Вес чугунной батареи 1 секции: Сколько весит одна секция чугунной батареи старого и нового образца

Аккумуляторное сырье — откуда и куда?

  • Список журналов
  • Коллекция чрезвычайных ситуаций в области общественного здравоохранения Nature
  • PMC83

ATZ Worldw. 2021; 123(9): 8–13.

Опубликовано в сети 27 августа 2021 г. doi: 10.1007/s38311-021-0715-5

PMCID: PMC83

Информация об авторе Информация об авторских правах и лицензиях Отказ от ответственности на возрастающий спрос на сырье. В частности, на этапе наращивания электромобильности время от времени могут возникать узкие места в подаче электроэнергии. На более позднем этапе концепции переработки использованных аккумуляторных элементов могут снизить нагрузку на цепочки поставок.

Мировой парк электромобилей вырос до 10,9 млн автомобилей в 2020 году [1], что на три миллиона больше, чем в предыдущем году. С более чем пятью миллионами электромобилей на дорогах Китай по-прежнему является бесспорным лидером, за ним следуют США. с 1,77 млн. Германия вышла на третье место с почти 570 000 электромобилей [1]. В 2020 году количество вновь зарегистрированных электромобилей достигло рекордной отметки в 3,18 млн единиц. Начиная с 2030 г. они могут составлять от 25 до 75 % новых регистраций. Это приведет к потребности в мощности батарей от 1 до 6 ТВтч в год, в зависимости от того, какое исследование читается [2].

По мере распространения электромобилей спрос на специальное сырье для автомобилей и, в частности, на аккумуляторы будет продолжать расти. Все прогнозы указывают на то, что литий-ионные батареи станут стандартным решением для электромобилей в течение следующих десяти лет, поэтому основными необходимыми веществами будут графит, кобальт, литий, марганец и никель.

Согласно оценкам Фраунгоферовского института системных и инновационных исследований (ISI), несмотря на развитие клеточной химии, весовая доля лития в каждой клетке, составляющая около 72 г/кг, вряд ли заметно сократится в течение этого периода. Однако доля кобальта может значительно снизиться с 200 г/кг массы клетки до примерно 60 г/кг. Таким образом, потребность в первичном сырье для производства автомобильных аккумуляторов к 2030 г. должна составить от 250 до 450 тыс. т лития, от 250 до 420 тыс. т кобальта и от 1,3 до 2,4 млн т никеля.

При оценке месторождений сырья необходимо учитывать две разные цифры: с одной стороны, общедоступные ресурсы на планете, а с другой стороны, месторождения, которые можно рентабельно извлекать с использованием современных технологий. по текущим рыночным ценам. На этом этапе можно дать полную ясность для литий-ионных автомобильных аккумуляторов. Ученые подтвердили наличие достаточного количества сырья. В большинстве случаев общие запасы значительно превысят прогнозируемый спрос, даже если количество необходимого сырья будет увеличиваться параллельно в результате увеличения спроса в других областях.

Тем не менее, несколько исследований показывают, что временная нехватка или повышение цен на отдельные виды сырья, безусловно, возможны, например, если необходимо открыть новые производственные площадки, если спрос слишком велик или существуют проблемы с экспортом из стран-производителей. Ситуация значительно варьируется в зависимости от различных металлов, как показывает углубленный анализ и оценка Немецкого агентства по минеральным ресурсам (Dera), которые более подробно описаны ниже для пяти химических элементов.

Графит используется в качестве материала анода в литий-ионных батареях. Он имеет самую высокую объемную долю всего сырья для аккумуляторов, а также представляет собой значительный процент затрат на производство элементов. Китай уже несколько лет играет доминирующую роль почти во всей цепочке поставок и производит почти 50 % мирового синтетического графита и 70 % чешуйчатого графита, который требует предварительной обработки перед использованием в батареях.

За последние несколько лет наблюдается увеличение разведочных работ, особенно в Африке. Новые участки добычи в Мозамбике, Танзании и Мадагаскаре могли бы снизить давление на высококонцентрированный мировой рынок. Однако риски, связанные с переработкой чешуйчатого графита, также создают проблему для безопасности поставок, поскольку она почти полностью осуществляется в Китае вместе с производством анодов. В настоящее время ведутся исследования новых анодных материалов, которые, если бы они использовались в батареях массового производства, могли бы повлиять на будущий спрос на графит.

Открыть в отдельном окне

Требования к литию для производства аккумуляторов для электромобилей в Европе в 2030 году в зависимости от производственных мощностей (NMC 811: 80 % никеля, 10 % марганца, 10 % кобальта; NMC 622: 60 % никеля, 20 % марганца, 20 % кобальта)

© [M] Dera

Подобно никелю и марганцу, кобальт необходим для катодов батарей. В настоящее время он представляет наибольшие риски при закупке всего сырья для аккумуляторов. Это связано, в частности, с ожидаемым динамичным ростом спроса и вытекающими из этого потенциальными узкими местами в поставках. «Исходя из текущих сценариев, спрос на кобальт для электромобилей может возрасти к 2030 году до 315 000 тонн, что в 20 раз превышает нынешний объем», — говорит Сийаменд Аль Барази из Дера. Продолжающаяся разработка катодов с низким содержанием кобальта или даже без кобальта может привести к значительному снижению общего спроса. Роль Демократической Республики Конго, которая на сегодняшний день является крупнейшим производителем, представляет серьезные риски для стратегического планирования. «Добыча кобальта доминирует на мировом рынке уже более десяти лет, с текущей долей рынка 69%, и страна могла бы значительно увеличить добычу, если спрос продолжит расти», — поясняет Аль Барази. данные в странах представляют собой годовое производство)

© [M] Agora Verkehrswende

Поскольку рынок лития относительно невелик, ожидаемое увеличение спроса особенно велико по сравнению с текущими уровнями производства. «Наши расчеты показывают, что потребности в поставках утроить к 2026 году просто для того, чтобы покрыть будущий спрос», — говорит Майкл Шмидт из Dera. Добыча лития в настоящее время ограничена Австралией, Чили и Аргентиной, а также несколькими компаниями, и только четыре предприятия контролируют почти 60% мирового производства. Бум производства лития в последние годы показал, что рынок лития претерпевает серьезные изменения. проекты планируются и реализуются в других странах, таких как Канада, Мексика и Боливия. Европа также имеет значительный потенциал. Узкие места в поставках лития в настоящее время маловероятны, но эксперты указали, что концентрация всего на нескольких странах-производителях останется неизменной. «Кроме того, азиатские производители батарей, в частности, получили большие квоты, заключив долгосрочные контракты на поставку и приобретя доли в компаниях. Это значительно сократило количество свободного лития на мировом рынке», — говорит Шмидт.

Аккумуляторы составляют лишь небольшую часть рынка марганца. Основным потребителем марганца является сталелитейная промышленность, которая потребляет около 90 % мировых поставок. В настоящее время только около 0,2 % добываемого в мире марганца используется в литий-ионных батареях. В будущем эта цифра увеличится примерно до 1%.

Открыть в отдельном окне

Мировое производство добываемого лития в 2015 г. плюс запасы (цвет стран указывает на запасы; данные по странам представляют собой годовое производство)

© [M] Agora Verkehrswende

Мировой спрос на никель для производства литий-ионных аккумуляторов в 2019 году составил более 150 000 тонн. Это составляет менее 5 % объема мирового рынка первичного никеля. К 2025 году спрос со стороны сектора электромобилей может увеличиться примерно до 500 000 т в год, что будет эквивалентно 15 % всего мирового рынка. Для повышения плотности энергии литий-ионных аккумуляторов в элементах используется гораздо большая доля никеля. Это означает, что спрос будет расти непропорционально увеличению производства аккумуляторов.

Сульфат никеля необходим для литий-ионных аккумуляторов, которые являются нишевым продуктом, производимым из никеля класса I (более 9чистота 9 %). Чтобы удовлетворить растущий спрос в будущем, необходимо разработать новые методы производства сульфата никеля. Рынок сильно зависит от поставок первичного никеля из Юго-Восточной Азии и, в частности, из Индонезии, которая на сегодняшний день является крупнейшей страной по добыче никеля. В 2020 году Индонезия ввела запрет на экспорт никелевой руды, чтобы обеспечить сохранение в стране значительных звеньев производственно-сбытовой цепочки. В настоящее время он является вторым по величине производителем никеля в мире после Китая, но только никеля класса II (менее 9чистота 9 %). В Индонезии реализуется множество проектов, направленных на производство более качественной никелевой продукции для производства аккумуляторов.

Чтобы уменьшить мировую зависимость от стран-производителей сырья, упомянутых выше, в будущем все большее значение будет иметь создание комплексной структуры переработки. Процессы извлечения сырья из небольших литий-ионных аккумуляторов, таких как те, что используются в сотовых телефонах, частично уже внедряются. Однако автомобильные аккумуляторы намного больше, тяжелее и мощнее, что усложняет индустриализацию процесса переработки. Федеральное министерство экономики и энергетики Германии (BMWi) вместе с Vinnova, шведским агентством по инновациям, финансирует исследовательский проект Libero в RWTH Aachen University в рамках Центральной инновационной программы для МСП (ZIM). Немецко-шведский консорциум, состоящий из двух партнеров из промышленности и двух из исследовательского мира в каждой стране, работает над разработкой надежного, гибкого и практически безотходного процесса переработки аккумуляторов. Цель проекта, который начался в 2019 году, заключается в планировании завода мощностью по переработке 25 000 т аккумуляторной массы в год . Финская компания Fortum, наполовину принадлежащая государству, уже разработала процесс утилизации литий-ионных аккумуляторов от электромобилей.

Компания Umicore является одним из пионеров в области коммерческой переработки батарей. Процесс, разработанный компанией, состоит из пирометаллургической и гидрометаллургической фаз. На начальной стадии термической обработки получается сплав, содержащий кобальт, никель и медь, а также фракцию шлака. Металлы извлекаются на последующей гидрометаллургической стадии процесса. Первый завод по переработке Umicore имеет мощность 7000 т аккумуляторной массы в год, что соответствует примерно 35000 аккумуляторов для электромобилей.

В начале 2021 года Volkswagen запустил пилотный завод по переработке высоковольтных автомобильных аккумуляторов на своей площадке в немецком городе Зальцгиттер. Завод будет извлекать 100 % лития, никеля, марганца и кобальта, а также 90 % алюминия, меди и пластика. В настоящее время завод рассчитан на переработку до 3600 аккумуляторных систем в год, что эквивалентно примерно 1500 т массы аккумуляторов. Тем не менее, система может быть расширена для обработки больших объемов, когда станет доступно больше использованных батарей. По словам Volkswagen, процесс переработки не включает плавку в доменной печи, которая требует большого количества энергии. Отработавшие аккумуляторные системы, доставленные на завод, подвергаются глубокой разрядке и разбираются. Отдельные части измельчаются с образованием гранулята, который затем высушивается. В ходе этого процесса производятся алюминий, медь и пластмассы, а также, что наиболее важно, черная порошкообразная смесь, содержащая основные сырьевые материалы для аккумуляторов: литий, никель, марганец, кобальт и графит. Впоследствии партнеры-специалисты Volkswagen несут ответственность за разделение и обработку отдельных элементов с помощью гидрометаллургических процессов, в которых используются вода и химикаты.

Весовая доля перерабатываемого материала в литий-ионном аккумуляторе (источник: Volkswagen)

Перерабатываемый материал Весовая доля [кг] (при общей массе аккумулятора 400 кг)
Aluminum 126
Graphite 71
Nickel 41
Electrolyte 37
Copper 22
Plastic 21
Manganese 12
Cobalt 9
Electronics 9
Lithium 8
Steel 3
Остаток 41

Открыть в отдельном окне

«Это позволяет использовать ключевые компоненты старых аккумуляторных элементов для производства новых катодов», — объясняет Марк Мёллер, руководитель отдела технического развития. и подразделение E-Mobility Volkswagen Group Components. «Поскольку спрос на батареи и, следовательно, на сырье значительно возрастет, мы сможем эффективно использовать каждый грамм материала, который мы восстанавливаем». Другие производители автомобилей, такие как Mercedes-Benz, думают так же. Как пояснила компания по запросу, она планирует построить завод по переработке высоковольтных аккумуляторов на своем заводе в Гаггенау в Германии.

Повторное использование старых автомобильных аккумуляторов в стационарных условиях может продлить срок их службы до того, как возникнет необходимость в их переработке. В настоящее время нет практического опыта в отношении того, сколько батарей будет соответствовать требованиям для повторного использования с точки зрения их остаточной емкости и срока службы. В общем, концепция второй жизни подходит только для приложений, в которых можно использовать старые батареи с низкой плотностью энергии. Кроме того, необходимо решить такие вопросы, как стандартизация и гарантии.

Согласно Fraunhofer ISI, можно ожидать более высоких показателей отказов и замены, чем в случае с новыми батареями, а это означает, что высокий уровень надежности, требуемый, например, от децентрализованных систем хранения батарей для жилых зданий, не может быть гарантирован. Из-за необходимых уровней резервирования количество необходимых элементов и, следовательно, стоимость батарей будут выше. Предположение Fraunhofer ISI состоит в том, что только часть старых тяговых батарей может получить вторую жизнь.

  1. Электроавтомобили: Bestand steigt weltweit auf 10,9 Millionen. Онлайн: https://www.zsw-bw.de/presse/aktuelles/detailansicht/news/detail/News/elektroautos-bestand-steigt-weltweit-auf-109-millionen.html, доступ: 27 апреля 2021 г.

  2. Thielmann, A. et al.: Batterien für Elektroautos: Faktencheck und Handlungsbedarf. Онлайн: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cct/2020/Faktencheck-Batterien-fuer-E-Autos.pdf, доступ: 27 апреля 2021 г.

  3. Al Barazi, S. et al.: Batterierohstoffe für die Elektromobilität. Онлайн: https://www.deutsche-rohstoffagentur.de/DERA/DE/Downloads/DERA%20 Themenheft-01-21.pdf;jsessionid=396E609556CA74734128C336131440D7.1_cid331?__blob=publicationFile&v=2, доступ: 27 апреля 2021 г.

  4. Schäfer, P.: Neues Anodenmaterial für leistungsfähigere Li-Ion-Batterien. Онлайн: https://www.springerprofessional.de/batterie/werkstoffe/neues-anodenmaterial-fuer-leistungsfaehigere-li-ion-batterien/18497460, доступ: 18 мая 2021 г.

  5. RWTH Aachen: Завод RWTH Pilotanlage für das Recycling von 25.000 Tonnen Batterien. Онлайн: https://www.rwth-aachen.de/go/id/dzeoz?#aaaaaaaaaadzewc, доступ: 27 апреля 2021 г.

  6. Райхенбах, М.: Finnland startet mit nationaler Batteriestrategie durch. Интернет https://www.springerprofessional.de/link/19155626, доступ: 18 мая 2021 г.

  7. Volkswagen: Aus alt mach neu: Volkswagen Group Components startet Batterie-Recycling. Онлайн: https://www.volkswagen-newsroom.com/de/pressemitteilungen/aus-alt-mach-neu-volkswagen-group-components-startet-batterie-recycling-6789, доступ: 27 апреля 2021 г.

  8. Köllner, C.: Faktencheck Elektroauto-Batterien. Онлайн: https://www.springerprofessional.de/batterie/elektrofahrzeuge/faktencheck-elektroauto-batterien/ 17624376, дата доступа: 18 мая 2021 г.

2 вопроса для …

В чем особенности вашей концепции утилизации литий-ионных аккумуляторов от электромобилей?

Holländer _ Традиционным способом переработки литий-ионных аккумуляторов является термический подход. Fortum использует комбинацию механической и гидрометаллургической переработки, которая обеспечивает значительно более низкий уровень выбросов CO 2 след. С помощью этой технологии способность разделять различные металлы также намного лучше, и извлекается гораздо большая часть активных материалов батареи; Другими словами, мы можем восстановить до 95 % дефицитных и ценных металлов в черной массе батареи. В начале этого года мы запатентовали собственный метод выделения лития.

Открыть в отдельном окне

Теро Холландер Руководитель направления аккумуляторов Fortum

© Фортум

Когда, по вашему мнению, процесс будет индустриализирован, когда будет достаточно батарей для экономичной эксплуатации завода?

Holländer _ Мы уже работаем в промышленных масштабах, и наша текущая мощность переработки составляет около 3000 т в год, что эквивалентно примерно 10 000 аккумуляторов для электромобилей. Наш завод по механической переработке в Икаалинене в настоящее время находится на стадии ввода в эксплуатацию, и у нас есть опытный промышленный завод по гидрометаллургической переработке в Харьявалте. Нашей целью является строительство крупного гидрометаллургического завода в Харьявалте, который позволит нам в будущем перерабатывать большее количество материалов.

Мнение

«Как всегда, вся цепочка поставок сырья для литий-ионных аккумуляторов настолько прочна, насколько прочно ее самое слабое звено. Производство аккумуляторов может работать бесперебойно только тогда, когда все необходимое сырье доступно в нужном месте. время и в достаточном количестве. Чтобы достичь этой цели и обеспечить быстрое распространение электрической мобильности, все политики и бизнес-лидеры на международном уровне должны двигаться в одном направлении. весь процесс производства автомобилей наглядно продемонстрировал корабль, перекрывший Суэцкий канал, и дефицит электронных компонентов, вызванный Covid-19пандемия».

Ричард Бакхаус

является корреспондентом ATZ | MTZ | ATZelectronics.

Центр данных по альтернативным видам топлива: Аккумуляторы для электромобилей

В большинстве подключаемых гибридов и полностью электрических транспортных средств используются подобные литий-ионные аккумуляторы.

Системы накопления энергии, обычно батареи, необходимы для полностью электрических транспортных средств, подключаемых гибридных электромобилей (PHEV) и гибридных электромобилей (HEV).

Типы систем накопления энергии

Следующие системы накопления энергии используются в полностью электрических транспортных средствах, PHEV и HEV.

Литий-ионные батареи

Литий-ионные батареи в настоящее время используются в большинстве портативных электронных устройств, таких как сотовые телефоны и ноутбуки, из-за их высокой энергии на единицу массы по сравнению с другими системами хранения электроэнергии. Они также имеют высокое отношение мощности к весу, высокую энергоэффективность, хорошие характеристики при высоких температурах и низкий саморазряд. Большинство компонентов литий-ионных аккумуляторов могут быть переработаны, но стоимость восстановления материалов остается проблемой для отрасли. Министерство энергетики США также поддерживает Премию по переработке литий-ионных аккумуляторов, чтобы разработать и продемонстрировать выгодные решения для сбора, сортировки, хранения и транспортировки отработанных и выброшенных литий-ионных аккумуляторов для возможной переработки и восстановления материалов. В большинстве современных полностью электрических транспортных средств и PHEV используются литий-ионные аккумуляторы, хотя точный химический состав часто отличается от химического состава аккумуляторов бытовой электроники. Продолжаются исследования и разработки, направленные на снижение их относительно высокой стоимости, продление срока их службы и решение проблем безопасности в отношении перегрева.

Никель-металл-гидридные батареи

Никель-металл-гидридные батареи, обычно используемые в компьютерном и медицинском оборудовании, обладают приемлемой удельной энергией и удельной мощностью. Никель-металлогидридные батареи имеют гораздо более длительный жизненный цикл, чем свинцово-кислотные батареи, они безопасны и устойчивы к небрежному обращению. Эти аккумуляторы широко используются в гибридных автомобилях. Основными проблемами, связанными с никель-металлгидридными батареями, являются их высокая стоимость, высокий саморазряд и выделение тепла при высоких температурах, а также необходимость контроля потерь водорода.

Свинцово-кислотные батареи

Свинцово-кислотные батареи могут быть рассчитаны на большую мощность, они недороги, безопасны и надежны. Однако низкая удельная энергия, плохие характеристики при низких температурах, а также короткий календарный и жизненный цикл препятствуют их использованию. Разрабатываются усовершенствованные свинцово-кислотные аккумуляторы большой мощности, но эти аккумуляторы используются только в коммерческих транспортных средствах с электроприводом для вспомогательных нагрузок.

Ультраконденсаторы

Ультраконденсаторы накапливают энергию в поляризованной жидкости между электродом и электролитом. Емкость накопления энергии увеличивается по мере увеличения площади поверхности жидкости. Ультраконденсаторы могут обеспечивать транспортным средствам дополнительную мощность при ускорении и подъеме на холм, а также помогают восстанавливать энергию торможения. Они также могут быть полезны в качестве вторичных накопителей энергии в транспортных средствах с электроприводом, поскольку они помогают электрохимическим батареям выравнивать мощность нагрузки.

Утилизация аккумуляторов

Электромобили появились на автомобильном рынке США относительно недавно, поэтому лишь небольшое их количество подошло к концу срока службы. Поскольку автомобили с электроприводом становятся все более распространенными, рынок переработки аккумуляторов может расшириться.

Широко распространенная переработка аккумуляторов предотвратит попадание опасных материалов в поток отходов как в конце срока службы аккумулятора, так и в процессе его производства. Извлечение материалов из рециркуляции также вернет критические материалы обратно в цепочку поставок и увеличит внутренние источники таких материалов. В настоящее время ведется работа по разработке процессов переработки аккумуляторов, которые сводят к минимуму воздействие на жизненный цикл использования литий-ионных и других типов аккумуляторов в транспортных средствах. Но не все процессы переработки одинаковы и требуют разных методов разделения для извлечения материала:

  • Плавка : Процессы плавки извлекают основные элементы или соли. Эти процессы сейчас работают в больших масштабах и могут работать с несколькими типами батарей, включая литий-ионные и никель-металлогидридные. Плавка происходит при высоких температурах, когда органические материалы, включая электролит и угольные аноды, сжигаются в качестве топлива или восстановителя. Ценные металлы извлекаются и отправляются на аффинаж, чтобы продукт был пригоден для любого использования. Другие материалы, в том числе литий, содержатся в шлаке, который сейчас используется в качестве добавки к бетону.
  • Прямое восстановление : С другой стороны, некоторые процессы переработки напрямую восстанавливают материалы, пригодные для использования в батареях. Компоненты разделяются различными физическими и химическими процессами, и все активные материалы и металлы могут быть восстановлены. Прямое восстановление представляет собой низкотемпературный процесс с минимальным потреблением энергии.
  • Промежуточные процессы : Третий тип процесса находится между двумя крайностями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*