кремний, вы ничего не добьетесь, поэтому в структуру пластины вносят примести – легируют. В результате появляется избыток положительных или отрицательных носителей заряда, что зависит от типа примеси, формируются P и N области и pn-переход – по типу простейшего полупроводникового диода. Когда на него попадает свет, на выводах формируется фото-ЭДС. Однако величина напряжения диода достаточно мала – порядка половины вольта. Поэтому в одном солнечном модуле находится множество таких ячеек, а выходное напряжение батареи в целом доходит до 12–24 В.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Это интересно: На самом деле 12-вольтные солнечные батареи имеют на выходе напряжение вполовину больше, зависящее от количества света. При оптимальных условиях оно может достигать 18 В и более – это называется точка максимальной мощности (отрезок вольтамперной характеристики с наибольшим напряжением и током). Промышленные образцы обычно рассчитаны на работу с напряжением 12 и 24 В, использование последних позволяет снизить токи на первичной стороне преобразователя.

Так как солнечный свет не доходит до нас круглыми сутками – энергия будет вырабатываться только днем, чтобы пользоваться электричеством ночью, нужно ее накопить. Для этого потребуются аккумуляторы и контроллер для их заряда. Если вы собираетесь пользоваться не только 12-вольтовым оборудованием, но и привычными 220 В бытовыми приборами, нужен еще и инвертор.

Принцип работы солнечной батареи

Контроллеры заряда бывают разных типов:

Инвертор необходим для преобразования постоянного напряжения величиной 12 В, в переменное 110, 220, 380 и прочее. Обычно он рассчитан под одно выходное напряжение.

к содержанию ↑

Преимущества и недостатки этого вида энергии

В каждой из отраслей энергетики есть сильные и слабые стороны. Плюсы получения электричества из солнечного света:

  • Не используются ископаемые, жидкие и газообразные виды топлива.
  • Отсутствуют факторы загрязнения окружающей среды.
  • Солнечный свет – бесплатный источник энергии.

Но и без минусов не обошлось:

  • Стоимость батарей хоть и снижается, но все равно находится на высоком уровне.
  • Кроме панелей, нужны аккумуляторы и преобразователи.
  • Срок окупаемости от 5 лет.

Не забудьте учесть ресурс работы аккумуляторов и их периодическую замену. Солнечная энергия не настолько дешевая, как об этом часто утверждают. Однако если нет других вариантов – это подходящий способ электрификации.

Больше всего распространены поликристаллические и монокристаллические панели. Последние дороже, поскольку изготавливаются из однородных кристаллов кремния, больший КПД (около 15%). Поликристаллы производятся из вторсырья, остатков от изготовления монокристаллов и продуктов переработки панелей. Стоят примерно на 15% дешевле, имеют КПД чуть ниже (8–12%), при этом разные источники сходятся во мнении, что они показывают лучшие результаты в пасмурную или облачную погоду поэтому разница в цене не всегда оправдана. Аморфные батареи встречаются редко.

Как отличить поликристаллическую от монокристаллической солнечной панели?

Очень просто, у элементов монокристаллической структуры углы скруглены или сегментные, а цвет ее поверхности однородный: от темно-синего до черного. Поликристаллические элементы имеют форму правильных прямоугольников, а их цвет неоднородный, слегка переливающийся: от синего до почти черного, его текстура отдаленно напоминает камуфляж.

Поликристаллический и монокристаллический модули солнечной батареик содержанию ↑

Выбор места и проектирование

Для установки панелей подойдет часть пространства, на которую не падает тень и освещена солнечными лучами. Если вы задались вопросами постройки СЭС, скорее всего, живете в частном доме или собираетесь электрифицировать дачу. Вот список мест, которые подходят для установки батарей:

  • Крыша домов и хозяйственных построек.
  • Пустые места на земле во дворе.
  • Южные стены зданий.

Если крыша имеет любую конструкцию, в которой кровля расположена под углом к горизонту (двускатная, финская и т. д.) панели можно уложить непосредственно на нее. Для монтажа на горизонтальные и вертикальные, нужна металлическая конструкция, чтобы установить угол падения солнечных лучей, приближенный к прямому. Лучше, когда металлическая конструкция для установки на стены будет выполнена из алюминия или других легковесных сплавов, чтобы избежать лишней нагрузки на фундамент и кладку.

ВАЖНО! Эффективность установки снижается пропорционально углу падения света. Чем больше он отличается от 90 градусов, тем меньше электроэнергии вы получаете.

Пример проектирования батареи. Главное – чтобы она чаще всего смотрела на солнцек содержанию ↑

Проектирование

Нужно произвести правильный расчет мощности панелей, инвертора и емкости аккумулятора. Для этого необходимо определиться, для чего вам нужна солнечная батарея? Если как источник резервного питания, то рассчитайте, какое время резервной работы должна обеспечивать станция, и какое оборудование будет подключено к резервной сети.

Если нужен основной источник энергии, вы должны посчитать, какое количество времени всего в день работает каждый из ваших электроприборов, затем умножить число часов на их мощность. В результате вы узнаете, сколько кВт/ч энергии в день они потребляют. После чего добавьте про запас 20–50%, т. е. умножить количество кВт/ч на 1,2–1,5. Если разделить это число на напряжение АКБ (12 или 24 В) – вы получите емкость (А/ч).

Количество элементов панели подбирается исходя из их мощности и среднесуточного количества часов, когда в ваших широтах светит солнце. То есть если вы за день потребляете 1 кВт/ч, а солнечный день длится в среднем 10 часов, при этом максимально яркий свет падает в течение 4–5 часов, значит:

P=W/(Hs*k),

где P – общая мощность батареи, W – потребляемая мощность, Hs – количество солнечных часов, k – коэффициент максимальной яркости света, т. е. если из 10 часов солнце светит 4 часа очень ярко, а остальное время идет на спад, то он равен 4/10 или 0,4.

Инвертор подбирается исходя из количества работающей техники. В квартирах и домах на распределительных щитках установлены вводные автоматы на 16 А, это примерно 3.5 кВт, значит и инвертора такой мощности вам хватит с головой.

Последний шаг это монтаж всей установки. Самое сложное – это найти оптимальный угол наклона батареи. Нужно опытным путем определить угол, при котором наибольшую продолжительность времени солнечные лучи будут максимально приближены к перпендикулярному положению.

Монтаж солнечной батареи к крышек содержанию ↑

Пошаговый процесс сборки

Чтобы построить панель понадобится:

  • Алюминиевые уголки.
  • Фанера, ДВП или ДСП.
  • Герметик.
  • Прозрачное защитное покрытие (оргстекло или стекло с низким содержанием железа, каленное).
  • Солнечные батареи.
  • Шина для пайки СЭ (в идеале) или оплетка от провода, провод.
  • Кабель.
  • Шуруповерт.
  • Саморезы, уголки и прочие метизы.
  • Ножовка по металлу.

Сборка каркаса

Когда вы определились, какого размера должна быть панель – вырежьте шаблон из картона, разложите на нем кремниевые элементы, оставляя зазор между ними 3–5 мм. Кремний – очень хрупкий материал, этот зазор нужен, чтобы пластины не треснули в процессе нагревания и охлаждения. Затем обрежьте шаблон по размерам и приступайте к сборке алюминиевого каркаса. Можно соединять детали внахлест или встык, но для последнего нужно резать материал под 45 градусов, для этого удобно использовать стусло. Не забудьте вклеить защитное стекло, прежде чем смонтируете щит с солнечными элементами.

Спайка пластин

На обратной стороне пластин нанесен металлический слой серебристого цвета. Он поддается лужению с применением кислотного флюса. Заранее залудите провод или шину. Шина – это плоский проводник. Если такой нет, можно использовать оплетку кабеля или тонкий провод.

Спайка пластин между собой

Далее, нужно кисточкой нанести флюс на металлический слой на кремнии, быстрыми движениями паяльника размазать каплю припоя, когда поверхность станет более однородной и блестящей – контакт залужен. Некоторые используют флюс-карандаш. Не пробовал, но им, кажется, будет удобно работать. Припой ПОС-61 – подойдет для пайки. Последовательное соединение пластин повышает выходное напряжение, соединение групп в параллель – выходной ток.

Здесь есть две рекомендации:

  1. Не перегрей! Чтобы не повредить пластину и контакт нельзя долго задерживаться паяльником, для этого нужен паяльник мощностью от 30 до 60 Вт, с теплоемким жалом (т. е. потолще).
  2. Не расколи! Пластины очень тонкие и хрупкие. Во время пайки положите пластины на мягкий толстый картон, пенопласт, пенофол, тряпку, в конце концов. Это уменьшит вероятность скола при надавливании паяльником или переворачивании элементов.

Дополнительно нужно установить диод Шоттки. Если вы хотите избежать обратного тока от аккумулятора в темное время суток, то диод можно установить между батареей и аккумулятором. Производители не ставят диодов вовсе.

Сборка панели

Задняя крышка может быть выполнена из пластика, фанеры и других листовых материалов. Просверлите по его площади отверстия для циркуляции воздуха, при этом нужно залить герметиком все электрические соединения, чтобы избежать коррозии. После сборки необходимо установить ее на несущую стационарную конструкцию. Лучше предусмотреть возможность регулировки угла наклона – это поможет достичь оптимальной мощности в разные времена года, подстраивая положение под солнце.

Сборка самодельной солнечной панелик содержанию ↑

Солнечные батареи из подручных материалов

Если нет желания вкладывать больших денег в панели, но вам интересно попробовать на что они способны, можно собрать простейшую солнечную панель из старых радиодеталей самостоятельно.

Батарея из транзисторов

Транзистор для батареи со спиленной крышечкой

Для сборки нужны старые советские транзисторы в железных корпусах, типа КТ819 или МП21-МП43 и подобные. Их корпус напоминает летающую тарелку, две половинки которой соединены между собой, а шов закатан. Для разбора сточите поясок, и потяните половины в разные стороны. Внутри вы увидите кристалл кремния с двумя электродами, поместите его под яркий свет и вольтметром определите: между какими ножками присутствует самое высокое напряжение. Мощность одного самодельного фотоэлемента мала, а напряжение едва доходит до 0,3–0,5 Вт, вам понадобится порядка 30–40 штук, чтобы достичь желаемых 12 Вт, при этом токи будут маленькими.

Батарея из диодов

Диоды Д223Б

Диоды типа Д223Б выдают порядка 0,35 В на ярком солнце. Их корпус выполнен из стекла, но покрыт краской. Чтобы она сошла, залейте диоды растворителем, и оставьте на пару часов полежать, желательно в теплом, проветриваемом помещении, потом краска легко счищается. Ну а дальше вам придется спаять их в батарею, как было описано выше, для достижения нужного напряжения и тока.

Панель из фольги

Можно сделать батарею с помощью медной фольги. Для этого нужно взять два листа площадью 45 см2, очистить от жира окислов с помощью наждачной бумаги, отмыть в мыльном растворе. После нужно разогреть один из них, например, на электроплите (больше киловатта) до красно-оранжевого цвета, потом медь начнет чернеть – это появился оксид меди, держим еще 30 секунд. Выключите плиту и пусть все плавно остынет. На листе появится слой оксида черного цвета. Промываем под проточной водой, чтобы сошли крупные частицы оксида, должна остаться тонкая пленка, нельзя механически воздействовать на поверхность – скрести ее, чистить и гнуть.

Получится один лист со слоем оксида, а второй чистый, поместите их в емкость, отлично подойдет обрезанная 5-л бутылка. Лист с окисью будет у нас «минусом», а чистый «плюсом». Они не должны соприкасаться. Емкость наполняем солевым раствором (примерно 1 ложка соли на 1 литр воды).  Таким образом, вы получите 1 ячейку для солнечного элемента.

к содержанию ↑

Видео:

Еще пример сборки:

Выводы

Солнечные батареи подходят для электроснабжения, но срок окупаемости устройств достаточно велик, поэтому применять как основной источник питания их довольно дорого. Самодельные фотоэлементы малопригодны для практического использования в качестве источника электроэнергии, но как датчик света они работают неплохо. Можно применить устройства в разных схемах фотореле. Домашняя СЭС – отличный вариант резервного электроснабжения, как основной ввод она может использоваться только в том случае, когда садовый участок расположен в не электрифицированном районе.

Предыдущая

Альтернативные источникиЭффективна ли солнечная батарея для дачи и стоит ли покупать комплект

Следующая

Альтернативные источникиКак выбрать солнечные батареи для дома

Спасибо, помогло!Не помогло

Как сделать солнечный элемент (самодельный солнечный элемент) с использованием силового транзистора 2N3055

Чтобы легко сделать самодельный солнечный элемент или сделать его своими руками, возьмите силовой транзистор, например 2N3055 и осторожно вскрыть корпус. Это обнажает полупроводник материал внутри к свету. Подключите провода, и все готово! Делая это Мне удалось получить около 500 милливольт и 5,5 миллиампер, что составляет 2,7 милливатт. Для питания компактной люминесцентной лампы мощностью 15 Вт я бы нужно как минимум 5555 из них.Однако только 5 из них в серии будут питайте небольшой калькулятор на 1,5 В при хорошем освещении в помещении.

Обязательно ознакомьтесь с солнечная панель Я использовал несколько таких транзисторных солнечных элементов для питания калькулятор, а также это более мощный один заключен в коробку.

Транзисторный солнечный элемент подключен …

… и проходит испытания.

На фото слева внизу транзистор.

Используйте ножовку, чтобы отрезать переднюю часть металлического корпуса как на фото. справа. Внутри тонкие тонкие провода, поэтому, когда вы режете, делайте много коротких стрижек по всему корпусу, стараясь не допустить, чтобы лезвие залезть глубоко внутрь корпуса. Не делайте только один разрез полностью через.

Силовой транзистор 2Н3055 — вид сверху.

Разрезание корпуса.

На фото слева внизу корпус полностью разрезан до подложка и тонкая нежная проволока полностью незащищены. в на фото справа обрезана только передняя часть корпуса, оставляя защитную цилиндрическую стенку вокруг внутренней части, защита для проводов.

ВАЖНО: почти каждый раз, когда мой не работал или перестал работать, потому что середина одного из эти тонкие провода каким-то образом были зажаты и что-то касались, создавая короткое замыкание.Чтобы увидеть это, вам может понадобиться увеличительное стекло. Если это произойдет, очень-очень осторожно приподнимите середину проволоки. вверх, так что он образует дугу с двумя концами, все еще где-то соединенными, как на фото ниже. Я использую для этого кончик x-acto ножа, но Подойдет любой достаточно узкий инструмент, который может попасть под проволоку. Будьте очень, очень осторожны, чтобы не отсоедините любой конец провода от того места, где он подключен. я не знаю, сможете ли вы снова подключить его, если вы это сделаете.

Солнечная батарея и тонкие провода.

Корпус разрезан, чтобы оставить защитную стену.

Как показано на фото и иллюстрации, следует обратить внимание на три момента. электрический контакт с транзистором в отличие от типичного солнечного клетка.

Вид снизу, показывающий, где подключать провода.

Сравнение транзистора и типичного солнечного элемента.

Чтобы узнать, как подключиться к транзистору, чтобы получить наилучший выход, я установить испытательную станцию, где транзистор будет прочно закреплен на месте, пока пробовал все возможные способы подключения к нему и замерил выход для каждого пути. Результаты справа, ниже. Это было сделано в помещении, чтобы обеспечить постоянное освещение. Использовались две компактные люминесцентные лампы холодного белого цвета. Это означает, что значения низкие и могут масштабироваться по-разному. в солнечном свете, поскольку солнечный свет имеет другой диапазон частот.

Настройка для проверки эффективности различных способов подключения.

Тест Напряжение Текущий Мощность
База +, Эмиттер- 370 мВ 94 мкА 35 мкВт
База и эмиттер +, коллектор- 325 мВ 215uA 70 мкВт
Коллектор-, База + 340 мВ 265 мкА 90 мкВт
Коллектор +, Эмиттер- 28 мВ 65 мкА 1 мкВт

Как видно из таблицы выше, использование коллектора в качестве отрицательного (я.е. подключение к металлическому корпусу) и основание как положительное (т. е. подключение к штырю базы), игнорируя эмиттер. Результаты.

И напоследок, ради интереса, поигрался с фокусировкой света на солнечном ячейку с помощью небольшой линзы Френеля, чтобы увидеть разницу. я получил около 520 милливольт и более 5,5 миллиампер (измерено на шкала микроампер, шкала миллиампер на моем счетчике сломана.)

Фокусировка солнечного света на транзисторном солнечном элементе с помощью линзы Френеля.

Видео все о транзисторном солнечном элементе 2N3055

Вот видео, которое я сделал о своих экспериментах с транзистором 2N3055. солнечная батарея.

Изготовление солнечной панели из этих транзисторных солнечных элементов

Схема зарядного устройства солнечной батареи

с транзистором

В этом DIY мы демонстрируем схему зарядного устройства для солнечной батареи, которая может заряжать солнечные батареи.Ориентированные на солнечные батареи батареи — одно из устройств, обеспечивающих качественную работу гаджета. Поскольку количество неустойчивых источников энергии сокращается, возникает необходимость в использовании солнечной энергии. Ориентированные на солнечные батареи батареи берут на себя критически важную работу, чтобы запустить ее в кратчайшие сроки.

[спонсор_1]

Солнечные технологии трансформируют современную эпоху и шаг за шагом развиваются. Солнечные энергетические устройства также принимают во внимание людей. И использование энергии, основанной на солнечной энергии, происходит вокруг нас, а также на космических станциях, где нет доступа к электроэнергии.

Оборудование Компоненты

Принципиальная схема [inaritcle_1]

Работа схемы

Зарядное устройство на солнечных батареях работает по правилу, согласно которому цепь управления зарядом создает постоянное напряжение. Зарядный ток поступает на регулятор напряжения LM317T через диод D1. Напряжение урожая и ток регулируются регулировочным штифтом контроллера напряжения LM317T. Батарея в состоянии зарядки использует тот же ток.

Схема, показанная здесь, представляет собой очень эффективную автоматическую схему зарядного устройства на основе солнечной энергии. Который используется для зарядки 12 В аккумуляторов SLA от солнечных элементов. В схеме используется микросхема контроллера напряжения LM317T. Транзистор BC548 используется как переключатель, который будет отделять землю LM317T от солнечной батареи, когда батарея полностью заряжена.

Приложения и способы использования
  • Схема зарядного устройства, ориентированного на солнечную энергию, которая используется для зарядки свинцово-кислотных или никель-кадмиевых аккумуляторов с использованием энергии солнечной энергии.
  • Схема собирает энергию, ориентированную на солнечную энергию, для зарядки 6-вольтовой аккумуляторной батареи 4,5 Ач для различных применений. Зарядное устройство оснащено регулятором напряжения и тока, а также устройством отключения при перенапряжении.

18 Идеи схем солнечного света своими руками

Согласно Википедии, солнечная энергия — это «лучистый свет и тепло от солнца». Эта энергия используется в самых разных целях; некоторые примеры — тепло, свет и фотосинтез.

В этой статье мы собрали статьи, которые помогут вам создать солнечный контур, который можно использовать в качестве источника света в различных приложениях.Солнечные светильники продаются для всех областей вашего дома, от садовых огней до ночных светильников, даже светильников с датчиками движения и огней для вечеринок. Здесь мы составили список из 18 простых способов создания недорогих схем солнечного освещения своими руками

1. Схема солнечного садового освещения с автоматическим отключением

В этой базовой схеме используются светодиоды, солнечная панель и аккумулятор. аккумулятор вместе с транзистором PNP и резисторами. В дневное время напряжение батареи не достигает светодиодов, потому что транзистор действует как переключатель.Солнечная панель поглощает достаточно солнечной энергии, чтобы перезаряжаемая батарея освещала подключенные светодиоды.

Щелкните здесь для этого процесса .

2. Схема самостоятельного солнечного освещения — уличный фонарь

Две солнечные панели подключаются к монтажной плате, которая затем подключается к двум аккумуляторным батареям. Батареи используют накопленную мощность солнечных панелей для освещения светодиодной лампы мощностью 1 Вт. Он помещает батарею в пластиковый ящик и прикрепляет устройство к деревянной доске, чтобы все устройство оставалось вертикальным, чтобы сделать уличные фонари.

Смотреть видео

3. Простая схема DIY солнечного света

Если вы ищете очень простой способ создать светодиодную лампу на солнечной энергии, это базовое руководство, которое предлагает только то. Этот блогер использует солнечную батарею на 12 В, которая заряжает аккумулятор в дневное время. А вечером этот же ток отключается от солнечной панели. Батарея становится источником питания для светодиодной лампы мощностью 1 Вт.

Для получения дополнительной информации щелкните здесь .

4. Схема самостоятельного солнечного освещения в саду

Легкое для понимания видео, демонстрирующее, как можно сделать самодельную схему солнечного освещения для своего сада. Этот видеоблогер предлагает использовать солнечную панель на 5 В, но то же самое руководство можно применить и к цепи на 12 В. Поскольку это устройство выходит в сад и может попасть под дождь или воду с растений, рекомендуется поместить все части, кроме панели и света, в водонепроницаемую коробку.

Смотреть видео

5. Цепь солнечного света с белым светодиодом

Если вы делаете схему солнечного света своими руками, важно использовать источник света, который будет быть достаточно ярким, чтобы его можно было увидеть. Для таких областей, как сады, в этом руководстве рекомендуется использовать белые светодиоды, потому что они очень люминесцентные и обеспечивают светоотдачу.

Также важно рассчитать правильный размер и напряжение аккумулятора, чтобы обеспечить достаточный заряд.

Нажмите здесь, чтобы узнать больше .

6. Схема солнечного ночника — DIY

Узнайте, как сделать схему солнечного ночника с помощью платы TP4056. Преимущество такой доски в том, что она портативна. Кроме того, эта плата поставляется с защитой аккумулятора или без нее. Этот видеоблогер предлагает использовать тот, у которого есть защита. При максимальном пребывании на солнце 5 часов солнечная панель, предложенная в этом видео, рассчитана примерно на 2 часа.9Ач энергии.

Посмотреть видео

7. DIY Схема солнечного освещения для экстерьера дома

Это отличный проект для ваших детей, как этот блоггер показывает нам на своих фотографиях. Он использует аккумулятор на 12 В, светодиодные лампы и солнечную батарею. Построив уличный солнечный свет, он смог сделать внешний вид своего дома более безопасным, а также сократить расходы на электроэнергию. Он также рассказывает, как он создал второй, более крупный вариант светодиодного солнечного света, чтобы дать больше света.

Щелкните здесь, чтобы следовать этому процессу .

8. Схема DIY солнечной безопасности

Это видео знакомит зрителя с более продвинутым DIY. Это предполагает использование датчика движения PIR. PIR означает, что пассивное инфракрасное излучение относится к использованию датчика для обнаружения присутствия человека в комнате. Это отличный вариант, если вы хотите добавить дополнительные функции безопасности в свой дом или квартиру и вокруг них.

Посмотреть видео

9.DIY Солнечный ночник

Если вы хотите превратить существующий ночник в светильник на солнечной энергии, это видео будет вам очень полезно. Этот человек показывает вам, как взять оригинальный пластиковый корпус и создать печатную плату из 18650 и TP4056. Затраты на этот проект очень минимальны, потому что вы используете то, что у вас уже есть дома, и вы можете легко превратить этот свет в вариант экологически чистой энергии.

Посмотреть видео

10.Схема самостоятельного солнечного освещения для крыльца

Отличный процесс для тех, кто хочет больше контролировать, когда и как долго горит свет на крыльце. Эта схема «сделай сам» предлагает программируемый таймер и даже допускает задержку включения или выключения. Как это работает, очень технически, но это очень хорошо объяснено автором этого поста.

Щелкните для подробностей процесса .

11. Базовая схема солнечного декоративного освещения своими руками

Базовое видео, демонстрирующее базовую схему солнечного освещения.Но информация очень подробная. Этот человек объясняет, как создать световую цепь, используя транзистор, два резистора, аккумуляторную батарею, диод и довольно небольшую солнечную панель. Он объясняет, что части могут быть заменены в зависимости от ваших потребностей. Он предоставляет базовую модель того, как построить схему солнечного освещения своими руками.

Посмотреть видео

12. Самодельная солнечная световая цепь с использованием солнечной панели 6 В

Солнечная панель 6 В используется для создания этой простой ночной лампы, работающей от солнечной энергии.Он заряжается в течение дня и автоматически включается на закате. Затем светодиод питается от аккумулятора и горит до утра. Этот человек также предлагает поставить лампочку перед зеркалом или отражающим предметом, чтобы усилить свет. Схемы соединений

Чтобы узнать больше о том, как его построить, щелкните здесь .

13. Схема самостоятельного солнечного освещения с использованием литиевой батареи

Здесь мы можем увидеть сборку с солнечной панелью, литиевой батареей и светодиодными лампами.Этот садовый светильник предназначен для зарядки днем ​​и зажигания ночью. Чтобы сделать его экономичным и свести к минимуму затраты, этот человек не использует сенсор или микроконтроллер. Отсутствие этого также помогает упростить монтажную плату.

Посмотреть видео

14. Контур солнечного света DIY с активированным движением

Солнечный свет, активируемый движением, важен для безопасности вашего дома.В этом посте показано, как собрать его, используя модуль датчика PIR, транзистор PNP, транзистор NPN, светодиодную лампу, резисторы, свинцово-кислотную батарею и солнечную панель.

Детектор движения включает свет, когда человек или животное оказывается в пределах его досягаемости, и затем выключается, когда в этом районе больше нет движения. Рекомендуется разместить его в нескольких частях дома.

Нажмите здесь, чтобы узнать, как сделать .

15. DIY Схема солнечного света для школы Проект

Очень простой учебник о том, как сделать схему солнечного света своими руками.Это можно использовать для школьного проекта или просто как введение в создание световых цепей перед переходом к более сложным проектам. Используемые предметы очень недорогие, а использованные аккумулятор и банку, вероятно, уже можно найти в доме.

Смотреть видео

16. Подвесная цепь солнечного света DIY

Какая уникальная идея — добавить подвесной вариант к вашей схеме DIY солнечного освещения. Преимущество заключается в том, что вы можете переместить его в любое место, где вы хотите, чтобы было светло, а также в течение дня его можно наклонить к солнцу, чтобы сохранить максимальную зарядку солнечной панели.

Пластиковый контейнер и проволочная вешалка — дополнительные предметы, которые этот человек использовал для создания этого уникального стиля солнечного света.

Чтобы узнать больше о том, как это сделать, нажмите здесь .

17. Схема DIY солнечного света для струнных светильников

Для вечеринки на открытом воздухе необходимо праздничное освещение. Вот отличный способ сделать самодельную версию гирлянды на солнечных батареях, используя схему освещения на солнечной энергии. Хотя для этого проекта вы можете использовать белые светодиоды, для более красивой обстановки можно использовать цветные светодиоды, как предлагает автор.Кроме того, для защиты светодиодной цепочки важно использовать какой-нибудь шланг для очистки.

Подробнее о пошаговом руководстве .

18. Схема DIY солнечного света с использованием модели Joule Thief

«Joule Thief» используется для описания минималистского стиля усилителя напряжения. Этот термин относится к типу схемы, которая имеет небольшие размеры, низкую стоимость и обычно проста в сборке. Это то, что вы найдете на этой простой схеме и видео этой цепи солнечного света.Солнце падает на солнечную батарею и заряжает аккумулятор.

В этой конкретной модели используется небольшая солнечная панель, батарея на 1 или 2 В и диоды вместе с монтажной панелью.

Посмотреть видео

Как сделать простой инвертор дома

Вы можете легко сделать инвертор дома. Чтобы понять, как легко сделать инвертор, в этом посте обсуждается простой пошаговый метод.

Раньше наши требования к мощности (электричеству) были меньше.Но сейчас сценарий сильно изменился. От простых индукционных до сложных стиральных машин, от сотовых телефонов до наших высококлассных гаджетов, все оборудование, связанное с нашим повседневным использованием, требует источника питания. Это основная причина недавнего увеличения использования инверторов в нашем доме. На рынке доступны различные типы инверторов, но эти схемы сложны, высокопроизводительны и дороги. Итак, давайте сделаем свой инвертор дома.

Схема (схема) для изготовления инвертора в домашних условиях

Эта схема не имеет каких-либо функциональных ограничений и имеет КПД более 75%.Кроме того, он способен компенсировать почти все наши потребности в энергии, а также большую часть ваших требований к мощности по очень разумной цене.

Рис.1 — Схема изготовления инвертора в домашних условиях

Теория схемы

Схема этого инвертора отличается по сравнению с обычно используемыми инверторами, поскольку в ней нет отдельной схемы генератора для питания установленных транзисторов. Вместо этого в нашей схеме обе половины схемы функционируют как регенеративный процесс (точно так же, как двухполупериодные мостовые выпрямители).

Что бы мы ни делали для балансировки обеих частей цепи, всегда будет дисбаланс значений сопротивления и обмоток трансформаторов. Это причина того, что обе части схемы никогда не могут работать одновременно.

Теперь предположим, что первая часть цепи начинает проводить сначала. Напряжение смещения для первой половины подается обмоткой трансформатора второй части через R2. Как только первая часть завершает стадию проводимости, выход батареи заземляется коллекторами.

Процесс отводит любое доступное напряжение к базе через R2, и, таким образом, проводимость первой части полностью прекращается. В этом случае транзисторы во второй части получают возможность проводить ток. и, следовательно, этот цикл продолжается.

Рис. 2 — Схема для изготовления инвертора в домашних условиях

Элементы, необходимые для изготовления инвертора в домашних условиях

  • R1, R2 = 100 Ом / 10 Вт намотанный провод.
  • R3, R4 = 15 Ом / 10 Вт с проволочной обмоткой
  • Т1, Т2 = 2N3055 силовые транзисторы.
  • Трансформатор = 9-0-9 Вольт / 5 Ампер.
  • Автомобильный аккумулятор = 12 Вольт / 10 Ач.
  • Алюминиевый радиатор = вырезан по требуемому размеру.
  • Шкаф металлический вентилируемый = по размеру всей сборки.

Пошаговый метод изготовления инвертора в домашних условиях

Шаг 1

Возьмите алюминиевый лист и сделайте / разрежьте лист на две части примерно 5 × 5 дюймов. Просверлите отверстия для установки силовых транзисторов. Отверстия должны быть примерно 3 мм в диаметре.Просверлите / сделайте подходящие отверстия, чтобы обеспечить легкую и надежную установку на корпусе инвертора.

Шаг 2

Возьмите резистор и соедините его в перекрестном режиме с плечами транзистора в соответствии со схемой, показанной ниже.

Шаг 3

Надежно закрепите транзисторы на радиаторах с помощью гаек / болтов.

Шаг 4

Соединить блок радиатор + резисторы + транзисторы с вторичной (выходной) обмоткой трансформатора.

Шаг 5

Поместите полную печатную плату и трансформатор в металлический шкаф.Учтите, что вентиляция в шкафу должна быть хорошей. Присоедините точки ввода / вывода, включая держатель предохранителя, к шкафу и подключите их в соответствии со схемой, размещенной выше.

Теперь ваш инвертор готов. Если хотите, вы можете использовать корпус для размещения инверторной цепи.

Рис.3 — Корпус цепи инвертора

Операционные проверки схемы самодельного инвертора

Совершенно необходима проверка работоспособности схемы перед ее использованием в полном объеме.Для проверки подключите лампочку на 50-60 Вт к разъему инвертора. После этого вставьте аккумулятор (12 В) в гнездо i / p инвертора. Лампочка загорится ярко, что будет означать, что подключение цепи выполнено правильно и инвертор готов к работе. Однако, если лампочка не загорается, проверьте соединения еще раз.

Где использовать этот самодельный инвертор

Выходная мощность инвертора находится в диапазоне 70-80 Вт, а время поддержки полностью зависит от нагрузки.Его можно использовать для питания лампочек, ламп КЛЛ, вентиляторов и других небольших электроприборов, таких как паяльник и т. Д. КПД этого инвертора составляет примерно 75%.

Самое большое преимущество: блок схемы компактен и удобен в переноске. Он также может быть подключен к самой батарее вашего автомобиля, когда вы находитесь на улице, чтобы избежать проблем с переноской дополнительной батареи.

Научитесь делать проектор в домашних условиях, выполнив простые шаги.

Обновлено 2021: Как построить солнечный генератор своими руками (3000 Вт) — Часть 1

В этой серии я покажу вам, как сэкономить деньги, построив собственный солнечный генератор своими руками, со всеми теми же функциями, что и коммерческие агрегаты.Конечным результатом будет высококачественный солнечный генератор с большим количеством возможностей обслуживания и настройки под ваши нужды, чем готовые агрегаты.

Примечание: В оригинальной конструкции этого солнечного генератора, сделанного своими руками, использовался инвертор мощностью 2000 Вт. Мы обновили его до новой модели мощностью 3000 Вт в последней версии вместе с несколькими другими улучшениями. Прежде чем строить солнечный генератор, следуя нашим планам, обязательно посмотрите видео с обновлениями ниже, чтобы узнать о последних изменениях!

Введение
Солнечные генераторы

(также называемые генераторами на солнечной энергии) — чрезвычайно полезные инструменты.Я начал изучать некоторые из самых больших портативных солнечных генераторов на рынке, потому что идея полностью бесшумного генератора, который может работать с большими мощными нагрузками, никогда не нуждаясь в бензине, является действительно крутой концепцией. Если вы хотите запустить портативную настольную пилу или отправиться на прогулку или в поход, где шум стандартного генератора будет раздражать, эти солнечные генераторы действительно удобны.

Вскоре я понял, что могу построить свой собственный — возможность выбрать компоненты, которые лучше всего соответствуют моим потребностям, и даже лучше сэкономить примерно половину стоимости по сравнению с покупкой произведенного солнечного генератора.В этом посте вы шаг за шагом узнаете, как построить собственный солнечный генератор своими руками, защищающий от атмосферных воздействий!

Сборка солнечного генератора — быстрые ссылки

Часть 1 — Обзор компонентов — (текущий этап)
Часть 2 — Тестирование компонентов
Часть 3 — Монтаж внутренних и внешних компонентов
Часть 4 — Подключение солнечного генератора
Часть 5 — Крышка из плексигласа и обновления дизайна
Часть 6 — Солнечная панель и Расширение банка батарей

Увидев, что есть в наличии, я понял, что хочу разработать свой собственный солнечный генератор по многим причинам.Во-первых, это будет намного дешевле. Во-вторых, я могу добавить несколько функций, которых нет в производимых единицах. Наконец, потому что это будет приятный проект!

Построив собственное, вы узнаете все о небольших автономных солнечных установках, а также сможете отремонтировать отдельные компоненты, если у вас возникнут проблемы с ними в будущем. Вы также можете легко изменить планы, чтобы построить постоянную автономную солнечную электростанцию ​​для кабины или кемпера.

Для сравнения — популярный выпускаемый агрегат.Это красивая упаковка, и если вас не волнует стоимость, она может быть для вас хорошим вариантом, особенно если вы на самом деле не являетесь производителем.

Цены взяты из Amazon Product Advertising API на:

Цены на продукты и их наличие действительны на указанную дату / время и могут быть изменены. Любая информация о цене и доступности, отображаемая на [соответствующих сайтах Amazon, если применимо] во время покупки, будет применяться к покупке этого продукта.

Цена вышеупомянутого устройства выше той, что вы можете найти на Amazon, но это мощный монстр!


Солнечный генератор, который я собираюсь показать вам, будет стоить вдвое дешевле, включая инвертор переменного тока пиковой мощностью 2000/4000 Вт, солнечную панель на 100 Вт и высококачественную AGM-батарею с глубоким циклом. Я также добавлю дополнительные функции, такие как встроенные светодиодные прожекторы, сильноточный порт для подключения соединительных кабелей и некоторые другие.

Основные компоненты для нашего солнечного генератора

Я выбрал компоненты, перечисленные ниже, исходя из качества отзывов, а также цены и характеристик, подходящих для этого проекта.

Прочный чехол Pelican 1620

Цены взяты из Amazon Product Advertising API на:

Цены на продукты и их наличие действительны на указанную дату / время и могут быть изменены. Любая информация о цене и доступности, отображаемая на [соответствующих сайтах Amazon, если применимо] во время покупки, будет применяться к покупке этого продукта.

Я выбрал этот футляр Pelican 1620 для нашего портативного солнечного генератора, потому что он водонепроницаем / защищен от атмосферных воздействий, имеет несколько прочных ручек, а также вращающиеся колеса.После завершения мой отряд будет довольно тяжелым, поэтому мне нужно было что-то, что может выдержать много злоупотреблений!

Вот моя фотография:

Пиковый инвертор переменного тока Kreiger 3000 Вт / 6000 Вт

Цены взяты из Amazon Product Advertising API на:

Цены на продукты и их наличие действительны на указанную дату / время и могут быть изменены. Любая информация о цене и доступности, отображаемая на [соответствующих сайтах Amazon, если применимо] во время покупки, будет применяться к покупке этого продукта.

Инвертор Kreiger мощностью 4000 Вт должен обеспечивать работу практически всего, что вы обычно можете отключить от стандартной розетки на 15 ампер. Он также поставляется с монтируемым дистанционным выключателем питания, который мы будем устанавливать сбоку нашего корпуса, а также с тяжелыми кабелями батареи 0 калибра и главным предохранителем.

Когда этот пост был впервые создан, мы использовали блок на 2000 ватт, который больше не доступен. Блоки на 3000 и 4000 Вт устанавливаются и подключаются таким же образом, хотя на видео и фотографиях используется более старая версия на 2000 Вт (как показано на моей фотографии ниже).

Комплект солнечных батарей и зарядного устройства Renogy 100 Вт

Цены взяты из Amazon Product Advertising API на:

Цены на продукты и их наличие действительны на указанную дату / время и могут быть изменены. Любая информация о цене и доступности, отображаемая на [соответствующих сайтах Amazon, если применимо] во время покупки, будет применяться к покупке этого продукта.

Этот комплект включает очень качественную монокристаллическую солнечную панель Renogy на 100 Вт, а также солнечное зарядное устройство на 30 А, которое хорошо подходит для наших нужд.В комплект также входит набор солнечных кабелей MC4 для легкой установки. Вот как выглядит мой:

Optima Blue Top 8016-103 Аккумулятор

Цены взяты из Amazon Product Advertising API на:

Цены на продукты и их наличие действительны на указанную дату / время и могут быть изменены. Любая информация о цене и доступности, отображаемая на [соответствующих сайтах Amazon, если применимо] во время покупки, будет применяться к покупке этого продукта.

Аккумулятор Optima Blue Top AGM — это аккумулятор глубокого разряда, что означает, что мы сможем несколько больше разрядить аккумулятор во время использования в ночное время или при коротких нагрузках высокой мощности без сокращения нормального срока службы аккумулятора. Еще одним преимуществом этой батареи является то, что у нее есть как стандартные верхние стойки, так и резьбовые для облегчения подключения. Еще одна важная особенность заключается в том, что аккумулятор можно установить и использовать в любом положении, что важно, учитывая, что наш солнечный генератор может стоять вертикально или укладываться в разных направлениях при нормальном использовании.Вот моя фотография:

Основные компоненты для самостоятельного солнечного генератора

Ниже приведен список компонентов, используемых в этом посте, и их текущие цены на Amazon.

Щелкните ЛЮБОЕ изображение ниже, чтобы увидеть более подробную информацию об Amazon

9049 9049 Купить

Купить сейчас Рекламный API на:

Дополнительные компоненты и принадлежности

Щелкните ЛЮБОЕ изображение ниже, чтобы увидеть варианты покупки на Amazon

Изображение Название Цена Prime Купить
Корпус Pelican 1620 PrimeEl правый Комплект Renter6
Prime Соответствует критериям Купить сейчас
Krieger 4000 Вт Инвертор мощности Prime Соответствие требованиям Купить сейчас
Optima Аккумулятор Купить сейчас
Schumacher Battery Maintainer Prime Купить сейчас
NOCO GCP1 15 Amp AC Port Plug 900l49 9049 9049 9049
Светодиодный рабочий светильник Nilight Flood Prime Соответствует требованиям Купить сейчас
zowaysoon Цифровой вольтметр Prime Цены на 9
904 Blue Sea Systems 5-местная общая мини-шина 100 А 9094 9 Купить сейчас
Изображение Название Цена Prime Купить
DIGITEN 19-миллиметровая автомобильная водонепроницаемая временная нержавеющая сталь Металл 12 В синий символ питания Светодиодный тумблер включения / выключения PrimeДоступно Купить сейчас
НЕ ПОДХОДИТ U19D1, 19-миллиметровый косичок, соединитель для проводов, розетка для кнопочного переключателя U19C1, U19C2 (набор из 2) PrimeElitable Купить сейчас
Hubbell-Bell Одноканальная вертикальная / горизонтальная универсальная откидная крышка с защитой от атмосферных воздействий Prime Купить сейчас
TOPELE GFCI розетка, 20 Ампер, 125 В, погодостойкая розетка со светодиодом Light Prime Соответствует требованиям Купить сейчас
JEGS Universal Battery Hold Down Prime Купить сейчас
GG Grand General 55241 Красный основной провод 14 калибра, 25 футов PrimeEl
GG Grand General 55240 Черный первичный провод 14 калибра, 25 футов PrimeElhibited Купить сейчас
Orion Motor Tech 2-4 Gauge 175A Кабель аккумулятора Быстрое подключение / Отключите комплект вилки электрического разъема PrimeДоступно Купить сейчас
MICTUNING LED с подсветкой Блок держателя предохранителя для автомобильного лезвия с 6-контурной подсветкой PrimeEl прав 9 0049 PrimeДоступно Купить сейчас
Permatex Ultra Black Максимальное маслостойкость Силиконовые прокладки RTV Prime Купить сейчас
Шайба и гайка с шайбой Штука PrimeДоступно Купить сейчас
Комплект термоусадочных проводов на 270 шт. Prime Соответствует критериям Купить сейчас
Prime Устройство для намотки проводов и кабелей Prime Соответствует критериям Купить сейчас
Hopkins 4 Pole 905 905
Готовый к буксировке металлический 6-ходовой коннектор с плоскими штифтами для прицепа Доступно для всех Купить сейчас
ABN 120-компонентный стандартный набор предохранителей Prime Соответствует критериям Купить сейчас
JB Weld 5-минутный набор эпоксидной смолы Prime Купить сейчас
Красный + черный калибр 4 AWG Аккумуляторные инверторные кабели из них) PrimeДоступно Купить сейчас

Цены взяты из API рекламы продуктов Amazon на:

Инструменты, которые могут вам понадобиться (если у вас их еще нет!)

Щелкните ЛЮБОЕ изображение ниже, чтобы продолжить покупки на Amazon

Изображение Заголовок Цена Prime Купить
Parts Express Автоматический инструмент для зачистки проводов с ножом Prime TEKTON Phillips, Набор плоских и звездообразных прецизионных отверток, 9 предметов Prime Купить сейчас
IRWIN VISE-GRIP Инструмент для зачистки проводов / кусачки
Пистолет для горячего клея High Temp-Cobiz, полноразмерный (не мини), 60/100 Вт, Dual Power Heavy Duty Melt Glue Gun Набор с 10 шт. Клеевых стержней премиум-класса PrimeElhibited Купить сейчас
Ridgid 18 вольт 500 фунтов.Крутящий момент 1500 об / мин Hyper Lithium Ion Аккумуляторная дрель / отвертка Prime Купить сейчас

Цены взяты из API рекламы продуктов Amazon на:

Щелкните здесь, чтобы перейти к части 2, где я покажу вам, как выполнять функциональное тестирование всех ваших компонентов, прежде чем мы начнем собственно сборку.

Отзывы

Привет,

Я только что установил ту же систему Renogy в своей каюте в Талкитне, Аляска. Я был впечатлен качеством и простотой системы… Спустя год она все еще работает.Так приятно иметь в удаленном месте светодиодные фонари и зарядные устройства для телефонов.

Хорошая работа Марка,

Я посмотрел видео и, что удивительно, смог следить за всем, что вы говорили 😀 Я собираюсь построить один из них сам.

Привет Марк,

Спасибо за туториал, я планирую построить солнечную систему по вашим требованиям. Мне просто было любопытно, с какой нагрузкой могут справиться ваши текущие спецификации. Я планирую построить дом, который будет поддерживать дом, состоящий из холодильников, кондиционеров, освещения и телевизоров.

Мне нравится идея и подробные планы, которые вы предоставили. Огромное спасибо. Я сам попробую.

Эндрю Зельц

Это фантастическая обучающая презентация. Я подумывал о создании солнечного генератора / резервного аккумулятора для своего дома (каждый год мы получаем много отключений электроэнергии из-за шторма). Вы очень хорошо спланировали компоненты своего генератора и собрали их в готовый комплект, который выглядит так же хорошо, как и все, что я видел в рекламе.

Я планирую доработать идею и использовать две панели (соединенные вместе на петлях) и 2 батареи в кейсе, что потребует либо большего кейса, либо некоторых изменений в прилагаемых компонентах. Я также хочу использовать свое внешнее освещение низкого напряжения, когда оно не требуется для аварийного питания, поэтому я получаю от него двойную работу в течение года.

Спасибо за подробное объяснение того, как реализовать проект!

Привет, Марк, в восторге от этой сборки! Мы живем недалеко от Хилтон-Хед, и после недавнего урагана мы начали думать об альтернативной энергии вечером во внутреннем дворике, когда отключили электричество!

У меня вопрос по выбранной вами батарее.вы строите большой силовой агрегат, который мне нравится, и основная забота будет заключаться в питании холодильника.

Как вы выбрали аккумулятор? Почему один, а не два? Я видел на Amazon, что батарея optima имеет 55 Ач, этого достаточно для питания в течение длительного времени (скажем, 2-3 дня, если в любой день облачно, и за дополнительную плату).

Я все еще изучаю электричество, поэтому, пожалуйста, ответьте на мои вопросы.

Не могу дождаться видео 3, спасибо!
Стефан

Привет, Марк, мне очень понравились ваши видеоуроки по солнечному генератору, и я был поглощен покупкой и поиском определенных частей.Мне интересно. Атомная станция обязана заменять довольно большие батареи каждые пять лет, даже если срок их службы составляет 15-20 лет. Похоже, я мог бы легко восстановить одну или две батареи для своих нужд. Тем не менее, они очень большие батареи, и я подумал, что попрошу вас внести свой вклад. Батареи — GNB Flooded Classic NXT-33. Я думаю, они весят около 400 фунтов. НО у них есть ампер / час 2264. Подключение предмета показывает все.

Если вы хотите оставить отзыв, нажмите здесь.Спасибо!

Как работают контроллеры заряда | DIY солнечные и возобновляемые источники энергии

Контроллер заряда является неотъемлемой частью почти всех энергосистем, которые заряжают батареи, независимо от того, являются ли они источниками энергии солнечные панели, ветер, гидроэнергетика, топливо или коммунальные сети. Его цель состоит в том, чтобы ваши батареи глубокого цикла были правильно запитаны и безопасны в течение длительного времени.

Основные функции контроллера довольно просты. Контроллеры заряда блокируют обратный ток и предотвращают перезарядку аккумулятора.Некоторые контроллеры также предотвращают чрезмерную разрядку батареи, защищают от электрической перегрузки и / или отображают состояние батареи и поток энергии. Давайте рассмотрим каждую функцию по отдельности.

Блокировка обратного тока

Солнечные батареи работают, прокачивая ток через батарею в одном направлении. Ночью панели могут пропускать небольшой ток в обратном направлении, вызывая небольшую разрядку аккумулятора. (Наш термин «батарея» обозначает либо отдельную батарею, либо группу батарей.) Потенциальная потеря незначительна, но ее легко предотвратить. Некоторые типы ветряных и гидрогенераторов также потребляют обратный ток при остановке (в большинстве случаев это происходит только в случае неисправности).

В большинстве контроллеров зарядный ток проходит через полупроводник (транзистор), который действует как вентиль для управления током. Его называют «полупроводником», потому что он пропускает ток только в одном направлении. Он предотвращает обратный ток без каких-либо дополнительных усилий и затрат.

В некоторых старых контроллерах электромагнитная катушка размыкает и замыкает механический переключатель (называемый реле — вы можете слышать, как оно включается и выключается.) Реле выключается ночью, чтобы заблокировать обратный ток. Эти контроллеры иногда называют контроллерами шунтирования вызовов.

Если вы используете солнечную батарею только для непрерывной зарядки аккумулятора (очень маленький массив по сравнению с размером батареи), то вам может не понадобиться контроллер заряда. Это редкое приложение. Примером может служить крошечный модуль обслуживания, который предотвращает разряд аккумулятора в припаркованном автомобиле, но не выдерживает значительных нагрузок. В этом случае вы можете установить простой диод, чтобы заблокировать обратный ток.Диод, используемый для этой цели, называется «блокирующим диодом».

Предотвращение перезарядки

Когда аккумулятор полностью заряжен, он больше не может накапливать поступающую энергию. Если энергия продолжает подаваться с полной скоростью, напряжение батареи становится слишком высоким. Вода разделяется на водород и кислород и быстро пузырится. (Похоже, он кипит, поэтому мы иногда его так называем, хотя на самом деле он не горячий.) Имеется чрезмерная потеря воды и вероятность того, что газы могут воспламениться и вызвать небольшой взрыв.Батарея также быстро разряжается и может перегреться. Избыточное напряжение также может вызвать перегрузку ваших нагрузок (освещение, бытовые приборы и т. Д.) Или привести к отключению инвертора.

Предотвращение перезарядки — это просто вопрос уменьшения потока энергии к батарее, когда батарея достигает определенного напряжения. Когда напряжение падает из-за более низкой интенсивности солнечного света или увеличения потребления электроэнергии, контроллер снова разрешает максимально возможный заряд. Это называется «регулировкой напряжения».

Это самая важная функция всех контроллеров заряда.Контроллер «смотрит» на напряжение и в ответ регулирует заряд аккумулятора. Некоторые контроллеры регулируют поток энергии к батарее, полностью или полностью отключая ток. Это называется «управление включением / выключением». Другие снижают ток постепенно. Это называется «широтно-импульсной модуляцией» (ШИМ). Оба метода хорошо работают при правильной настройке для вашего типа батареи.

Контроллеры заряда

PWM поддерживают постоянное напряжение. Если ШИМ-контроллер имеет двухступенчатое регулирование, он сначала будет поддерживать напряжение на безопасном максимуме, чтобы аккумулятор полностью зарядился.Затем он снизит напряжение, чтобы поддерживать «завершающий» или «непрерывный» заряд. Двухступенчатое регулирование важно для системы, которая может испытывать много дней или недель избытка энергии (или небольшого использования энергии). Он поддерживает полный заряд, но сводит к минимуму потерю воды и стресс.

Напряжения, при которых контроллер изменяет скорость заряда, называются уставками. При определении идеальных уставок существует некоторый компромисс между быстрой зарядкой до захода солнца и небольшой перезарядкой аккумулятора.

Определение уставок зависит от предполагаемых моделей использования, типа батареи и, в некоторой степени, от опыта и философии разработчика или оператора системы. Некоторые контроллеры имеют регулируемые уставки, а другие нет.

Контрольные уставки в зависимости от температуры

Идеальные уставки напряжения для контроля заряда зависят от температуры аккумулятора. Некоторые контроллеры имеют функцию, называемую «температурной компенсацией». Когда контроллер обнаруживает низкую температуру батареи, он повышает заданные значения.В противном случае, когда аккумулятор холодный, он слишком быстро снизит заряд. Если ваши батареи подвергаются колебаниям температуры более чем примерно на 30 ° F (17 ° C), компенсация необходима.

Некоторые контроллеры имеют встроенный датчик температуры. Такой контроллер должен быть установлен в месте, где температура близка к температуре батарей. У лучших контроллеров есть удаленный датчик температуры на небольшом кабеле. Датчик должен быть подключен непосредственно к батарее, чтобы сообщать о своей температуре контроллеру.

Альтернативой автоматической температурной компенсации является ручная регулировка заданных значений (если возможно) в соответствии с сезоном. Может быть, достаточно делать это только два раза в год, весной и осенью.

Контрольные уставки

в зависимости от типа батареи

Идеальные уставки для контроля заряда зависят от конструкции аккумулятора. В подавляющем большинстве систем возобновляемой энергии используются свинцово-кислотные батареи глубокого цикла либо затопленного, либо герметичного типа. Залитые батареи залиты жидкостью.Это стандартные экономичные батареи глубокого разряда.

Герметичные батареи используют пропитанные прокладки между пластинами. Их также называют «регулируемыми клапанами» или «абсорбирующим стекломатом» или просто «необслуживаемыми». Их нужно регулировать до немного более низкого напряжения, чем залитые батареи, иначе они высохнут и выйдут из строя. В некоторых контроллерах есть средства выбора типа батареи. Никогда не используйте контроллер, не предназначенный для аккумулятора вашего типа.

Типичные уставки для свинцово-кислотных аккумуляторов 12 В при 25 ° C (77 ° F)

(Типичные, представлены здесь только для примера.)

Верхний предел (залитый аккумулятор): 14,4 В
Верхний предел (герметичный аккумулятор): 14,0 В
Возобновление полной зарядки: 13,0 В

Выключатель низкого напряжения: 10,8 В
Повторное подключение: 12,5 В

Температурная компенсация для батареи 12 В:

-0,03 В на ° C отклонение от стандарта 25 ° C

Устройство отключения по низкому напряжению (LVD)

Батареи глубокого цикла, используемые в системах возобновляемых источников энергии, рассчитаны на разряд примерно на 80 процентов. Если они разряжаются на 100 процентов, они сразу же повреждаются.Представьте себе кастрюлю с водой, кипящую на кухонной плите. В момент высыхания кастрюля перегревается. Если подождать, пока прекратится пропаривание, уже слишком поздно!

Точно так же, если вы подождете, пока ваши огни не станут тусклыми, возможно, некоторое повреждение батареи уже произошло. Каждый раз, когда это происходит, емкость и срок службы батареи будут немного уменьшаться. Если аккумулятор находится в таком чрезмерно разряженном состоянии в течение нескольких дней или недель, он может быстро выйти из строя.

Единственный способ предотвратить чрезмерный разряд, когда все остальное не работает, — это отключить нагрузки (приборы, освещение и т. Д.).), а затем повторно подключить их только после восстановления напряжения из-за значительной зарядки. Когда приближается переразряд, аккумулятор на 12 В падает ниже 11 вольт (аккумулятор на 24 В падает ниже 22 вольт).

Цепь отключения при низком напряжении отключает нагрузку при достижении этой уставки. Он будет повторно подключать нагрузки только тогда, когда напряжение батареи существенно восстановится из-за накопления некоторого заряда. Типичная точка сброса LVD составляет 13 вольт (26 вольт в системе 24 В).

Все современные инверторы имеют встроенный LVD, даже дешевые карманные.Инвертор выключится, чтобы защитить себя и ваши нагрузки, а также вашу батарею. Обычно инвертор подключается непосредственно к батареям, а не через контроллер заряда, потому что его потребляемый ток может быть очень высоким и потому, что он не требует внешнего LVD.

Если у вас есть нагрузки постоянного тока, у вас должен быть LVD. Некоторые контроллеры заряда имеют один встроенный. Вы также можете приобрести отдельное устройство LVD. В некоторых системах LVD есть «переключатель милосердия», позволяющий потреблять минимальное количество энергии, по крайней мере, достаточно долго, чтобы найти свечи и спички! Холодильники постоянного тока имеют встроенный LVD.

Если вы покупаете контроллер заряда со встроенным LVD, убедитесь, что его емкость достаточна для обработки ваших нагрузок постоянного тока. Например, предположим, что вам нужен контроллер заряда для работы с током заряда менее 10 ампер, но у вас есть нагнетательный насос постоянного тока, который потребляет 20 ампер (на короткие периоды) плюс 6-амперная световая нагрузка постоянного тока. Подойдет контроллер заряда с LVD на 30 ампер. Не покупайте контроллер заряда на 10 ампер с нагрузочной способностью только 10 или 15 ампер!

Защита от перегрузки

Цепь перегружается, когда ток в ней превышает допустимый.Это может привести к перегреву и даже к возгоранию. Перегрузка может быть вызвана неисправностью (коротким замыканием) в проводке или неисправным прибором (например, замерзшим водяным насосом). Некоторые контроллеры заряда имеют встроенную защиту от перегрузки, обычно с кнопкой сброса.

Может быть полезна встроенная защита от перегрузки, но для большинства систем требуется дополнительная защита в виде предохранителей или автоматических выключателей. Если у вас есть цепь с размером провода, для которого безопасная допустимая нагрузка (допустимая нагрузка) меньше, чем предел перегрузки контроллера, вы должны защитить эту цепь с помощью предохранителя или прерывателя с подходящим более низким номинальным током.В любом случае соблюдайте требования производителя и Национальный электротехнический кодекс в отношении любых требований к внешним предохранителям или автоматическим выключателям.

Дисплеи и измерения

Контроллеры заряда

включают в себя множество возможных дисплеев, от одного красного светового индикатора до цифровых дисплеев напряжения и тока. Эти индикаторы важны и полезны. Представьте себе поездку по стране без приборной панели в машине! Система отображения может отображать поток энергии в систему и из нее, приблизительное состояние заряда аккумулятора и время достижения различных пределов.

Если вам нужен полный и точный мониторинг, потратите около 200 долларов на отдельное цифровое устройство, которое включает в себя ампер-час. Он действует как электронный бухгалтер, отслеживая количество энергии, доступной в вашей батарее. Если у вас есть отдельный системный монитор, то наличие цифровых дисплеев в самом контроллере заряда не имеет значения. Даже самая дешевая система должна включать в себя вольтметр в качестве минимального индикатора функционирования и состояния системы.

Иметь все вместе с панелью питания

Если вы устанавливаете систему для питания современного дома, вам потребуются защитные отключения и межсоединения для работы с большим током.Электрооборудование может быть громоздким, дорогим и трудоемким в установке. Чтобы вещи были экономичными и компактными, приобретите уже собранный силовой щит. Он может включать в себя контроллер заряда с LVD, инвертор и цифровой мониторинг в качестве опции. Это позволяет электрику легко подключать основные компоненты системы и выполнять требования безопасности Национального электротехнического кодекса или местных властей.

Контроллеры заряда для ветра и воды

Контроллер заряда для ветроэлектрической или гидроэлектрической системы зарядки должен защищать аккумуляторы от перезаряда, как и фотоэлектрический контроллер.Тем не менее, нагрузка на генератор должна постоянно поддерживаться, чтобы предотвратить превышение частоты вращения турбины. Вместо того, чтобы отключать генератор от батареи (как и большинство фотоэлектрических контроллеров), он направляет избыточную энергию на специальную нагрузку, которая поглощает большую часть энергии от генератора. Эта нагрузка обычно представляет собой нагревательный элемент, который «сжигает» избыточную энергию в виде тепла. Если вы можете использовать тепло с пользой, прекрасно!

Это работает?

Как узнать, что контроллер неисправен? Следите за вольтметром, когда батареи полностью заряжаются.Достигает ли напряжение (но не превышает ли оно) соответствующих уставок для вашего типа батареи? Используйте свои уши и глаза — батареи сильно пузыряются? На верхних частях аккумуляторных батарей скопилось много влаги? Это признаки возможного завышения цен. Получаете ли вы ожидаемую от аккумуляторной батареи емкость, которую ожидаете? В противном случае может быть проблема с вашим контроллером, и он может повредить ваши батареи.

Заключение

Контроль заряда аккумуляторов настолько важен, что большинство производителей высококачественных аккумуляторов (с гарантией на пять лет и более) устанавливают требования к регулированию напряжения, отключению при низком напряжении и температурной компенсации.Когда эти ограничения не соблюдаются, обычно батареи выходят из строя менее чем через четверть своего обычного ожидаемого срока службы, независимо от их качества или стоимости.

Хороший контроллер заряда стоит недорого по отношению к общей стоимости энергосистемы. И это не так уж и загадочно. Я надеюсь, что эта статья дала вам общую информацию, необходимую для правильного выбора элементов управления для вашей системы питания.

Как работают солнечные элементы?

Почему мы тратим время на бурение в поисках нефти и копать уголь, когда в небе над нами стоит гигантская электростанция, посылающая чистая, непрерывная энергия бесплатно? Солнце, бурлящий шар ядерная энергетика, на борту достаточно топлива чтобы управлять нашей Солнечной системой еще на пять миллиардов лет, а солнечные панели может превратить эту энергию в бесконечную, удобную подача электроэнергии.

Солнечная энергия может показаться странной или футуристической, но это уже довольно банальность.На запястье могут быть кварцевые часы на солнечной энергии или карманный калькулятор на солнечных батареях. У многих людей есть фонари на солнечных батареях в их саду. Космические корабли и спутники обычно на них тоже есть солнечные батареи. Американское космическое агентство NASA даже разработало солнечную батарею. самолет! Как глобальное потепление продолжает угрожать нашей окружающей среде, мало сомнений в том, что солнечная энергия станет еще более важной формой возобновляемой энергии в будущем. Но как именно это работает?

Фото: самолет NASA Pathfinder, работающий на солнечной энергии.Верхняя поверхность крыла покрыта легкими солнечными батареями, питающими винты самолета. Изображение любезно предоставлено НАСА Центр летных исследований Армстронга.

Сколько энергии мы можем получить от Солнца?

Фото: Количество энергии, которое мы можем уловить от солнечного света, минимально на восходе и закате, а также максимум в полдень, когда Солнце находится прямо над головой.

Солнечная энергия потрясающая. В среднем каждый квадратный метр Земли поверхность получает 164 Вт солнечной энергии (цифру мы объясним более подробно чуть позже).Другими словами, вы могли поставить действительно мощную (150 ватт) настольную лампу на каждый квадратный метр Поверхность Земли и озари всю планету энергией Солнца! Или поставить это по-другому, если бы мы покрыли только один процент пустыни Сахара солнечными панелей, мы могли бы производить достаточно электроэнергии чтобы привести в действие весь мир. Это хорошая вещь в солнечной энергии: их ужасно много — гораздо больше, чем мы могли бы когда-либо использовать.

Но есть и обратная сторона. Энергия, которую излучает Солнце, прибывает Земля как смесь света и тепла.Оба они невероятно важно — свет заставляет растения расти, давая нам пищу, а тепло согревает нас достаточно, чтобы выжить, но мы не можем использовать ни то, ни другое Солнечный свет или тепло для работы телевизора или автомобиля. Мы должны найти способ преобразования солнечной энергии в другие формы энергии, которые мы можно использовать более легко, например, электричество. И это именно то, что солнечная клетки делают.

Что такое солнечные элементы?

Солнечный элемент — электронное устройство, улавливающее солнечный свет и превращает его прямо в электричество.Он размером с ладонь взрослого человека, восьмиугольной формы и голубовато-черного цвета. Солнечные элементы часто объединяются в более крупные блоки, называемые солнечными модулями . соединены в еще более крупные блоки, известные как солнечных панелей (черные или плиты синего цвета, которые вы видите в домах людей, обычно с несколькими сотни отдельных солнечных элементов на крышу) или измельченные на куски (чтобы обеспечивают питание небольших гаджетов, таких как карманные калькуляторы и цифровые часы).

Фото: Крыша этого дома покрыта 16 солнечными панелями, каждая из которых состоит из сетки 10 × 6 = 60 маленьких солнечных элементов.В хороший день он, вероятно, вырабатывает около 4 киловатт электроэнергии.

Так же, как элементы в батарее, ячейки в солнечные панели предназначены для выработки электроэнергии; но где батарея клетки производят электричество из химикатов, клетки солнечной панели производят мощность, вместо этого улавливая солнечный свет. Их иногда называют фотоэлектрическими (ФЭ). клетки, потому что они используют солнечный свет («фотография» происходит от греческого слова «свет») для производства электричества ( слово «гальванический» — это отсылка к итальянскому первопроходцу в области электроэнергетики. Алессандро Вольта, 1745–1827).

Мы можем думать о свете как о крошечных частицах, называемых фотонов , поэтому луч солнечного света похож на ярко-желтый огонь Мы стреляем из триллионов в триллионы фотонов на нашем пути. Прилепите солнечный элемент на своем пути, и он улавливает эти энергичные фотоны и превращает их в поток электронов — электрический ток. Каждая ячейка вырабатывает несколько вольт электричества, поэтому работа солнечной панели состоит в объединении энергии, производимой многими клетками, для получения полезного количества электрического тока и Напряжение.Практически все современные солнечные элементы сделаны из ломтиков. кремния (один из самых распространенных химических элементов на Земле, обнаружен в песке), хотя, как мы вскоре увидим, множество других материалов также можно использовать (или вместо него). Когда солнечный свет попадает на солнечную батарею, энергия он выносит электроны из кремния. Их можно заставить Обтекайте электрическую цепь и приводите в действие все, что работает на электричество. Это довольно упрощенное объяснение! Теперь давайте возьмем присмотреться …

Как изготавливаются солнечные элементы?

На фото: одиночный фотоэлемент.Изображение Рика Митчелла, любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Кремний — это материал, из которого изготовлены транзисторы. (крошечные переключатели) в микрочипах сделаны — и солнечные элементы работают аналогичным образом. Кремний — это тип материала, который называется полупроводником. Некоторые материалы, особенно металлы, пропускают через них электричество. очень легко; их называют кондукторами. Другие материалы, такие как пластик и дерево, на самом деле не пусть электричество течет через них в все; их называют изоляторами.Полупроводники, такие как кремний, ни проводники, ни изоляторы: они обычно не проводят электричество, но при определенных обстоятельствах мы можем заставить их это сделать.

Солнечный элемент — это сэндвич из двух разных слоев кремния, прошли специальную обработку или добавили допинг, поэтому они позволит электричеству течь через них определенным образом. Нижний слой легированный, поэтому в нем немного меньше электронов. Он называется кремнием p-типа или положительного типа (потому что электроны заряжены отрицательно, а в этом слое их слишком мало).Верхний слой легируется противоположным образом, чтобы получить слишком много электронов. Это называется кремнием n-типа или отрицательного типа. (Ты можно узнать больше о полупроводниках и легировании в наших статьях о транзисторах и интегральные схемы.)

Когда мы помещаем слой кремния n-типа на слой p-типа кремния, барьер создается на стыке двух материалов ( важнейшая граница, на которой встречаются два вида кремния). Нет электроны могут пересечь барьер, поэтому, даже если мы подключим этот кремний бутерброд к фонарику, ток не протечет: лампочка не загорится вверх.Но если мы посветим на бутерброд, что-нибудь примечательное. бывает. Мы можем думать о свете как о потоке энергетического «света». частицы », называемые фотонами. Когда фотоны входят В нашем сэндвиче они отдают свою энергию атомам кремния. Поступающая энергия выбивает электроны из нижнего слоя p-типа, поэтому Они перепрыгнуть через барьер на слой n-типа выше и обтекать схема. В чем больше света светит, тем больше электронов подпрыгивает и тем больше ток потоки.

Это то, что мы подразумеваем под фотоэлектрическим — напряжение, создающее свет. ученые называют это фотоэлектрическим эффектом.

А теперь подробнее …

Это базовое введение в солнечные элементы — и если это все, что вам нужно, вы можете здесь остановиться. В оставшейся части этой статьи более подробно рассказывается о различных типах солнечных элементов, о том, как люди применяют солнечную энергию на практике, и почему солнечной энергии требуется так много времени, чтобы поймать.

Насколько эффективны солнечные батареи?

Диаграмма: Сравнение эффективности солнечных элементов: самый первый солнечный элемент соскоблился с КПД всего 6 процентов; самый эффективный из произведенных на сегодняшний день — 46 процентов в лабораторных условиях.Большинство клеток относятся к типам первого поколения, которые теоретически могут управлять примерно 15 процентами, а на практике, вероятно, 8 процентами.

Основное правило физики, называемое законом сохранения энергии, гласит: что мы не можем волшебным образом создать энергию или превратить ее в тонкую воздуха; все, что мы можем сделать, это преобразовать его из одной формы в другую. Это значит солнечный элемент не может производить больше электроэнергии, чем он воспринимает каждую секунду как свет. На практике, как мы вскоре увидим, большинство клеток преобразуют около 10–20 процентов энергии, которую они получать в электричество.Типичный кремниевый однопереходный солнечный ячейка имеет теоретическую максимальную эффективность около 30 процентов, известную как Предел Шокли-Кайссера . Это по сути потому, что солнечный свет содержит широкую смесь фотонов с разными длинами волн и энергии, и любой однопереходный солнечный элемент будет оптимизирован для улавливают фотоны только в определенной полосе частот, тратя все остальное. Некоторых фотонов, падающих на солнечный элемент, не хватает энергия, чтобы выбить электроны, поэтому они эффективно тратятся, в то время как у некоторых слишком много энергии, и избыток также тратится зря.Очень лучшие, современные лабораторные ячейки могут справиться с 46% эффективность в абсолютно идеальных условиях за счет использования нескольких узлов ловить фотоны разной энергии.

Реальные бытовые солнечные панели могут иметь КПД около 15 процентов, если процентный пункт здесь или там, и это вряд ли станет намного лучше. Однопереходные солнечные элементы первого поколения не подходят 30-процентный КПД предела Шокли-Кайссера, не говоря уже о лабораторный рекорд 46 процентов.Всевозможные надоедливые факторы реального мира съедают номинальный КПД, включая конструкцию панелей, их расположение и под углом, находятся ли они когда-либо в тени, насколько чистыми вы их держите, как они становятся горячими (повышение температуры снижает их эффективность), и вентилируются ли они (позволяя воздуху циркулировать под ними) чтобы держать их в прохладе.

Типы фотоэлектрических фотоэлементов

Большинство солнечных элементов, которые вы увидите сегодня на крышах людей, являются по сути просто кремниевые бутерброды, специально обработанные («легированные») чтобы сделать из них более качественные электрические проводники.Ученые называют эти классические солнечные элементы как первое поколение, в значительной степени для дифференциации их от двух разных, более современных технологий, известных как вторичные и третье поколение. Так в чем разница?

Первое поколение

Фото: красочная коллекция солнечных элементов первого поколения. Фотография любезно предоставлена ​​Исследовательским центром Гленна НАСА. (НАСА-GRC).

Около 90 процентов солнечных элементов в мире изготавливаются из пластин. кристаллического кремния (сокращенно c-Si), вырезанного из крупных слитков, которые выращиваются в сверхчистых лабораториях в процессе, который может на выполнение потребуется до месяца.Слитки имеют форму монокристаллы ( монокристаллический или моно-Si) или содержат несколько кристаллов ( поликристаллический , мульти-Si или поли c-Si). Солнечные элементы первого поколения работают так же, как мы. показано в рамке вверху: они используют простой простой переход между слоями кремния n-типа и p-типа, которые вырезаны из отдельные слитки. Таким образом, слиток n-типа будет получен путем нагревания кусков кремния с небольшими количествами фосфора, сурьмы или мышьяка, как легирующая добавка, в то время как слиток p-типа будет использовать бор в качестве легирующей примеси.Затем срезы кремния n-типа и p-типа сливаются, чтобы соединение. Добавлены еще несколько наворотов (например, антибликовое покрытие, которое улучшает поглощение света и придает фотоэлектрические элементы их характерного синего цвета, защитное стекло на передней и пластиковой основе, и металлические соединения, чтобы ячейка могла быть включенным в цепь), но простой p-n переход — это суть большинство солнечных батарей. Это в значительной степени то, как все фотоэлектрические кремниевые солнечные клетки работают с 1954 года, когда ученые Bell Labs пионер технологии: сияющий солнечный свет на кремнии, извлеченном из песок, они вырабатывали электричество.

Второе поколение

На фото: тонкопленочная солнечная «панель» второго поколения. Энергогенерирующая пленка сделана из аморфного кремния, прикреплена к тонкой, гибкой и относительно недорогой пластиковой основе («подложке»). Фото Уоррена Гретца любезно предоставлено NREL. (идентификатор изображения # 6321083).

Классические солнечные элементы представляют собой относительно тонкие пластины — обычно фракция миллиметра (около 200 мкм, 200 мкм или около того). Но это абсолютные слябов по сравнению со вторым поколением. элементы, широко известные как тонкопленочные солнечные элементы (TPSC) или тонкопленочные фотоэлектрические элементы (TFPV), которые примерно в 100 раз снова тоньше (глубиной несколько микрометров или миллионных долей метра).Хотя большинство из них по-прежнему сделаны из кремния (другая форма, известная как аморфный кремний, a-Si, в котором атомы расположены беспорядочно вместо точно упорядоченных в регулярной кристаллической структуре), некоторые из них изготовлены из других материалов, в частности теллурида кадмия (Cd-Te) и диселенид меди, индия, галлия (CIGS). Потому что они чрезвычайно тонкие, легкие и гибкие солнечные элементы второго поколения могут быть ламинированный на окна, световые люки, черепицу и все виды «подложки» (материалы основы), включая металлы, стекло и полимеры (пластмассы).То, что клетки второго поколения приобретают в гибкости, они приносят в жертву. эффективность: классические солнечные элементы первого поколения по-прежнему превосходят их. Таким образом, хотя первоклассная ячейка первого поколения может достичь КПД 15–20 процентов, аморфный кремний изо всех сил пытается превзойти 7 процентов, лучшие тонкопленочные элементы Cd-Te выдерживают только около 11 процентов, а клетки CIGS работают не лучше, чем 7–12 процентов. Это один причина, почему, несмотря на свои практические преимущества, второе поколение элементы пока что оказали относительно небольшое влияние на рынок солнечной энергии.

Третье поколение

Фото: пластиковые солнечные элементы третьего поколения, созданные исследователями Национальной лаборатории возобновляемой энергии. Фото Джека Демпси любезно предоставлено NREL. (идентификатор изображения # 6322357).

Новейшие технологии сочетают в себе лучшие черты первого и клетки второго поколения. Как и клетки первого поколения, они обещают относительно высокий КПД (30 процентов и более). Как клетки второго поколения, они с большей вероятностью будут сделаны из материалы, отличные от «простого» кремния, такие как аморфный кремний, органические полимеры (изготовление органических фотоэлектрических элементов, OPV), кристаллы перовскита, и иметь несколько переходов (сделанных из нескольких слоев различных полупроводниковых материалы).В идеале это сделало бы их дешевле, эффективнее, и более практичны, чем клетки первого или второго поколения. В настоящее время мировой рекорд эффективности для солнечной энергии третьего поколения. составляет 28 процентов, достигнуто с помощью тандемного солнечного элемента перовскит-кремний в декабре 2018 года.

Сколько энергии мы можем получить с помощью солнечных батарей?

«Полная солнечная энергия, которая достигает Земли поверхность может удовлетворить существующие глобальные потребности в энергии в 10 000 раз ».

Европейская ассоциация фотоэлектрической промышленности / Гринпис, 2011 .

Теоретически огромная сумма. Забудем пока о солнечных батареях и просто рассмотрите чистый солнечный свет. До 1000 Вт чистой солнечной энергии попадает на каждый квадратный метр Земли, указывая прямо на Солнце (это теоретическая мощность прямого полуденного солнечного света на безоблачный день — солнечные лучи падают перпендикулярно земной поверхность и дает максимальное освещение или инсоляцию , так как это технически известный). На практике после корректировки наклона планеты и времени суток, лучшее, что мы можем получить, это возможно, 100–250 Вт на квадратный метр в типичных северных широтах. (даже в безоблачный день).Это составляет около 2–6 кВт / ч в день. (в зависимости от того, находитесь ли вы в северном регионе, например, в Канаде или Шотландия или что-нибудь более услужливое, например Аризона или Мексика). Умножение производства на целый год дает нам что-то от 700 до 2500 кВтч на квадратный метр (700–2500 единиц электричество). В более жарких регионах явно гораздо больше солнечной энергии. потенциал: например, Ближний Восток получает около 50–100 на процент больше полезной солнечной энергии каждый год, чем в Европе.

К сожалению, типичные солнечные элементы составляют всего около 15 процентов эффективен, поэтому мы можем уловить только часть этого теоретического энергия.Вот почему солнечные панели должны быть такими большими: количество мощность, которую вы можете сделать, очевидно, напрямую зависит от того, сколько площади вы может позволить себе накрыть клетками. Один солнечный элемент (размером примерно компакт-диска) может генерировать около 3–4,5 Вт; типичный солнечный модуль состоит из массива примерно из 40 ячеек (5 рядов по 8 ячеек) мог составлять около 100–300 Вт; несколько солнечных панелей, каждая состоящий примерно из 3–4 модулей, поэтому может генерировать абсолютную максимум несколько киловатт (вероятно, достаточно, чтобы удовлетворить домашнюю пиковая мощность).

А как насчет солнечных ферм?

Фото: Огромный проект солнечной генерации Аламоса площадью 91 гектар (225 акров) в Колорадо вырабатывает до 30 мегаватт солнечной энергии с помощью трех хитрых уловок. Во-первых, существует огромное количество фотоэлектрических панелей (500 штук, каждая из которых способна выработки 60кВт). Каждая панель установлена ​​на отдельном вращающемся узле, поэтому она может отслеживать Солнце по небу. И на каждой из них установлено несколько линз Френеля, которые концентрируют солнечные лучи на своих солнечных элементах.Фото Денниса Шредера любезно предоставлено NREL. (идентификатор изображения # 10895528).

Но предположим, что мы действительно хотим произвести больших единиц солнечной энергии. мощность. Чтобы произвести столько электроэнергии, сколько здоровенная ветряная турбина (с пиковая выходная мощность может быть два или три мегаватта), вам нужно около 500–1000 солнечных крыш. И чтобы посоревноваться с большим угольным или атомным электростанция (номинальная мощность в гигаваттах, что означает тысячи мегаватт или миллиарды ватт), вам снова понадобится в 1000 раз больше — эквивалент около 2000 ветряных турбин или, возможно, миллион солнечных крыш.(Эти сравнения предполагают, что наша солнечная и ветровая энергия производят максимальную мощность.) Даже если солнечные батареи являются чистыми и эффективными источниками энергии, одна вещь, на которую они не могут претендовать в настоящий момент, — это эффективность использование земли. Даже те огромные солнечные фермы, которые сейчас появляются повсюду место производит только скромное количество энергии (обычно около 20 мегаватт, или около 1 процента от как большая, 2 гигаваттная угольная или атомная электростанция). Возобновляемые источники энергии в Великобритании Компания Ecotricity подсчитала, что требуется около 22000 панелей, уложенных на Участок площадью 12 га (30 акров) для создания 4.2 мегаватта мощности, примерно столько же, сколько два больших ветра турбин и достаточно для питания 1200 домов.

Власть народу

Фото: ветряная микротурбина и солнечная панель работают вместе, чтобы питать батарею, которая поддерживает этот предупреждающий знак о строительстве шоссе днем ​​и ночью. Солнечная панель установлена ​​лицом к небу на плоской желтой «крышке», которую вы видите прямо над дисплеем.

Некоторые люди обеспокоены тем, что солнечные фермы сожрут землю, которую мы потребность в реальных сельхозпредприятии и производстве продуктов питания.Беспокоясь о отвод земли упускает важный момент, если мы говорим о размещении солнечной энергии. панели на отечественные кровли. Экологи утверждают, что Настоящая цель солнечной энергетики не в том, чтобы создавать большие централизованные солнечные электростанции (чтобы можно было продавать мощные электричество бессильным людям с высокой прибылью), но вытеснить грязные, неэффективные, централизованные электростанции, позволяющие людям создают силу в том самом месте, где они ее используют. Тот устраняет неэффективность производства электроэнергии на ископаемом топливе, загрязнение воздуха и выбросы углекислого газа, которые они производят, а также устраняет неэффективность передачи энергии с точки зрения производство до точки использования с помощью воздушных или подземных источников энергии линий.Даже если вам придется покрыть всю крышу солнечными батареями (или ламинируйте тонкопленочные солнечные элементы на все окна), если бы вы могли удовлетворить все ваши потребности в электроэнергии (или даже большую часть их), это не имело бы значения: ваша крыша в любом случае — просто потраченное впустую пространство. Согласно отчету Европейской фотоэлектрической промышленности за 2011 год [PDF] Ассоциации и Гринпис, нет необходимости покрывать ценные сельхозугодья с солнечными батареями: около 40 процентов всех крыш и 15 процент фасадов зданий в странах ЕС подходят для фотоэлектрических панели, которые составят примерно 40 процентов от общего спрос на электроэнергию к 2020 году.

Важно не забывать, что солнечная энергия переключает мощность поколения на точка мощности потребление — и это имеет большой практический преимущества. Наручные часы и калькуляторы на солнечных батареях теоретически не нуждаются в батареях (на практике у них есть резервные батареи) и многие из нас будут наслаждаться смартфонами на солнечных батареях, которые никогда не были нужны зарядка. Дорожные и железнодорожные знаки теперь иногда работают на солнечной энергии; мигающие знаки аварийного обслуживания часто оснащены солнечными батареями поэтому их можно развернуть даже в самых удаленных местах.В развивающиеся страны, богатые солнечным светом, но бедные электричеством инфраструктура, солнечные батареи питают водяные насосы, телефонные будки, и холодильники в больницах и поликлиниках.

Почему солнечная энергия еще не прижилась?

Ответ на этот вопрос — смесь экономических, политических и технологические факторы. С экономической точки зрения в большинстве в странах электричество, произведенное с помощью солнечных батарей, по-прежнему дороже, чем электричество, произведенное путем сжигания грязи, загрязняющие ископаемые виды топлива.В мире есть огромные инвестиции в ископаемое топливной инфраструктуры и, хотя могущественные нефтяные компании баловались в ответвлениях солнечной энергии они, кажется, гораздо больше заинтересованы в продление срока службы существующих запасов нефти и газа с такие технологии, как гидроразрыв (гидроразрыв). В политическом плане нефтяные, газовые и угольные компании чрезвычайно сильные и влиятельные и противостоят окружающей среде правила, которые поддерживают возобновляемые технологии, такие как солнечная и ветровая мощность. Технологически, как мы уже видели, солнечные элементы — это постоянные «незавершенные работы» и большая часть солнечной энергии в мире инвестиции по-прежнему основаны на технологиях первого поколения.Кто знает, возможно, пройдет еще несколько десятилетий, прежде чем недавние научные успехи делают экономическое обоснование использования солнечной энергии действительно убедительным?

Одна проблема с аргументами такого рода состоит в том, что они весят только основные экономические и технологические факторы и не учитывают скрытые экологические расходы на разливы нефти, загрязнение воздуха, разрушение земель в результате добычи угля или климат изменения — и особенно будущие затраты, которые трудно или невозможно предсказать.Вполне возможно, что растущее осознание из этих проблем ускорит переход от ископаемого топлива, даже если не будет дальнейших технологических достижений; другими словами, может наступить время, когда мы больше не сможем откладывать всеобщее внедрение возобновляемых источников энергии. В конечном итоге все эти факторы взаимосвязаны. При убедительном политическом лидерстве мир мог взяться за солнечную революцию завтра: политика может заставить технологические усовершенствования, которые меняют экономику солнечной энергетики.

И одной только экономики могло хватить. Темп технологий, инноваций в производство и экономия на масштабе продолжают снижать стоимость солнечных батарей и панелей. Только с 2008 по 2009 год по словам аналитика BBC по окружающей среде Роджер Харрабин, цены упали примерно на 30 процентов, а Растущее доминирование Китая в производстве солнечной энергии с тех пор продолжает их сбивать. В период с 2010 по 2016 год стоимость крупномасштабных фотоэлектрических систем упала. примерно на 10–15 процентов в год, по данным Управление энергетической информации США; В целом цена перехода на солнечную энергию за последнее десятилетие упала примерно на 90 процентов, что еще больше укрепило позиции Китая на рынке.Шесть из десяти ведущих мировых производителей солнечной энергии теперь китайцы; в 2016 году около двух третей новых солнечных мощностей в США приходилось на Китай, Малайзию и Южную Корею.

Фото: Солнечные элементы — не единственный способ получить энергию из солнечного света или даже обязательно наилучшим образом. Мы также можем использовать солнечную тепловую энергию (поглощение тепла от солнечного света для нагрева воды в вашем доме), пассивную солнечную энергию (проектирование здания для поглощения солнечного света) и солнечные коллекторы (показаны здесь). В этой версии 16 зеркал собирать солнечный свет и концентрировать его на двигателе Стирлинга (серый прямоугольник справа), который является чрезвычайно эффективным производителем энергии.Фото Уоррена Гретца любезно предоставлено NREL (идентификатор изображения # 6323238).

Быстро догнать?

Ожидается, что переломный момент для солнечной энергии наступит, когда это возможно. достичь чего-то, что называется сеточной четностью , что означает, что вырабатываемое вами электричество на солнечной энергии становится столь же дешевым, как мощность, которую вы покупаете из сети. Многие европейские страны ожидают достичь этого рубежа к 2020 году. Solar, безусловно, опубликовала очень впечатляющие темпы роста в последние годы, но важно помните, что он по-прежнему представляет только часть всего мира энергия.В Великобритании, например, солнечная промышленность могла похвастаться «этапное достижение» в 2014 году, когда оно почти удвоило общее установленная мощность солнечных панелей примерно от 2,8 ГВт до 5 ГВт. Но что по-прежнему представляет собой лишь пару крупных электростанций и, на максимум выпускает , что составляет всего 8 процентов от общего количества в Великобритании потребность в электроэнергии около 60 ГВт (с учетом таких вещей, как облачность снизит его до какой-то доли 8 процентов).

По данным Управления энергетической информации США, в Соединенных Штатах, где была изобретена фотоэлектрическая технология, по состоянию на 2018 год, солнечный представляет только 1.6 процентов от общего производства электроэнергии в стране. Это примерно на 23 процента больше, чем в 2017 году (когда солнечная энергия составляла 1,3 процента), на 80 процентов больше, чем в 2016 году (когда этот показатель составлял 0,9 процента). и примерно в четыре раза больше, чем в 2014 году (когда солнечная энергия составляла всего 0,4 процента). Тем не менее, это примерно в 20 раз меньше угля. и в 40 раз меньше, чем все ископаемые виды топлива. Другими словами, даже 10-кратное увеличение солнечной энергии в США будет увидеть, что он производит не более половины электроэнергии, чем уголь сегодня (10 × 1,6 = 16 процентов по сравнению с 27.4% по углю в 2018 г.). Это Следует отметить, что два основных ежегодных энергетических обзора в мире, Статистический обзор мировой энергетики и международной В ключевой мировой энергетической статистике энергетического агентства почти не упоминается солнечная энергия. мощность вообще, кроме как в примечании.

Диаграмма

: Солнечная энергия с каждым годом вырабатывает больше нашей электроэнергии, но все еще далеко столько же, сколько угля. На этой диаграмме сравнивается процент электроэнергии, вырабатываемой в США за счет солнечной энергии. мощность (зеленая линия) и уголь (красная линия).В одних странах положение лучше, в других — хуже. Составлено Expainthatstuff.com с использованием исторических и текущих данных из Управление энергетической информации США.

Это изменится в ближайшее время? Просто могло бы. Согласно Доклад исследователей из Оксфордского университета 2016 г., стоимость солнечной энергии сейчас падает так быстро, что она должна обеспечить 20 процентов мировых потребностей в энергии к 2027 году, что станет серьезным изменением по сравнению с тем, где мы находимся сегодня, и гораздо более высокие темпы роста, чем кто-либо прогнозировал ранее.Может ли такой рост продолжаться? Может ли солнечная энергия действительно повлиять на изменение климата, пока не стало слишком поздно? Смотрите это пространство!

Краткая история солнечных элементов

  • 1839: французский физик Александр-Эдмон Беккерель (отец пионера радиоактивности Анри Беккереля) обнаружил, что некоторые металлы являются фотоэлектрическими: они производят электричество при воздействии света.
  • 1873: английский инженер Уиллоуби Смит обнаруживает, что селен является особенно эффективным фотопроводником (позже он был использован Честером Карлсоном в его изобретении копировального аппарата).
  • 1905: физик немецкого происхождения Альберт Эйнштейн разбирается в физике фотоэлектрического эффекта, открытие, которое в конечном итоге принесло ему Нобелевскую премию.
  • 1916: американский физик Роберт Милликен экспериментально доказывает теорию Эйнштейна.
  • 1940: Рассел Ол из Bell Labs случайно обнаруживает, что полупроводник с легированным переходом вырабатывает электрический ток при воздействии света.
  • 1954: Исследователи Bell Labs Дэрил Чапин , Кэлвин Фуллер и Джеральд Пирсон создают первый практический фотоэлектрический кремниевый солнечный элемент, эффективность которого составляет около 6 процентов (более поздняя версия — 11 процентов).Они объявляют о своем изобретении, первоначально называвшемся «солнечной батареей», 25 апреля.
  • 1958: Космические спутники Vanguard, Explorer и Sputnik начинают использовать солнечные батареи.
  • 1962: 3600 солнечных батарей Bell используются для питания Telstar, новаторского телекоммуникационного спутника.
  • 1997: Федеральное правительство США объявляет о своей инициативе «Миллион солнечных крыш» — построить к 2010 году миллион крыш, работающих на солнечной энергии.
  • 2002: НАСА запускает свой солнечный самолет Pathfinder Plus.
  • 2009: Ученые обнаружили, что кристаллы перовскита имеют большой потенциал в качестве фотоэлектрических материалов третьего поколения.
  • 2014: совместная работа немецких и французских ученых установила новый рекорд КПД в 46 процентов для солнечного элемента с четырьмя переходами.
  • 2020: Согласно прогнозам, солнечные элементы будут соответствовать сетевому паритету (электроэнергия, произведенная на солнечной энергии, которую вы производите самостоятельно, будет такой же дешевой, как и энергия, которую вы покупаете в сети).

Добавить комментарий

Ваш адрес email не будет опубликован.

*