Варистор что это такое: принцип работы, основные характеристики, обозначение на схеме – обозначение и основные характеристики, маркировка и принцип действия, сферы применения и проверка

Варистор — это… Что такое Варистор?

Обозначение на схеме

Вари́стор (англ. vari(able) (resi)stor — переменный резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП). В русскоязычной литературе часто применяется термин разрядник[источник не указан 288 дней] для обозначения варистора или устройства защиты от импульсных перенапряжений (УЗИП) на основе варистора.

Изготовление

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника — преимущественно порошкообразного карбида кремния SiC или оксида цинка ZnO, и связующего вещества (глина, жидкое стекло, лаки, смолы и др.). Далее поверхность полученного элемента металлизируют и припаивают к ней выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Вольт-амперные характеристики варисторов: синие — на основе ZnO, красные — на основе SiC. Разные варисторы

Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению R

d:

,

где U и I — напряжение и ток варистора.

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления варистора — отрицательная величина.

Применение

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,1 мА до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.

Параметры

  • Вольт-амперная характеристика
  • Классификационное напряжение, В — напряжение при определённом токе (обычно изготовители указывают при 1 мА), практической ценности не представляет.
  • Рабочее напряжение (Operating voltage) В (для пост. тока Vdc и Vrms — для переменного) — диапазон — от нескольких В до нескольких десятков кВ; данное напряжение должно быть превышено только при перенапряжениях.
  • Рабочий ток (Operating Current), А — диапазон — от 0,1 мА до 1 А
  • Максимальный импульсный ток (Peak Surge Current), А
  • Поглощаемая энергия (Absorption energy), Дж
  • Коэффициент нелинейности
  • Температурные коэффициенты (статич. сопротивления, напряжения, тока) — для всех типов варисторов не превышает 0,1 % на градус

Литература

  • В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков (Под ред. В. Г. Герасимова). Основы промышленной электроники: Учебник для вузов. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1978.
  • В. Г. Колесников (главный редактор). Электроника: Энциклопедический словарь. — 1-е изд. — М.: Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2

Ссылки

Варистор — Вікіпедія

Матеріал з Вікіпедії — вільної енциклопедії.

Варистор (385 В) Вольт-амперні характеристики варисторів на основах ZnO і SiC.

Вари́стор[1] (варістор[джерело не вказане 428 днів

], англ. vari(able) (resi)stor — змінний резистор) — напівпровідниковий резистор, електричний опір (провідність) якого нелінійно залежить від прикладеної електричної напруги; іншими словами, який має нелінійну симетричну вольт-амперну характеристику та два виводи.

Виготовляють варистори спіканням при температурі 1700 °C напівпровідника — переважно з порошкоподібного карбіду кремнію SiC або оксиду цинку ZnO, та сполучної речовини (глина, рідке скло, лаки, смоли та ін.). Після цього поверхню отриманого елемента металізують та припаюють до неї виводи.

Конструктивно варистори виготовляються у вигляді дисків, таблеток, стрижнів. Широке розповсюдження отримали стрижневі налаштовувані варистори з рухомим контактом.

Позначення в схемах

Нелінійність характеристик варисторів зумовлена локальним нагрівом дотичних граней численних кристалів карбіду кремнію (або іншого напівпровідника). При локальному підвищені температури на межах кристалів опір останніх різко знижується, що призводить до зменшення загального опору варисторів.

Один з основних параметрів варистора — коефіцієнт нелінійності λ — визначається відношенням його статичного опору R до динамічного опору Rd:

λ=RRd=UI:dUdI≈const{\displaystyle \lambda ={\frac {R}{R_{d}}}={\frac {U}{I}}:{\frac {dU}{dI}}\approx const},

де U та I — напруга і струм варистора.

Коефіцієнт нелінійності лежить в межах 2-10 у варисторів на основі SiC та 20-100 у варисторів на основі ZnO.

Температурний коефіцієнт електричного опору варистора — негативна величина.

Низьковольтні варистори виготовляють під робочу напругу від 3 до 200 В та струм від 0,1 мА до 1 А; високовольтні варистори — під робочу напругу до 20 кВ.

Варистори застосовують для стабілізації та регулювання низькочастотних струмів і напруги; в аналогових обчислювальних машинах — для реалізації підняття до степеня, добування коренів та інших математичних дій; для захисту від перенапруги (наприклад, високовольтні лінії електропередачі, лінії зв’язку, електричні прилади) та ін.

Високовольтні варистори застосовують для виготовлення обмежувачів перенапруги.

Як електричні компоненти, варистори дешеві і надійні, здатні витримувати значні електричні перевантаження, можуть працювати на високій частоті (до 500 кГц). Серед недоліків — значний низькочастотний шум та старіння — зміна параметрів з часом і при коливаннях температури.

  • Вольт-амперна характеристика
  • Класифікаційна напруга, В — напруга при визначеному струмі (зазвичай виробники вказують при 1 мА), практичної цінності не являє.
  • Робоча напруга (Operating voltage) В (для пост. струму Vdc і Vrms — для змінного) — діапазон — від декількох В до декількох десятків кВ; дана напруга повинна бути перевищена лише при перенапругах.
  • Робочий струм (Operating Current), А — діапазон — від 0,1 мА до 1 А
  • Максимальний імпульсний струм (Peak Surge Current), А
  • Енергія (Absorption energy), Дж
  • Коефіцієнт нелінійності
  • Температурні коефіцієнти (статичного опору, напруги, струму) — для всіх типів варисторів не перевищує 0,1% на градус
  1. ↑ Російсько-український та українсько-російський словник з радіоелектроніки / Богдан Рицар, Костянтин Семенистий, Ірина Кочан ; за ред. к. т. н. Богдана Рицара. — Львів : Логос, 1995. — С. 50, 509. — ISBN 5-7707-7696-X.
  • Основы промышленной электроники : учебник для ВУЗов / В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольський, В. В. Сухоруков ; под. ред. В. Г. Герасимова. — 2-е изд., перераб. и доп.. — М. : Высшая школа, 1978.
  • Электроника : энциклопедический словарь / В. Г. Колесников (гл. ред.). — М. : Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2.
  • БСЭ
  • Правила улаштування електроустановок. Четверте видання, перероблене й доповнене — Х. : Форт, 2011. — 736 с.

варистор — это… Что такое варистор?

[от англ. vari(able) — переменный и (resi)stor — резистор], полупроводниковый резистор, сопротивление которого изменяется при изменении приложенного напряжения. Используется в умножителях частоты, модуляторах, устройствах электрозащиты и поглощения перенапряжений и др.

ВАРИ́СТОР (от англ. vari(able) — переменный и (resi)stor — резистор), полупроводниковый резистор (см. РЕЗИСТОР), электрическое сопротивление которого изменяется при изменении приложенного напряжения. Варистор представляет собой электротехническое изделие, изготовленное из многофазных полупроводниковых материалов (см. ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ).
Основной материал для изготовления варисторов — полупроводниковый карбид кремния (см. КРЕМНИЯ КАРБИД) SiC. Кристаллы SiC размалывают до размера 40—300 мкм, и этот порошок используют в качестве основы варистора. Электропроводность порошка имеет нелинейный характер, однако она нестабильна, зависит от степени сжатия, крупности помола, меняется при тряске и т. п., поэтому порошок скрепляют связующим веществом. Порошкообразный карбид кремния и связующее вещество запрессовывают в форму и спекают. Если в качестве связующего вещества используют глину, то полученный материал называют тирит. Для изготовления тирита смесь 74% мелкоизмельченного карбида кремния и глины прессуется и обжигается при температуре 1270°С. Если используют жидкое стекло (75% SiO
2
+ 24% Na2O + вода, то есть силикатный клей), то полученный материал, состоящий из 84% SiC и 16% связующего, называют вилит. Смесь для изготовления вилита прессуется и обжигается при температуре 380°С. При использовании в качестве связующего ультрафарфоровой связки получают лэтин, а прессованный углерод с кристаллическим кремнием называется силит.
Поверхность прессованного образца металлизируют и припаивают к ней выводы. Изменение электропроводности варистора с нарастанием напряжения на его выводах связано со сложными явлениями на контактах или на поверхности кристаллов. Например, уменьшение сопротивления с ростом напряжения в варисторах, изготовленных на основе карбида кремния, связано с падением сопротивления контактов между зернами SiC. Это происходит вследствие нелинейного роста тока через p-n- переходы, образующиеся на этих контактах, в результате автоэлектронной эмиссии на острых участках зерен и т. д.
Варисторы на основе карбида кремния имеют невысокий коэффициент нелинейности, порядка 5—7, поэтому в настоящее время для изготовления варисторов применяется оксид цинка с добавками оксидов висмута, кобальта, марганца, сурьмы и хрома. Технология его приготовления сложна, она включает раздельный размол компонентов, смешение со связкой, прессование, спекание с выжиганием связки, размол, вторичное спекание, вжигание электродов. В результате получается высококачественная керамика с высокой нелинейностью, величина которой составляет 50—70. Нелинейность варисторов на основе оксидных полупроводников связана не со свойствами кристаллитов, а со свойствами межкристаллитных прослоек и потенциальных барьеров на поверхности кристаллитов. Однако варисторы на основе оксида цинка менее стабильны при работе и хранении, чем варисторы из карбида кремния.
Нелинейные резисторы — варисторы — широко применяются в производстве вентильных разрядников, предназначенных для защиты электрооборудования от грозовых и коммутационных перенапряжений. Вентильные разрядники подразделяют на низковольтные и высоковольтные. Варисторы используется также в умножителях частоты, модуляторах, устройствах поглощения перенапряжений и др.

Варистор — это… Что такое Варистор?

        [англ. varistor, от vari (able) — переменный и (resi) stor — резистор], полупроводниковый Резистор, электрическое сопротивление (проводимость) которого изменяется не линейно и одинаково под действием как положительного, так и отрицательного напряжения. Для изготовления В. применяют порошкообразный карбид кремния (полупроводник) и связующее вещество (глину, жидкое стекло, лаки, смолы и др.), которые запрессовывают в форму и спекают в ней при температуре около 1700° С. Затем поверхность образца металлизируют и припаивают к ней выводы. Изменение электропроводности В. с нарастанием напряжения на его выводах связано со сложными явлениями на контактах или на поверхности кристаллов (замыкание контактных зазоров между зёрнами полупроводника, увеличение проводимости поверхностных оксидных плёнок в сильных электрических полях и их пробой, возрастание тока через электронно-дырочные переходы (См. Электронно-дырочный переход), образующиеся между зёрнами, и др.). Низковольтные В. изготавливают на рабочее напряжение от 3 до 200 в и ток от 0,1 ма до 1 а; высоковольтные В. — на рабочее напряжение до 20 кв. В. имеют отрицательный температурный коэффициент сопротивления. В. способны выдерживать значительные электрические перегрузки, просты и дёшевы, обладают высокой надёжностью, малой инерционностью (предельная рабочая частота до 500 кгц), но имеют значительный низкочастотный шум и меняют свои параметры со временем и при изменении температуры. Применяют для стабилизации и регулирования низкочастотных токов и напряжений, возведения в степень, извлечения корней и других математических действий над заданными величинами, для защиты от разрушения контактов вследствие перенапряжений в электрических цепях (например, высоковольтные линии передачи электроэнергии, линии связи, электрические приборы) и др.

         Лит.: Пасынков В. В., Чиркин Л. К., Шинков А. Д., Полупроводниковые приборы, М., 1966.

Варикап.

Обозначение, параметры и применение варикапа

В современной электронике появляется всё больше электронных компонентов управляемых напряжением. Это связано с активным развитием цифровой техники. Ранее электронная аппаратура управлялась всевозможными ручками регулировки, кнопками, многопозиционными переключателями, т.е. руками.

Цифровая техника избавила нас от этого, а взамен дала возможность управлять и настраивать устройства посредством кнопок и экранного меню. Всё это было бы невозможно без электронных компонентов, управляемых напряжением. К одному из таких электронных компонентов можно отнести варикап.

Варикап – это полупроводниковый диод, который изменяет свою ёмкость пропорционально величине приложенного обратного напряжения от единиц до сотен пикофарад. Так изображается варикап на принципиальной схеме.

Условное изображение варикапа на схеме

Как видим, его изображение очень напоминает условное изображение полупроводникового диода. И это не случайно. Дело в том, что p-n переход любого диода обладает так называемой барьерной ёмкостью. Сама по себе барьерная ёмкость перехода для диода нежелательна. Но и этот недостаток смогли использовать. В результате был разработан варикап – некий гибрид диода и переменного конденсатора, ёмкость которого можно менять с помощью напряжения.

Как известно, при подаче обратного напряжения на диод, он закрыт и не пропускает электрический ток. В таком случае p-n переход выполняет роль своеобразного изолятора, толщина которого зависит от величины обратного напряжения (Uобр). Меняя величину обратного напряжения (Uобр), мы меняем толщину перехода – этого самого изолятора. А поскольку электрическая ёмкость C зависит от площади обкладок, в данном случае площади p-n перехода, и расстояния между обкладками – толщины перехода, то появляется возможность менять ёмкость p-n перехода с помощью напряжения. Это ещё называют электронной настройкой.

На варикап прикладывают обратное напряжение, что изменяет величину ёмкости барьера p-n перехода.

Отметим, что барьерная ёмкость есть у всех полупроводниковых диодов, и она уменьшается по мере увеличения обратного напряжения на диоде. Но вот у варикапов эта ёмкость может меняться в достаточно широких пределах, в 3 – 5 раз и более.

Положительные качества варикапа.

У варикапов очень маленькие потери электрической энергии и малый ТКЕ (температурный коэффициент ёмкости) поэтому их с успехом применяют даже на очень высоких частотах, где ёмкость конденсатора измеряется долями пикофарад. Это очень важно, так как если бы ёмкость варикапа была нестабильна из-за утечек (потери электрической энергии) и температуры (ТКЕ), то частота колебательного контура «уходила» и «гуляла», т.е. менялась. А это недопустимо! Познакомьтесь с колебательным контуром, и вы сразу поймёте насколько это важно.

Как работает варикап?

На рисунке показана типовая схема управления варикапом.

Типовая схема управления варикапом

R2 — переменный резистор. С помощью винта по рабочей поверхности этого резистора перемещается ползунок, который плавно изменяет сопротивление, а, соответственно, и величину обратного напряжения (Uобр), подаваемого на варикап. Конденсатор С1 препятствует попаданию на индуктивность L1 постоянного напряжения. Постоянный резистор R1 уменьшает шунтирующее действие резистора R2 на контур, что позволяет сохранить резонансные свойства контура. Как видим, ёмкость варикапа входит в состав колебательного контура. Меняя ёмкость варикапа, мы изменяем параметры колебательного контура и, следовательно, частоту его настройки. Так реализуется электронная настройка.

В современных цветных телевизорах есть такая функция – автонастройка (автопоиск) телеканалов. Нажимаем на кнопку, и весь диапазон сканируется на предмет наличия вещательных программ – телеканалов. Так вот этой функции просто бы не существовало, если бы не было варикапа.

В телевизоре управляющей схемой формируется плавно меняющееся напряжение настройки, которое и подаётся на варикап. За счёт этого меняются параметры колебательного контура приёмника (тюнера) и он настраивается на тот или иной телеканал. Затем происходит запоминание напряжения настройки на каждый из найденных телеканалов, и мы можем переключаться на любой из них, когда захотим.

Кроме обычных варикапов очень часто используют сдвоенные и строенные варикапы с общим катодом. Вот такой вид они имеют на принципиальных схемах.

Обозначение варикапных сборок на схемах

Они используются, как правило, в радиоприёмных устройствах, где необходимо одновременно перестраивать входной контур и гетеродин с помощью одного потенциометра. Имеются так же обычные сборки, когда в одном корпусе размещается несколько варикапов электрически не связанные между собой.

Параметры варикапов.

Несмотря на то, что варикап разработан на базе диода, это всё-таки конденсатор и именно параметры, связанные с ёмкостью и являются основными. Вот лишь некоторые из них:

  • Максимальное обратное постоянное напряжение (Uобр. max.). Измеряется в вольтах (В). Это максимальное напряжение, которое можно подавать на варикап. Напомним, что ёмкость варикапа уменьшается при увеличении обратного напряжения на нём.

  • Номинальная ёмкость варикапа (СВ). Это ёмкость варикапа при фиксированном обратном напряжении. Поскольку варикапы выпускаются на различные значения ёмкости, начиная от долей пикофарады и до сотен пикофарад, то их ёмкость измеряют, подавая определённую величину обратного напряжения на варикап. Оно может быть равным 4 и более вольтам, и, как правило, указывается в справочных данных.

    Также может указываться минимальная и максимальная ёмкость варикапа (Cmin и Cmaх). Это связано с тем, что параметры выпускаемых варикапов могут несколько отличаться. Поэтому в справочных данных указывают минимально- и максимально- возможную ёмкость варикапа при фиксированном обратном напряжении (Uобр). Это и есть Cmax и Cmin.

    У импортных варикапов обычно указывается только одна величина Cd (или Cд) – ёмкость варикапа при обратном напряжении, близком к максимальному. Например, для импортного варикапа BB133 ёмкость Cd = 2,6 pF (пФ) при обратном напряжении VR = 28 V.

  • Коэффициент перекрытия по ёмкости (Кс). Этот параметр показывает отношение максимальной ёмкости варикапа к минимальной. Считается так:
  • Формула расчёта коэффициента перекрытия

    Например, для отечественного варикапа КВ109А коэффициент перекрытия Кс равен 5,5. Ёмкость при Uобр = 25 В составляет 2,8 пФ (Это – Cmin). Так как диапазон обратного напряжения для варикапа КВ109А составляет 3 – 25 вольт, то используя формулу, можно узнать ёмкость этого варикапа при обратном напряжении в 3 вольта. Оно составит 15,4 пФ.(Это – Cmax).

    В документации на импортные варикапы так же указывается коэффициент перекрытия. Он называется capacitance ratio. Формула, по которой считается этот параметр, выглядит так (для варикапа BB133).

    Формула Capacitance ratio (тот же Кс)

    Как видим, берётся ёмкость варикапа при обратном напряжении в 0,5 V и в 28 V. Так как ёмкость варикапа уменьшается при увеличении обратного напряжения на нём, то становиться ясно, что эта формула расчёта аналогична той, что применяется для расчёта Кс.

Все остальные параметры можно считать несущественными. В некоторых случаях необходимо обратить внимание на граничную частоту, но это не столь важно, поскольку варикапы уверенно работают во всём радио и телевизионном диапазоне.

 

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*